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Abstract: Different types of methods have been developed to retrieve vegetation attributes from
remote sensing data, including conventional empirical regressions (i.e., linear regression (LR)),
advanced empirical regressions (e.g., multivariable linear regression (MLR), partial least square
regression (PLSR)), machine learning (e.g., random forest regression (RFR), decision tree regression
(DTR)), and radiative transfer modelling (RTM, e.g., PROSAIL). Given that each algorithm has its
own strengths and weaknesses, it is essential to compare them and evaluate their effectiveness.
Previous studies have mainly used single-date multispectral imagery or ground-based hyperspectral
reflectance data for evaluating the models, while multi-seasonal hyperspectral images have been
rarely used. Extensive spectral and spatial information in hyperspectral images, as well as temporal
variations of landscapes, potentially influence the model performance. In this research, LR, PLSR,
RFR, and PROSAIL, representing different types of methods, were evaluated for estimating vegetation
chlorophyll content from bi-seasonal hyperspectral images (i.e., a middle- and a late-growing season
image, respectively). Results show that the PLSR and RFR generally performed better than LR and
PROSAIL. RFR achieved the highest accuracy for both images. This research provides insights on the
effectiveness of different models for estimating vegetation chlorophyll content using hyperspectral
images, aiming to support future vegetation monitoring research.

Keywords: vegetation properties; empirical regression; machine learning; radiative transfer
modelling; hyperspectral; chlorophyll content

1. Introduction

Vegetation biochemical and biophysical properties, such as chlorophyll content and leaf area index,
are essential vegetation characteristics that influence plant physiological status, vegetation productivity,
and ecosystem health [1,2]. As an example, chlorophyll controls the amount of solar radiation and CO2

that a plant uses for photosynthesis, thus highly influencing vegetation photosynthetic capacity and
productivity [3]. Investigation of vegetation properties is critical for understanding vegetation growth
condition and supporting resource management [4]. Field measurements of vegetation properties are
costly, labor-intensive, and limited to small areas [5]. In contrast, remote sensing is a low-cost and
efficient tool for estimating vegetation properties and investigating their spatio-temporal variations
over large areas [6,7]. Different approaches have been applied for estimating vegetation properties
from remote sensing data, including conventional empirical regressions (i.e., linear regression (LR)),
advanced empirical regressions (e.g., multivariable linear regression (MLR), partial least square
regression (PLSR), principal component regression (PCR)), machine learning (e.g., random forest
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regression (RFR), decision tree regression (DTR), artificial neural networks (ANN)), and radiative
transfer modelling (RTM, e.g., PROSPECT, PROSAIL) [5,8–13]. These approaches were developed using
different theories and thus are expected to perform differently when estimating vegetation properties.

Previous research has attempted to compare various models for estimating vegetation properties.
For instance, Powell et al. [14] compared RFR, reduced major axis regression, and gradient nearest
neighbour imputation for estimating forest biomass using Landsat imagery. Darvishzadeh et al. [15]
investigated PLSR and PROSAIL for retrieving grassland leaf area index (LAI) from HyMap data.
Siegmann and Jarmer [16] evaluated performance of PLSR, support vector regression (SVR), and RFR for
estimating wheat LAI using field-measured hyperspectral reflectance. Wang et al. [17] compared RFR,
SVR, and ANN for investigating wheat biomass using multispectral HJ-CCD imagery. Reddy et al. [18]
applied PLSR and RFR for modelling forest structural attributes (e.g., volume, tree height) using
airborne multispectral imagery. Xing et al. [19] tested performance of PLSR, SVM, RFR, and ridge
regression for estimating nutrition components (e.g., protein and sugar) in forage crops using a few
field-based multispectral sensors and active sensors (e.g., laser). Yue et al. [13] examined ANN, MLR,
DTR, PLSR, RFR, SVM, boosted binary regression tree (BBRT), and PCR for estimating wheat biomass
using field-measured hyperspectral reflectance. In summary, most of these studies have compared
advanced empirical regressions (e.g., PLSR, MLR) with machine learning methods (e.g., RFR, ANN),
while less studies have compared these with two other commonly used approaches: conventional
empirical regressions and radiative transfer modelling. The conventional empirical regression (e.g.,
LR using vegetation index) is the most widely used approach for retrieving vegetation information
from remote sensing data owing to its easy application and fast computing. The advanced empirical
regressions (e.g., PLSR) and machine learning approaches (e.g., RFR) are expected to outperform the
conventional empirical regressions (e.g., LR) since they can use information from multiple predictor
variables [20], however, it is unknown how much higher accuracy they can achieve. In many real-world
practices, e.g., estimating crop properties in precision farming, the LR with acceptable accuracy is still
preferred owing to its operational and computing advantages. Therefore, it is valuable to explore
strategies for building well-performing LRs and comparing their accuracy with that of more advanced
models. RTM is another approach used for investigating vegetation properties using remote sensing
data. It describes the interaction of electromagnetic radiation with plants (reflection, transmission,
absorption) using physical laws and simulates vegetation spectra at different wavelength ranges using
vegetation biophysical and biochemical properties [21,22]. The RTM is a less often used approach
due to model complexity and computing challenges. However, the RTM is physically-based, not
sensor-, site-, or season-specific, and thus it is a more transferable approach than the empirical-based
methods [5]. Therefore, it is valuable to compare RTM to other approaches and evaluate their accuracy
and effectiveness.

Previous studies comparing different approaches have mainly utilized multispectral images or
ground based hyperspectral reflectance data, while few studies have applied hyperspectral images
to evaluate the performance of different models. The hyperspectral imagery records the spectral
signal of ground features in hundreds of narrow spectral bands over a large area. The huge amount
of spectral and spatial (i.e., image textural) information may influence the performance of different
models, which has not been fully explored in previous studies. Moreover, most of previous studies
have utilized single-date images for the comparison of different approaches, while less have used
multi-temporal data. The phenological variations of vegetation (e.g., changes from homogeneous green
canopies in the middle growing season to heterogeneous canopies with mixed green and senescent
vegetation in the late growing season) also potentially influence the effectiveness of different models.
It is thus critical to investigate if the models perform differently for images acquired from different
seasons. In addition, most of previous model comparison studies attempted to investigate vegetation
biophysical properties [14–18], such as vegetation structure and biomass, while few have focused on
estimating vegetation biochemical properties (e.g., vegetation chlorophyll content). Different spectral
features need to be utilized for investigating vegetation biochemical properties and model performance
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may vary depending on which spectral features are used. For instance, spectral signals in blue, red,
and NIR ranges are critical for estimating canopy chlorophyll content (e.g., signals in blue and red
capturing chlorophyll absorption features and signals in NIR reflecting vegetation density information).
Models capable of selecting and utilizing spectral variables in these ranges can potentially achieve
higher estimation accuracy. In this study, bi-seasonal high-spatial resolution hyperspectral images
were acquired by a helicopter-based imaging system and utilized for estimating vegetation canopy
chlorophyll content with different models. Specifically, LRs, PLSR, RFR, and a modified PROSAIL,
which represent conventional empirical regression, advanced empirical regression, machine learning,
and RTM, respectively, were selected and compared. Different types of information, such as vegetation
indices (VIs), reflectance of each band, principal components (PCs), and textural variables were
extracted from the hyperspectral images and applied into different models as predictor variables.

LR is the most widely used approach for estimating vegetation properties from remote sensing
data [4]. One common practice is to establish a LR between targeted vegetation properties (e.g.,
chlorophyll content) and remote sensing variables (e.g., VIs) using sampling data, and then applying
this LR for predictive purposes. A large number of broadband or narrowband VIs have been developed
in previous studies to retrieve vegetation properties, such as the widely used Normalized Difference
Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and Atmospherically Resistant
Vegetation Index (ARVI) [23–26]. Previous studies have also compared these VIs and evaluated
their performance for estimating various vegetation properties (e.g., chlorophyll content, biomass) in
different ecosystems (e.g., forests, grasslands, and croplands) [4,5,17,27–30]. In this research, 29 VIs
that performed well in previous studies for estimating vegetation canopy chlorophyll content were
selected and further evaluated [28,30]. In addition to VIs, previous studies indicated that image PCs
can provide important information for investigating vegetation properties [31,32]. Therefore, PCs were
also tested as predictor variables in LR for estimating vegetation chlorophyll content.

To estimate vegetation properties, LR is relatively easy to build in comparison with more advanced
regression models and LR generally performs well with appropriate VIs and training samples (e.g.,
selecting VIs from previous studies, collecting samples in a wide data range). However, there are
several problems associated with LR for the retrieval of vegetation properties, such as saturation of
some VIs (e.g., NDVI for dense green canopies), being highly affected by sample data (e.g., extreme
values), and VIs influenced by environment factors (e.g., soil background, view geometry, atmospheric
condition) [33–35]. Advanced empirical regressions, such as PLSR, have been developed and utilized
to deal with these problems and improve the stability of regression models [13,16]. PLSR is a bi-linear
calibration method using data compression technique that reduces the number of collinear predictor
variables to a few non-correlated latent variables [18,35]. These latent variables are generated to
maximize information content from the original variables and to optimize their explanatory power
for predictions [36]. PLSR is considered as an efficient method for feature extraction and dimension
reduction without losing much information [18,37]. It combines features of principal component
regression and stepwise multivariable regression, and is capable of tackling some common problems
in regression models, such as collinearity, data noise, and over-fitting [13,37–39]. PLSR has been used
in previous studies for estimating vegetation LAI, biomass, or nitrogen content [8,35,39,40]. In this
study, PLSR was tested to estimate canopy chlorophyll content.

Random Forest is an ensemble modelling technique that builds a forest with a large number of
regression trees using bootstrapped training data [41,42]. It is a robust and widely used prediction
model for regression and classification [12,43]. It has many advantages over other regression models,
such as being able to handle thousands of input variables and running efficiently on a large dataset,
not being sensitive to noise or over-fitting, handling the collinearity problem, requiring a minimal
number of parameters, and making no distribution assumptions about the predictor or response
variables [13,17,44]. One essential feature of random forest is that the importance of predictor variables
can be evaluated in the model, which is essential for researchers to understand the contributions
of different variables to the regression or classification model [44]. This variable importance is
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assessed based on how much the prediction accuracy decreases when a variable is permuted while
the others are left unchanged [45,46]. Random forest has been widely applied in the remote sensing
field for classification [43,47], however, it has been less used for regression to estimate vegetation
properties [17,33,34]. A few existing studies include estimating biomass [17], vegetation structure [44],
and water content [48]. In this study, RFR is examined to investigate its performance at estimating
vegetation canopy chlorophyll content.

PROSAIL is one of the most-widely applied canopy-level radiative transfer models, describing
the spectral and directional variation of canopy reflectance in the solar domain [11]. It integrates
the leaf-level PROSPECT model and canopy-level SAIL model. Specifically, it passes the output leaf
reflectance and transmittance of the PROSPECT model into the SAIL model to simulate the whole
spectro-directional canopy reflectance. Therefore, it links the canopy reflectance with leaf biochemical
contents (e.g., leaf pigments, water, and dry matter), canopy architecture (e.g., LAI, leaf angle
distribution, and relative leaf size), soil properties, illumination conditions, and viewing geometry [49].
The PROSAIL model has been applied successfully in different homogeneous ecosystems (e.g., forests
and crops) for estimating vegetation biophysical and biochemical properties (e.g., LAI, leaf chlorophyll
content) [11,50–52]. However, it was found to struggle with simulating spectra of heterogeneous
canopies with mixed green and senescent vegetation [22,53], likely because the leaf-level PROSPECT
model cannot sufficiently simulate spectra of senescent leaves [54]. A modified PROSPECT that is
capable of tackling this problem was developed and applied in this study to generate a modified
PROSAIL [54]. This modified PROSAIL is compared to regression models for estimating vegetation
canopy chlorophyll content.

Canopy heterogeneity (i.e., mixed green and senescent vegetation) is an essential vegetation
biophysical characteristic of an ecosystem, especially for heterogeneous grasslands or wetlands.
Such heterogeneity may influence the retrieval of vegetation properties using remote sensing.
As mentioned previously, high heterogeneity was found to bring considerable challenges to the
PROSAIL model for simulating vegetation spectra in a grassland area [22,53]. In addition, it also affected
the accuracy of empirical models (e.g., PLS) for estimating vegetation properties [55]. The influence of
vegetation heterogeneity on the performance of different models (RTM-based or empirical models) for
the estimation of vegetation properties have rarely been explored in previous research. Many studies
estimating vegetation properties using different models have focused on homogeneous ecosystems,
such as crops and forests, while less focused on heterogeneous ecosystems, such as grasslands and
wetlands [14,56–58]. In this study, bi-seasonal hyperspectral images were acquired in a grassland
area, which capture vegetation information with different level of heterogeneities. Specifically, one
image was acquired in the middle growing season (i.e., June) that featured by homogeneous green
canopies and the other image was acquired in the late growing season (i.e., August) that exhibited
high heterogeneity (e.g., a mixture of green and senescent vegetation). These two images were used
for evaluating effects of heterogeneity on the performance of models.

This study compared the performance of LR, PLSR, RFR, and a modified PROSAIL model for
retrieving vegetation chlorophyll content from bi-seasonal hyperspectral images in a heterogeneous
grassland area. Different image features, including VIs, spectral reflectance, PCs, and image textural
variables were extracted from the images, aiming to acquire different types of information from
the images and optimize the performance of different models. Contributions of different types
of variables to different models (e.g., importance values of these variables) were also evaluated.
Different optimization techniques were used in PLSR and RFR models for improving their performance.
A modified PROSAIL model, which can accurately simulate reflectance of heterogeneous canopies,
was adopted in this study and compared to other models. Factors influencing model performance were
also discussed in order to provide insights with other researchers on the selection and optimization of
different models.
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2. Material and Methods

2.1. Study Area

This research was performed at Koffler Scientific Reserve (KSR), located in Southern Ontario,
Canada (Figure 1). Grasslands in KSR mainly consist of temperate tall grasses with a height ranging
from 10 to 50 cm during the growing season (May to September) [59]. Dominant grass species in this
area are Awnless brome (Bromus inermis), Fescue (Festuca rubra L.), Goldenrod (Solidago canadensis L.),
and Milkweed (Asclepias L.). The climate type in this area is temperate continental, with a mean
temperature ranging from −10 ◦C (February) to 30 ◦C (July), and precipitation ranging from 20 mm
(March) to 100 mm (July) [60]. The soil in this area is typically grey-brown podzolic soil.
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Figure 1. Study area. (Background is a hyperspectral image acquired on 26 August 2016 with bands
660, 550, and 480 nm color composition.).

2.2. Hyperspectral Imagery Collection and Field Survey

Hyperspectral images were collected using a Micro-HyperSpec (Headwall Photonics Inc., Boston,
MA, USA) that was mounted on a manned helicopter (Figure 2). This sensor is capable of collecting
spectral signals in more than 300 bands ranging from 400 to 1000 nm. Two flight missions were
conducted around noon on 14 June (middle growing season) and 26 August, 2016 (late growing
season), aiming to capture the homogeneous and heterogeneous features of this grassland ecosystem,
respectively. The weather conditions on both days were sunny and clear. The flights were operated
at a height of 250 m and acquired imagery with a spatial resolution of 30 cm. The acquired images
were radiometrically and geometrically corrected using SpectralView that was provided by the sensor
manufacturer. The images were further atmospherically corrected in ENVI (Exelis Visual Information
Solutions, Boulder, CO, USA) using an empirical line method [61,62]. Lastly, the images were resampled
to 301 bands with a 2 nm interval from 400 to 1000 nm.

Field surveys were performed simultaneously with the flight missions. A total of 29 study sites
were pre-selected in the study area for the field survey in June. The selection of sites was dependent
on vegetation growing conditions, species composition, and topographic conditions. An extra five
study sites were added for the field survey in August due to the increased variety of vegetation canopy
features. The location of each site was obtained using a highly accurate Trimble GeoExplorer GPS
(Trimble Navigation Limited, Sunnyvale, CA, USA). Field data collected at the study sites included
spectral reflectance, LAI, vegetation height, species composition, and canopy photos. The spectral
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reflectance data were collected using an ASD spectroradiometer FieldSpec 3 in the range of 350–2500 nm
(Analytical Spectral Devices Inc., Boulder, CO, USA). LAI was measured using an AccuPAR LP-80
ceptometer (Decagon Devices, Inc., Pullman, WA, USA). Leaf samples for each site were also collected
and transported to a laboratory for measuring leaf reflectance and chlorophyll content. Leaf reflectance
was acquired using Plant Probe (Analytical Spectral Devices, Inc., Boulder, CO, USA) that was
connected to the ASD FieldSpec spectroradiometer, following the protocol provided by [63] and [64].
The measured reflectance data were used for evaluating the simulation results from radiative transfer
models. Leaf chlorophyll was extracted using N, N-dimethylformamide (DMF) following a protocol
proposed by [65]. Canopy chlorophyll content was then calculated using leaf chlorophyll content times
LAI of green vegetation (i.e., green LAI) [2,5,66–68]. For the survey in June, the green LAI equals to the
field-measured canopy LAI since the canopies were homogeneous green vegetation. For the survey
in August, the canopies were heterogeneous with mixed green and senescent vegetation. The green
LAI was calculated using field-measured canopy LAI times the percentage of green vegetation in
this canopy. This percentage (e.g., 20%, 55%, or 100%) was manually estimated in the field using
a quadrat (0.5 × 0.5 m). Statistics of measured leaf chlorophyll content and green LAI is shown in
Figure 3. Correlations between canopy chlorophyll content and green LAI and correlations between
canopy chlorophyll and leaf chlorophyll were calculated to evaluate the influence of green LAI and
leaf chlorophyll on the variations of canopy chlorophyll.

Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 22 

 

 

This research was performed at Koffler Scientific Reserve (KSR), located in Southern Ontario, 

Canada (Figure 1). Grasslands in KSR mainly consist of temperate tall grasses with a height ranging 

from 10 to 50 cm during the growing season (May to September) [59]. Dominant grass species in this 

area are Awnless brome (Bromus inermis), Fescue (Festuca rubra L.), Goldenrod (Solidago canadensis L.), 

and Milkweed (Asclepias L.). The climate type in this area is temperate continental, with a mean 

temperature ranging from −10 °C (February) to 30 °C (July), and precipitation ranging from 20 mm 

(March) to 100 mm (July) [60]. The soil in this area is typically grey-brown podzolic soil. 

  

Figure 1. Study area. (Background is a hyperspectral image acquired on 26 August 2016 with bands 

660, 550, and 480 nm color composition.). 

2.2. Hyperspectral Imagery Collection and Field Survey 

Hyperspectral images were collected using a Micro-HyperSpec (Headwall Photonics Inc., 

Boston, MA, USA) that was mounted on a manned helicopter (Figure 2). This sensor is capable of 

collecting spectral signals in more than 300 bands ranging from 400 to 1000 nm. Two flight missions 

were conducted around noon on 14 June (middle growing season) and 26 August, 2016 (late growing 

season), aiming to capture the homogeneous and heterogeneous features of this grassland ecosystem, 

respectively. The weather conditions on both days were sunny and clear. The flights were operated 

at a height of 250 m and acquired imagery with a spatial resolution of 30 cm. The acquired images 

were radiometrically and geometrically corrected using SpectralView that was provided by the 

sensor manufacturer. The images were further atmospherically corrected in ENVI (Exelis Visual 

Information Solutions, Boulder, CO, USA) using an empirical line method [61,62]. Lastly, the images 

were resampled to 301 bands with a 2 nm interval from 400 to 1000 nm. 

 

Figure 2. Hyperspectral sensor mounted on a helicopter.

Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 22 

Figure 2. Hyperspectral sensor mounted on a helicopter. 

Field surveys were performed simultaneously with the flight missions. A total of 29 study sites 

were pre-selected in the study area for the field survey in June. The selection of sites was dependent 

on vegetation growing conditions, species composition, and topographic conditions. An extra five 

study sites were added for the field survey in August due to the increased variety of vegetation 

canopy features. The location of each site was obtained using a highly accurate Trimble GeoExplorer 

GPS (Trimble Navigation Limited, Sunnyvale, CA, USA). Field data collected at the study sites 

included spectral reflectance, LAI, vegetation height, species composition, and canopy photos. The 

spectral reflectance data were collected using an ASD spectroradiometer FieldSpec 3 in the range of 

350–2500 nm (Analytical Spectral Devices Inc., Boulder, Colorado, USA). LAI was measured using 

an AccuPAR LP-80 ceptometer (Decagon Devices, Inc., Pullman, Washington, USA). Leaf samples 

for each site were also collected and transported to a laboratory for measuring leaf reflectance and 

chlorophyll content. Leaf reflectance was acquired using Plant Probe (Analytical Spectral Devices, 

Inc. Boulder, USA) that was connected to the ASD FieldSpec spectroradiometer, following the 

protocol provided by [63] and [64]. The measured reflectance data were used for evaluating the 

simulation results from radiative transfer models. Leaf chlorophyll was extracted using N, N-

dimethylformamide (DMF) following a protocol proposed by [65]. Canopy chlorophyll content was 

then calculated using leaf chlorophyll content times LAI of green vegetation (i.e., green LAI) [2,5,66–

68]. For the survey in June, the green LAI equals to the field-measured canopy LAI since the canopies 

were homogeneous green vegetation. For the survey in August, the canopies were heterogeneous 

with mixed green and senescent vegetation. The green LAI was calculated using field-measured 

canopy LAI times the percentage of green vegetation in this canopy. This percentage (e.g. 20%, 55%, 

or 100%) was manually estimated in the field using a quadrat (0.5 × 0.5 m). Statistics of measured leaf 

chlorophyll content and green LAI is shown in Figure 3. Correlations between canopy chlorophyll 

content and green LAI and correlations between canopy chlorophyll and leaf chlorophyll were 

calculated to evaluate the influence of green LAI and leaf chlorophyll on the variations of canopy 

Figure 3 Statistics of the measured leaf chlorophyll and green leaf area index (LAI). 

2.3. Methods and Model Parameter Settings 

LR, PLSR, RFR, and a modified PROSAIL were selected for comparison to evaluate their 

performance of estimating canopy chlorophyll content. Details of each model are described in below 

sections. A leave-one-out cross validation (LOOCV) was used for validating the models [13,33] and 

the coefficient of determination (R2), together with root mean square error (RMSE), were calculated 

and applied to describe performance of different models [13]. 

2.3.1. Linear Regression 

LRs were built using different predictor variables to estimate canopy chlorophyll content. In this 

study, 29 narrowband VIs (Table 1) that performed well in previous studies for estimating canopy 

chlorophyll content were used as predictor variables [28,30]. In addition, a preliminary test showed 

Figure 3. Statistics of the measured leaf chlorophyll and green leaf area index (LAI).

2.3. Methods and Model Parameter Settings

LR, PLSR, RFR, and a modified PROSAIL were selected for comparison to evaluate their
performance of estimating canopy chlorophyll content. Details of each model are described in below
sections. A leave-one-out cross validation (LOOCV) was used for validating the models [13,33] and
the coefficient of determination (R2), together with root mean square error (RMSE), were calculated
and applied to describe performance of different models [13].
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2.3.1. Linear Regression

LRs were built using different predictor variables to estimate canopy chlorophyll content. In this
study, 29 narrowband VIs (Table 1) that performed well in previous studies for estimating canopy
chlorophyll content were used as predictor variables [28,30]. In addition, a preliminary test showed
that PCs of all spectral bands can contribute to the estimation of canopy chlorophyll content and they
were also used in previous studies for retrieving vegetation properties [69]. Therefore, top 10 PCs that
can cover the majority of spectral band information (i.e., PC1 to PC10) were calculated and selected as
predictor variables. Total 39 predictor variables were used to build LRs and their performances were
later evaluated.

Table 1. Narrowband vegetation indices selected in this research. (R in the formula indicates reflectance,
values indicate wavelength in nm).

Index Full Name Formula References

BGI Blue/Green Pigment Index R450/R550 [70]

DVI Difference Vegetation Index R800 −R680 [71]

GI Greenness Index R554/R677 [70]

GVI Greenness Vegetation Index (R682 −R553)/(R682 + R553) [72]

MCARI1 Modified Chlorophyll Absorption Ratio Index 1 [(R750 −R705) − 0.2(R750 −R550)](R750/R705) [73]

MCARI2 Modified Chlorophyll Absorption Ratio Index 2 1.5[1.2(R800−R550)−2.5(R670−R550)]√
(2R800+1)2

−(6R800−5
√

R670)−0.5
[74]

MRENDVI Modified Red Edge Normalized Difference
Vegetation Index

(R750 −R705)/(R750 + R705 − 2R445) [75]

MSAVI Modified Soil Adjusted Vegetation Index 0.5
[
2R800 + 1−

√
(2R800 + 1)2

− 8(R800 −R670)

]
[25]

mSR1 Modified Simple Ratio 1
R800
R670
−1√

R800
R670

+1

[76]

mSR2 Modified Simple Ratio 2
(

R750
R705

)
−1√(

R750
R705

)
+1

[73]

mSR3 Modified Simple Ratio 3 (R750 −R445)/(R705 −R445) [75]

MTCI MERIS Terrestrial Chlorophyll Index (R754 −R709)/(R709 −R681) [77]

MTVI Modified Triangular Vegetation Index 1.5[1.2(R800−R550)−2.5(R670−R550)]√
(2R800+1)2

−6R800+5(R670)
0.5
−0.5

[74]

NDRE Normalized Difference Red-edge index (R790 −R720)/(R790 + R720) [78]

NDVI Normalized Difference vegetation index (R682 −R553)/(R682 + R553) [72]

OSAVI1 Optimized Soil Adjusted Vegetation Index 1 1.16(R800 −R670)/(R800 + R670 + 0.16) [79]

OSAVI2 Optimized Soil Adjusted Vegetation Index 2 1.16(R750 −R705)/(R750 + R705 + 0.16) [73]

PPR Plant Pigment Ratio (R550 −R450)/(R550 + R450) [80]

PRI Photochemical Reflectance Index (R570 −R539)/(R570 + R539) [81]

RDVI Renormalized Difference vegetation index R800−R670√
R800+R670

[82]

RENDVI Red Edge Normalized Difference
Vegetation Index

(R750 −R705)/(R750 + R705) [75,83]

REPI Red Edge Position Index 700 + 40(ρREP −R700)/(R740 −R700)
ρREP = 0.5(R670 + R780)

[84]

RRVI Reciprocal Reflectance-based Vegetation Index R750−800/R695−740 − 1 [85]

RGI Red/Green Index R690/R550 [70]

SPVI Spectral Polygon Vegetation Index 0.4[3.7(R800 −R670) − 1.2|R530 −R670|] [86]

SR Simple Ratio R800/R675 [71]

TSAVI Transformed Soil Adjusted Vegetation Index
α(R875−αR680−β)

[R680+α(R875−β)+0.08(1+α2)]
α = 1.062 β = 0.022

[26]

VREI Vogelmann Red Edge Index (R734 −R747)/(R715 + R726) [87]

ZM Zarco and Miller R750/R710 [51]
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2.3.2. Partial Least Square Regression

The partial least square regression in Python with Scikit-Learn library was applied in this study [88].
The 29 VIs and 10 PCs used in LRs were also used as predictor variables in PLSR. In addition, since
spectral bands may also contribute to the model prediction, reflectance values of the 301 bands were
thus also used as predictor variables. These variables were named as Re + wavelength, such as Re550
and Re800. Moreover, image textural features (e.g., entropy, homogeneity) contain essential information
describing vegetation structural patterns and spatial variations, which potentially can also contribute
to the estimation of vegetation properties [55,89]. Therefore, eight textural variables, including
mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation, were
calculated for selected spectral bands in ENVI using a kernel size of 5 × 5 (close to the size of a study
site). These textural variables were named as b + wavelength–variable type, such as b800-mean and
b740-entropy. Calculating eight textural variables for all of the spectral bands are computationally
challenging with much information overlap since some spectral bands are correlated. Therefore, seven
bands that are most frequently used for calculating the VIs listed in Table 1, were selected for calculating
image textural variables. Details of these seven bands can be found in Section 3.1. Overall, there were
29 VIs, 10 PCs, 301 reflectance, and 56 textural variables used as predictor variables in the PLSR.

The PLSR is capable of dealing with a large number of predictor variables by converting them
into a few latent variables. The predicted residual error sum of squares (PRESS) statistics was applied
to identify the optimal number of latent variables in PLSR that has the lowest model error. Since some
predictor variables may not contribute to the regression model or may bring in noise, a backward
feature elimination method was applied to eliminate the less promising variables and identify the
model that achieves the highest accuracy [19,48]. The variable importance on projection (VIP) values
were calculated in PLSR to evaluate effects of variables on the regression model [90]. The least important
variables (i.e., with lowest VIP values) were progressively deleted and the model was consequently
rebuilt. Thus, a series of models were established and then also validated. The model with the lowest
RMSE was regarded as the best performing model [48].

2.3.3. Random Forest Regression

The random forest regression in Python with Scikit-Learn library was utilized in this study [88].
There are three essential parameters need to be determined in the RFR model: number of trees to
grow (Ntree, default 100), number of predictor variables to test at each splitting node (Mtry, default
all variables), and node size that is the minimum number of samples required to be at a leaf node
(Nodesize, default 1) [34,44]. The Mtry and Nodesize values were kept as default as suggested in
previous studies, while the Ntree was tested using 100, 200, 500, 1000, and 2000 to optimize the model
performance (i.e., lowest RMSE) [33,34,41,46].

The predictor variables used in PLSR, including VIs, reflectance, PCs, and textural variables, were
also used in RFR. Importance values of all predictor variables were calculated in RFR [44], and then the
backward feature elimination method was applied to RFR to progressively remove the least important
variables [19,33,34,41]. The model with the lowest RMSE was regarded as the optimal model.

2.3.4. A Modified PROSAIL

The PROSAIL model was downloaded from this link (http://teledetection.ipgp.jussieu.fr/prosail/,
accessed in June 2017, version 5B) and was operated in Matlab [11]. This original PROSAIL was found
to suffer when simulating the spectra of heterogeneous canopies [22,53], likely because the leaf-level
PROSPECT model cannot sufficiently simulate spectra of senescent leaves [54]. Therefore, a modified
PROSPECT that is capable of tackling this problem was developed and applied in this study to generate
a modified PROSAIL [54]. Parameters in PROSAIL include leaf chlorophyll content, leaf water content,
leaf area index, solar and view geometry, and soil reflectance [9,11,54]. Vegetation canopy reflectance
was extracted from hyperspectral imagery. A lookup table approach (LUT) was applied as the inversion

http://teledetection.ipgp.jussieu.fr/prosail/
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method to estimate vegetation properties from the canopy reflectance data [50,91]. A brief workflow of
the inversion is shown in Figure 4. A LUT was defined using all possible values within a value range
for each parameter in the PROSAIL model. This value range was determined with prior knowledge
from the literature [9,11,54]. For instance, the leaf chlorophyll content has a range of 0~100 µg/cm2

and the leaf water content (i.e., equivalent water thickness) has a range of 0~0.05 cm. Then, the model
calculated all possible combinations of values from different parameters and simulated reflectance
correspondingly. This method covers all types of leaves and canopy structures, thus generating a
dataset including all possible reflectance. With the measured canopy reflectance from hyperspectral
imagery, a global search was performed in the LUT to identify parameter combinations that yield the
best fit between measured and forward-simulated vegetation spectra. At last, vegetation properties,
i.e., optimal parameter combinations, including leaf chlorophyll content and LAI, were determined.
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3. Results and Discussion

3.1. Analysis of Predictor Variables

The correlations between each predictor variable (e.g., VIs, reflectance, PCs, and textural variables)
and canopy chlorophyll content were first examined and the top 30 strongest ones (or groups of
neighboring reflectance) are illustrated in Figure 5. These top 30 strongest correlations have Pearson’s
r values around 0.8. The corresponding top 30 predictor variables include VIs, PCs, reflectance, and
textural variables, indicating these different types of variables can all potentially contribute to the
estimation of canopy chlorophyll. For the June image that captured homogeneous green vegetation,
the top 17 variables are all VIs that have Pearson’s r values over 0.8, such as MCARI1, ZM, and mSR3
(Figure 5a). The VIs were selected based on their good performance in previous studies for estimating
canopy chlorophyll and thus their strong correlations were expected in this study. Several other types
of predictor variables, such as PC2, b800-Mean, and Re801–850, have only slightly weaker correlations
with canopy chlorophyll than the VIs.

To further understand which bands were used in the VIs listed in Table 1 and identify the most
frequently used ones that may be important for estimating canopy chlorophyll, the frequencies of
different bands used in VIs were calculated and plotted in Figure 6. The top four most often used
bands are centered around 550, 670, 750, and 800 nm, which are in the high reflection range in green,
the deep absorption portion in red, the increasing reflection part in red-edge, and the peak reflection
range in NIR, respectively (Figure 6). The reflection strength in green and red is influenced by leaf
chlorophyll, while the strength in NIR is related to leaf structure and LAI (i.e., canopy density) [28].
Bands in the blue ranges, such as those around 450 nm, also have high frequencies. In addition, the
bands in the red-edge range, such as those between 700 and 750 nm (e.g., 704 nm, Figure 6), are
also often used in VIs. It is reported that using red-edge bands in VIs can minimize the saturation
problem of the indices, reduce the influences of atmospheric and water absorption and background
noise, and mitigate the vegetation surface scattering and bidirectional reflectance distribution function
(BRDF) effects [33]. Several VIs that have used red-edge bands, such as MCARI1, ZM, and mSR3,
show very strong correlations with the canopy chlorophyll (Figure 5). Overall, seven bands, including
450,550,670,680,704,750, and 800 nm, are more frequently used in the VIs, indicating their importance
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for estimating chlorophyll. Images of these seven bands are utilized for producing textural variables
mentioned in Section 2.3.2.
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Figure 5. Top 30 strongest correlations between predictor variables and canopy chlorophyll contents.
(a) For image acquired in June. (b) For image acquired in August. Reflectance variables are highlighted
with solid rectangles, textural variables with dashed rectangles, and principal components (PCs) with
arrows. Each reflectance labelled in the figure is a group of neighboring reflectance variables that are
highly correlated with each other, such as the Re801–850 includes reflectance from 801 to 850 nm.
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Figure 6. Frequency of wavelengths used in all the vegetation indices (listed in Table 1). The grey bars
represent frequency of different wavelengths. The solid curve is a typical reflectance of green canopies
and the dashed curve is of a senescent canopy (i.e., mixed green and senescent vegetation).

For the August image that is featured by senescent canopies (i.e., with mixed green and senescent
vegetation and low canopy chlorophyll), the VIs have weaker correlations with canopy chlorophyll
than the other types of predictor variables (Figure 5b). For instance, the top five variables (or groups of
variables) are reflectance (e.g., Re901–950) and PC1. Only three VIs (i.e., SPVI, DVI, and TSAVI) are
among the top 10. This indicates that the VIs have weaker correlations with chlorophyll of senescent
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canopies than that of green canopies. Many VIs are built based on low reflectance in the red and
high reflectance in the NIR (as green canopy reflectance shown in Figure 6) to highlight the green
vegetation information and chlorophyll signal. However, for senescent canopies, the reflectance is
higher in red and lower in NIR (as senescent canopy reflectance shown in Figure 6). The effectiveness
of VIs for highlighting the chlorophyll information of senescent canopies is lower and thus they have
relatively weaker correlations compared to that of green canopies. In contrast, reflectance in the NIR
(e.g., 800–1000 nm) has strong correlations with chlorophyll of senescent canopies (Figure 5b). This is
probably because the reflectance strength in NIR is highly affected by LAI and the canopy chlorophyll
content was calculated using LAI. Canopies with high LAI show high reflectance in NIR and also have
high canopy chlorophyll content, which thus leads to the strong correlation between reflectance in NIR
and the canopy chlorophyll content. The results suggest that it is important to evaluate the influence
of LAI and leaf chlorophyll content on the variations of canopy chlorophyll content. We found that
the correlations between LAI and canopy chlorophyll are very strong (e.g., Pearson’s r of 0.96 for
the June survey and 0.97 for the August survey), while that between leaf chlorophyll and canopy
chlorophyll are much weaker (e.g., Pearson’s r of 0.31 for the June survey and 0.28 for the August
survey). These results demonstrated that LAI has much stronger influence on the variation in canopy
chlorophyll content than the leaf chlorophyll content.

3.2. Optimization of PLSR and RFR

The importance of each predictor variable was evaluated in the PLSR and RFR, respectively, and a
backward feature elimination method was used to remove less important variables from the model
with the aim of identifying the best performing PLSR and RFR (i.e., with the lowest RMSE). The selected
variables for the optimal PLSR and RFR of the June or August image (hereafter named PLSR-June,
RFR-June, PLSR-August, and RFR-August) are listed in Table 2. Different types of variables, including
VIs, reflectance, PCs, and textural variables, are all among the selected variables of different models,
indicating they can all contribute to model predictions.

Table 2. Selected variables in the optimal partial least square regression (PLSR) and random forest
regression (RFR) for June and August images, respectively. Variables are grouped by types (e.g.,
vegetation indices (VIs), PCs). If a large number of variables of one type were selected, only the top
five (e.g., with the highest importance in the model) are listed as examples.

June Image August Image

PLSR RFR PLSR RFR

Selected
Variables

VIs:
mSR3
VREI
MTCI

MCARI1
REPI

(Total 27)

Reflectance:
Re628-Re1000

(Total 167)

PCs:
PC1, PC2, PC4, PC5

Textural:
b550-Homogeneity

b670-Second Moment
b704-Entropy

b750-Mean
b800-Mean
(Total 16)

VIs:
NDRE

RENDVI
ZM

RRVI
MRENDVI
(Total 14)

Reflectance:
Re502

PCs:
PC5

Textural:
b680-Mean

VIs:
SPVI
DVI

TSAVI
MSAVI
RDVI

(Total 11)

Reflectance:
Re714-Re1000

(Total 144)

PCs:
PC1

Textural:
b800-Meanb

750-Mean

VIs:
TSAVI

DVI
NDRE

MCARI1
MSAVI
(Total 7)

Reflectance:
Re802-Re1000

(Total 24)

PCs:
PC3

Textural:
b800-Mean

b680-Correlation
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Comparing the number of selected variables in PLSR and RFR, the PLSR needs to select more
variables than the RFR does to achieve the optimal performance. For instance, the PLSR-June selected
27 VIs,167 reflectance, 4 PCs, and 16 textural variables to reach the highest accuracy, while the
RFR-June selected 14 VIs, 1 reflectance, 1 PC, and 1 textural variable to achieve the best performance.
Similar results can be found for the PLSR-August and RFR-August. This is because the PLSR and
the RFR use different techniques to evaluate variable importance in the model and then select the
variables based on their importance. Specifically, the PLSR considers the predictive power of variables
when converting them to latent variables [36,90]. Therefore, the PLSR selected a large number of
variables to gain the maximum predicting power, even when these variables may be correlated (e.g., the
167 reflectance in PLSR-June and the 144 reflectance in PLSR-August are intercorrelated, respectively).
In contrast, the RFR selects the best performing variable for splitting nodes and growing trees and
rates it as more important in the model [17,46]. Other variables that are correlated with this one will
have limited contribution to the model and thus are rated as less important. Therefore, compared
to PLSR, a smaller number of predictor variables are needed in the RFR model to achieve optimal
model performance.

3.3. Forward Simulation Using PROSAIL

A modified PROSAIL model, which integrated a modified PROSPECT-5 model and SAIL model,
was used for simulating vegetation spectra (e.g., leaf and canopy reflectance) and estimating vegetation
properties (e.g., leaf chlorophyll content, LAI). The modified PROSPECT-5 model worked well for
simulating reflectance of different types of leaves (e.g., green and senescent), achieving an average
RMSE of 0.009 with a standard deviation of 0.004. Examples of leaf spectral simulations are shown in
Figure 7a,b. The modified PROSAIL model also performed well for simulating reflectance of both
green and mixed canopies, achieving an average RMSE of 0.029 with a standard deviation of 0.018.
Examples of canopy spectral simulations are shown in Figure 7c,d. The effectiveness of PROSAIL for
estimating vegetation properties are evaluated in the next sections.
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Figure 7. Simulation results of PROSPECT and PROSAIL model. Figure (A,B) show leaves at different
growth stages and corresponding measured and simulated reflectance are shown in Figure (a,b),
respectively. Figure (C,D) show canopies at different growth stages and corresponding measured and
simulated reflectance are shown in Figure (c,d), respectively.

3.4. Result Comparison of Different Methods

LR, PLSR, RFR, and PROSAIL were utilized for estimating canopy chlorophyll content from
images acquired in June and August, respectively. The validation results, including R2 and RMSE, are
shown in Figure 8. 39 LRs were built using 29 VIs and 10 PCs, and their accuracy values are described
in boxplots in Figure 8. Overall, the best performing LRs, along with PLSR, RFR, and PROSAIL
achieved good accuracies, such as R2 ~ 0.82 and RMSE ~ 15.0 µg/cm2 for the June image and R2 ~ 0.75
and RMSE ~ 17.0 µg/cm2 for the August image. The estimation accuracy for the August image is
slightly lower than that of the June image, which is possibly due to vegetation senescence and reduced
canopy chlorophyll content. Different models also have different performances for estimating canopy
chlorophyll. For the June image, half of LRs achieved R2 > 0.6 and RMSE < 20.0 µg/cm2 (Figure 8a,b).
A few top performing LRs included the ones using MCARI1 (R2 = 0.80, RMSE = 13.9 µg/cm2), ZM
(R2 = 0.75, RMSE = 15.7 µg/cm2), and mSR3 (R2 = 0.73, RMSE = 16.3 µg/cm2). For the August image,
effectiveness of LRs are obviously lower than that for the June image. Only half of LRs achieved R2

values higher than 0.4 and RMSE lower than 26.0 µg/cm2 (Figure 8c,d). A few top performing LRs
included the ones using PC1 (R2 = 0.74, RMSE = 17.7 µg/cm2), SPVI (R2 = 0.71, RMSE = 18.7 µg/cm2),
and DVI (R2 = 0.71, RMSE = 18.8 µg/cm2). The less efficient performance of LRs for the August image
is probably due to the relatively low canopy chlorophyll content in the late growing season and the
predictor variables (e.g., VIs) are not as sensitive to the canopy chlorophyll as that in June. While
for the PLSR, RFR, and PROSAIL, the accuracies only vary slightly for the June or August images,
indicating the higher stability of these three models over the LRs.



Remote Sens. 2019, 11, 1979 14 of 22Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 22 

 

 

. 

Figure 8. Validation results of the four selected models. Figure (a) and (b) are for the models with the 

June image, (c) and (d) are with the August image. LRs include 39 simple linear regressions built with 

each individual predictor variable. 

The PLSR achieved higher accuracies than the LRs, which is expected as it utilized multiple 

predictor variables in the model (Figure 8). However, its accuracy values are only slightly higher than 

that of the top-performing LRs. For instance, for the June image, the PLSR reached an R2 of 0.84 and 

an RMSE of 12.5 µg/cm2, while the LR using MCARI1 achieved an R2 of 0.80 and an RMSE of 13.9 

µg/cm2 (Figure 8a,b). This indicates that the LRs with appropriate VIs can potentially achieve 

performances close to that of the advanced regression models (e.g., PLSR). When considering LRs for 

practical applications, it is thus likely best to compare a few VIs that performed well in previous 

studies and select the one with highest accuracy for building LR.  

Hyperspectral information is critical for the good performance of LRs and PLSR. For instance, 

the PLSR achieved an R2 of 0.77 and RMSE of 16.6 µg/cm2 for the August image (Figure 8c,d). In 

contrast, in a previous study that was conducted in the same study area using multispectral image 

and PLSR [55], the accuracy of canopy chlorophyll estimation (R2 = 0.31, RMSE = 18.6 µg/cm2) is much 

lower than that achieved in this study using the hyperspectral imagery. This is expected because the 

predictor variables extracted from the hyperspectral image (e.g., VIs and PCs) can provide more 

information than that extracted from the multispectral image. Previous studies have also suggested 

narrowband indices are more stable and sensitive to vegetation properties while broadband indices 

are more likely impacted by environmental factors (e.g., view geometry, atmospheric influences) 

[28,35,74,92].  

The RFR performed the best, acquiring an R2 of 0.86 and RMSE of 12.1 µg/cm2 for the June image 

and an R2 of 0.81 and RMSE of 15.4 µg/cm2 for the August image (Figure 8). This is similar to the 

result in previous studies that RFR had a higher accuracy than that of other models for estimating 

vegetation properties [17,19]. The good performance of RFR is probably owning to its advantages in 

using randomly selected subset training data at each node and in selecting the best-performing 

predictor variable for splitting the node (thus not being sensitive to noise), as well as its ability to 

handle the collinearity problem [44]. However, random forest is a type of ‘black box’ since the tree 

Figure 8. Validation results of the four selected models. Figure (a,b) are for the models with the June
image, (c,d) are with the August image. LRs include 39 simple linear regressions built with each
individual predictor variable.

The PLSR achieved higher accuracies than the LRs, which is expected as it utilized multiple
predictor variables in the model (Figure 8). However, its accuracy values are only slightly higher
than that of the top-performing LRs. For instance, for the June image, the PLSR reached an R2 of 0.84
and an RMSE of 12.5 µg/cm2, while the LR using MCARI1 achieved an R2 of 0.80 and an RMSE of
13.9 µg/cm2 (Figure 8a,b). This indicates that the LRs with appropriate VIs can potentially achieve
performances close to that of the advanced regression models (e.g., PLSR). When considering LRs
for practical applications, it is thus likely best to compare a few VIs that performed well in previous
studies and select the one with highest accuracy for building LR.

Hyperspectral information is critical for the good performance of LRs and PLSR. For instance, the
PLSR achieved an R2 of 0.77 and RMSE of 16.6 µg/cm2 for the August image (Figure 8c,d). In contrast,
in a previous study that was conducted in the same study area using multispectral image and PLSR [55],
the accuracy of canopy chlorophyll estimation (R2 = 0.31, RMSE = 18.6 µg/cm2) is much lower than
that achieved in this study using the hyperspectral imagery. This is expected because the predictor
variables extracted from the hyperspectral image (e.g., VIs and PCs) can provide more information
than that extracted from the multispectral image. Previous studies have also suggested narrowband
indices are more stable and sensitive to vegetation properties while broadband indices are more likely
impacted by environmental factors (e.g., view geometry, atmospheric influences) [28,35,74,92].
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The RFR performed the best, acquiring an R2 of 0.86 and RMSE of 12.1 µg/cm2 for the June image
and an R2 of 0.81 and RMSE of 15.4 µg/cm2 for the August image (Figure 8). This is similar to the
result in previous studies that RFR had a higher accuracy than that of other models for estimating
vegetation properties [17,19]. The good performance of RFR is probably owning to its advantages
in using randomly selected subset training data at each node and in selecting the best-performing
predictor variable for splitting the node (thus not being sensitive to noise), as well as its ability to handle
the collinearity problem [44]. However, random forest is a type of ‘black box’ since the tree structures
are not clear and not easily understandable [44,45]. It is thus difficult to find how the variables are
applied in the trees, which is a drawback of RFR.

The PROSAIL also performed well, achieving an R2 of 0.80 and RMSE of 21.4 µg/cm2 for the June
image and an R2 of 0.75 and RMSE of 20.1 µg/cm2 for the August image (Figure 8). Compared to the
regression models, the PROSAIL performed similarly well as the best performing LR, although not as
well as the PLSR and RFR (Figure 8). One essential advantage of PROSAIL is that it can be transferred
to different sites in different seasons (e.g., June and August in this study), while regression models are
mostly not transferable (i.e., require collecting new training data). In addition, PROSAIL can generate
a set of vegetation biophysical and biochemical properties at the same time, such as leaf chlorophyll
content, leaf water content, and LAI, which can provide a more solid understanding of vegetation
growth condition and physiological status. While the regression models, including LR, PLSR, and
RFR, can only retrieve one vegetation property (i.e., one dependent variable) at a time.

Scatter plots of measured canopy chlorophyll contents against estimated values from different
models that were built for the June image are shown in Figure 9 as examples, aiming to further evaluate
performance of different models (e.g., over- or under-estimation). For the top performing LRs (e.g.,
R2~0.75, RMSE~15 µg/cm2), such as the ones built with MCARI1 or mSR3 (Figure 9a,b), no clear over-
or under-estimation is observed. For the LRs established with TSAVI or OSAVI1 (Figure 9c,d), which
have medium accuracy values (e.g., R2 ~ 0.62, RMSE ~ 19 µg/cm2), under-estimation occurs for the
measured chlorophyll higher than 100 µg/cm2. This is probably due to the saturation problem of
TSAVI and OSAVI1. These two indices are built with NIR and red bands (Table 1) and thus may suffer
from the spectral saturation when the canopy is dense. Involving the red-edge bands, such as the top
performing MCARI1 and mSR3, can probably mitigate this problem. The LRs built with GI or PPR
have poor accuracy values (e.g., R2 < 0.35, RMSE > 25 µg/cm2) and show clear over-estimation for
measured chlorophyll lower than 70 µg/cm2 and under-estimation when over 70 µg/cm2 (Figure 9e,f).
These two indices are generated with only visible bands, such as GI with green and red and PPR with
green and blue. They cannot capture spectral variations in the NIR range that is sensitive to the canopy
density and thus had poor performance. Therefore, when selecting VIs for building LRs, it is essential
to select a variety of VIs that use bands in different spectral ranges (e.g., visible, red-edge, and NIR)
and evaluate their performance. The PLSR and RFR used a wide range of VIs and thus did not suffer
from over- or under-estimation (Figure 9g,h). The PROSAIL is a physically-based model and uses full
spectrum information, and thus also did not experience obvious over- or under-estimation (Figure 9i).
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P values for all correlations are less than 0.01.

4. Conclusions

LR, PLSR, RFR, and PROSAIL models were compared in this research for estimating vegetation
canopy chlorophyll content from bi-seasonal hyperspectral images in a heterogeneous grassland
area. Overall, the best performing LRs, along with PLSR, RFR, and PROSAIL, performed well in the
estimation of canopy chlorophyll content, achieving R2 ~ 0.80 and RMSE ~ 16.0 µg/cm2. Accuracies
of these four models in the August image is lower than that of the June image, especially for LRs,
indicating the influence of vegetation phenological changes (e.g., vegetation senescence, increased
heterogeneity, reduced chlorophyll content) on the performance of models. The PLSR and RFR had
better performance than LRs and PROSAIL, while RFR is the best performing one with an R2 of 0.86
and an RMSE of 12.1 µg/cm2 for the June image and an R2 of 0.81 and an RMSE of 15.4 µg/cm2 for the
August image. For ease of operation in practical projects for estimating canopy chlorophyll, one can
use LRs by testing a couple of VIs that performed well in previous studies and selecting the one that
has the best performance. It is also critical to select different VIs that are built with bands in different
spectral ranges (e.g., visible, red edge, and NIR), since canopy chlorophyll is sensitive to different
spectral ranges when it is high or low (i.e., different seasons). To achieve a higher accuracy and a more
stable model, we suggest using PLSR or RFR. PROSAIL is a bit more complicated than the regression
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models and requires a set of parameters. However, the model itself is transferable and it can retrieve a
wide range of vegetation biophysical and biochemical properties at the same time. PROSAIL is thus
suggested if the model needs to be applied on different sites over different seasons or for retrieving a
couple of vegetation properties. One should keep in mind that PROSAIL is not directly applicable to
all ecosystems with various conditions (e.g., forests or crops, homogeneous or heterogeneous canopies).
Appropriate model evaluations with necessary model modifications or parameter adjustments are
strongly recommended.

Different types of image features, including VIs, reflectance, PCs, and textural variables, were
applied in the PLSR and RFR as predictor variables and it was found that they can all contribute to
model predictions (e.g., all the four types of variables were selected in the optimal models). Both PLSR
and RFR are capable of dealing with a large number of variables and additional techniques (e.g.,
backward feature removal) can be applied to remove the less important variables and improve model
efficiency and accuracy. The importance values of different variables evaluated by PLSR and RFR can
help to understand their contributions to the models. The PLSR and RFR use different approaches to
evaluate variable importance and thus the important variables that they selected are also different.
The PLSR requires more variables than the RFR to achieve the optimal performance. RFR is a type of
‘black box’ since the tree structures are not clear and not easily understandable. Further research on
understanding RFR results is warranted. For the images acquired in different seasons, the top important
variables ranked by the models are different. As a result, variables selected in the optimal models are
also different. This indicates that one predictor variable may have very different contributions to the
models if using images acquired in different seasons.
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ANN Artificial neural networks PCs Principal components
BBRT Boosted binary regression tree PLSR Partial least square regression
DMF N, N-dimethylformamide PRESS Predicted residual error sum of squares
DTR Decision tree regression R2 Coefficient of determination
KSR Koffler Scientific Reserve RFR Random forest regression
LAI Leaf area index RMSE Root mean square error
LOOCV Leave-one-out cross validation RTM Radiative transfer modelling
LR Linear regression SVR Support vector regression
LUT Lookup table VIP Variable importance on projection
MLR Multivariable linear regression VIs Vegetation indices
PCR Principal component regression

References

1. Fourty, T.; Baret, F.; Jacquemoud, S.; Schmuck, G.; Verdebout, J. Leaf optical properties with explicit
description of its biochemical composition: Direct and inverse problems. Remote Sens. Environ. 1996, 56,
104–117. [CrossRef]

http://dx.doi.org/10.1016/0034-4257(95)00234-0


Remote Sens. 2019, 11, 1979 18 of 22

2. Darvishzadeh, R.; Atzberger, C.; Skidmore, A.; Schlerf, M. Retrieval of vegetation biochemicals using a
radiative transfer model and hyperspectral data. In Proceedings of the ISPRS Technical Commission VII
Symposium—100 Years ISPRS—Advancing Remote Sensing Science—ISSN, Vienna, Austria, 5–7 July 2010;
Volume 38, pp. 171–175.

3. Blackburn, G.A. Hyperspectral remote sensing of plant pigments. J. Exp. Bot. 2007, 58, 855–867. [CrossRef]
[PubMed]

4. Croft, H.; Chen, J.M.; Zhang, Y. The applicability of empirical vegetation indices for determining leaf
chlorophyll content over different leaf and canopy structures. Ecol. Complex. 2014, 17, 119–130. [CrossRef]

5. Haboudane, D.; Tremblay, N.; Miller, J.R.; Vigneault, P. Remote estimation of crop chlorophyll content
using spectral indices derived from hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 423–437.
[CrossRef]

6. Lemaire, G.; Francois, C.; Soudani, K.; Berveiller, D.; Pontailler, J.; Breda, N.; Genet, H.; Davi, H.; Dufrene, E.
Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll
content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens. Environ. 2008, 112,
3846–3864. [CrossRef]

7. Croft, H.; Chen, J.M.; Zhang, Y.; Simic, A.; Noland, T.L.; Nesbitt, N.; Arabian, J. Evaluating leaf chlorophyll
content prediction from multispectral remote sensing data within a physically-based modelling framework.
ISPRS J. Photogramm. Remote Sens. 2015, 102, 85–95. [CrossRef]

8. Hansen, P.M.; Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops
using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003,
86, 542–553. [CrossRef]

9. Feret, J.; Francois, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.R.; Ustin, S.L.; le Maire, G.;
Jacquemoud, S. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic
pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [CrossRef]

10. Zhang, Y.; Chen, J.M.; Miller, J.R.; Noland, T.L. Leaf chlorophyll content retrieval from airborne hyperspectral
remote sensing imagery. Remote Sens. Environ. 2008, 112, 3234–3247. [CrossRef]

11. Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; Francois, C.; Ustin, S.L.
PROSPECT plus SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009,
113, S56–S66. [CrossRef]
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