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Abstract: Cold regions, including high-latitude and high-altitude landscapes, are experiencing
profound environmental changes driven by global warming. With the advance of earth observation
technology, remote sensing has become increasingly important for detecting, monitoring, and
understanding environmental changes over vast and remote regions. This paper provides an
overview of recent achievements, challenges, and opportunities for land remote sensing of cold
regions by (a) summarizing the physical principles and methods in remote sensing of selected key
variables related to ice, snow, permafrost, water bodies, and vegetation; (b) highlighting recent
environmental nonstationarity occurring in the Arctic, Tibetan Plateau, and Antarctica as detected
from satellite observations; (c) discussing the limits of available remote sensing data and approaches
for regional monitoring; and (d) exploring new opportunities from next-generation satellite missions
and emerging methods for accurate, timely, and multi-scale mapping of cold regions.

Keywords: remote sensing; cryosphere; climate change; northern high latitudes; Antarctica;
Tibetan Plateau

1. Introduction

Cold regions, including high-latitude and high-altitude landscapes, are experiencing climate
warming with amplification at roughly twice the global rate for the Arctic region (>60◦N) [1,2] and
Tibetan Plateau (TP) [3,4]. Cold regions are typically characterized by the presence of permafrost,
extensive snow and ice cover, and rich reserves of stored soil organic carbon in the northern regions
and TP [5,6]. Ecosystems within these regions are highly vulnerable to changes resulting from the rapid
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destabilization and melting of ice above the 0 ◦C isotherm [7,8], lengthening the annual non-frozen
season [9,10], and thawing of carbon-rich permafrost soils [11].

Recent region-wide warming trends have altered vegetation, and interactions and feedbacks
between the water, energy, and carbon cycles [12–14]; these changes have also resulted in a myriad of
impacts to landscape function and ecosystem services [15]. Warmer temperatures have reduced the
duration of seasonal snow and ice cover over land, ocean, and inland water bodies [16–19]. Longer
snow and ice-free seasons have led to lower surface albedos and greater net energy loading, reinforcing
regional warming trends [20–22]. The alteration of seasonal snow and ice cover has also altered
wildlife habitats and human mobility, including degrading the stability of snow and ice cover for
winter travel [23].

Permafrost soils are estimated to store up to 1,600 billion tonnes of soil carbon, representing
roughly twice the amount of carbon stored in the atmosphere [11]. Warming soils have promoted
permafrost degradation and active layer deepening, enhancing the mobilization and potential transfer
of soil carbon to the atmosphere [24,25]. Ground surface deformation from degrading permafrost has
also increased the risk of damage to human infrastructure, including roads, pipelines, and buildings [26].
Changes in permafrost properties greatly impact the surface water budget because the soil ice layers
form a relatively impermeable barrier to soil drainage [27]. Surface subsidence into the water table
driven by the thawing of ice rich soils has increased surface water inundation and lake expansion
in continuous permafrost areas (where more than 80% of the ground is underlain by permafrost).
In contrast, extensive draining of lakes and wetlands has been observed in more degraded permafrost
areas [28–30].

Satellite observations have indicated vegetation greening over northern latitude tundra, attributed
to enhanced vegetation growth from a longer frost-free season, contrasting with vegetation browning
in boreal forest and some tundra regions, that may result from greater drought stress due to warmer
temperatures and a longer frost-free season [31]. Boreal forests have also been affected by an increase in
the frequency and severity of wildfires exacerbated by warmer and drier conditions, and insect-related
disturbances [32,33]. The net effect of these changes is a complex snow/ice, vegetation, soil, and wetland
mosaic where the terrestrial water, carbon, and energy cycles are strongly coupled and interactive with
the climate.

Remote sensing provides an unprecedented approach for characterizing the timing, magnitude,
and patterns of environmental changes. This is especially advantageous for geographically remote
cold regions, where site observations are often spatially sparse and temporally limited. The multi-scale
nature of remote sensing also provides insight into the often emergent spatial and temporal patterns
and properties of ecosystems that may not be fully identified nor understood when approached
from the perspective of a local region. Earth parameter data records derived from optical-infrared
(optical-IR) and microwave satellite observations spanning multiple decades are particularly valuable
in distinguishing large characteristic natural climate variability from more subtle environmental trends
in cold regions [14,19,34,35] and for the detection of local to regional disturbances [36,37]. Finer
spatial-resolution optical-IR and active microwave sensors are essential for distinguishing the complex
spatial heterogeneity in permafrost landscapes [38–40] and for near-real time applications such as
monitoring river ice jams [41] and glacial lake outburst flooding [42].

This paper provides an overview of recent progress and prospects in remote sensing of cold regions
by first reviewing general principles and methods in measuring a selection of key environmental
variables, including glacier ice; snow; surface water bodies; permafrost and surface deformation;
vegetation and terrestrial carbon process. We then summarize recent environmental changes
documented by the remote sensing data record. Finally, we explore opportunities for leveraging
available and future satellite missions, and integrating emerging remote sensing and big data techniques
to establish a next-generation monitoring system for cold regions.
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2. Principles and Methods

Satellite optical-IR and microwave sensors (Supplementary Table S1) have provided complementary
observations of cold regions since the 1970s. In general, optical-IR sensors are well suited for mapping
environmental variables over heterogeneous landscapes due to their relatively high-resolution (sub-meter
to 1 km) imaging capability, though the signal-to-noise ratio of the observations may be degraded by
cloud–atmosphere aerosol contamination, low solar elevation, and long periods of seasonal darkness at
higher latitudes. Microwave remote sensing is less affected by atmospheric conditions and provides
earth observations day-or-night under nearly all-weather conditions [43]. The microwave penetration
ability is generally superior to optical-IR wavelengths and depends on sensor frequency and landscape
conditions. Lower-frequency (e.g. 1–2GHz or L-band, 0.3–1GHz or P-band) observations provide
better measurements of forest biomass and enhanced soil sensitivity under low to moderate vegetation
and snow cover, while higher frequency (e.g., 12–18GHz or Ku-, 26.5–40 GHz or Ka-band) signals are
more suitable to detect sparsely vegetated soil, snow properties (e.g., snow depth, surface roughness,
stratification, and microstructures) [44,45] and ephemeral surface freeze–thaw (FT) conditions [38,46–48].
Among microwave sensors, satellite synthetic aperture radar (SAR) measures backscatter signals at
relatively high spatial resolution (1–100s m), though the utility of operational SARs has been constrained
by limited data access, incomplete global coverage and low temporal sampling. Alternatively, satellite
microwave scatterometers and radiometers provide global coverage and frequent sampling (i.e., every
1–3 days) valuable for monitoring environmental dynamics over large regions, but at relatively coarse
spatial resolution (~5–36 km).

A variety of sensor configurations and remote sensing techniques have been applied for monitoring
cold regions, based on radiative transfer theory and the unique spectral signatures of various target
variables. These approaches are summarized in the following subsections for selected variables
where remote sensing has been used to document significant environmental changes attributed to
global warming.

2.1. Remote Sensing of Ice

2.1.1. Glacier Mass and Movement

Glaciers are slow moving masses of ice formed over time by the accumulation and compaction
of snow, holding 75% of Earth’s freshwater [49] and 10% of the global land area, including most of
Greenland and Antarctica [50]. Glacier mass balance is highly sensitive to climate change and controls
a glacier’s long-term behavior and evolution. A glacier flows under its own weight due to the pull of
gravity, and thus transports ice mass to lower altitudes. Remote sensing is the only practical approach
for inferring glacier mass and movement over large regions.

Glacier mass is commonly estimated through independent or combined gravimetry and altimetry
measurements [51]. Satellite and aircraft-based gravimetry measurements have been widely used in
glacier mass change assessments [52]. Glacier mass can also be indirectly estimated through glacier
area and thickness measurements. Glacier area change events, such as ice calving, can be precisely
detected using satellite images acquired over different times [53]. Glacier thickness change caused by
ice melting or accumulation can be measured via geodetic approaches, including point measurements
from altimetry and digital elevation models (DEMs) derived from photogrammetry or interferometric
SAR (InSAR) techniques (Supplementary Table S2). Satellite laser altimeter measurements can achieve
decimeter to centimeter accuracy levels; for example, the Geoscience Laser Altimeter System (GLAS)
onboard the Ice, Cloud, and land Elevation Satellite (ICESat) provided decimeter-accuracy elevation
data with a 70-m ground footprint over the global ice sheets [54]. The ICESat-2 satellite was launched in
late 2018 and has a significantly improved laser system providing observations with enhanced spatial
resolution, temporal sampling, and measurement accuracy [55]. Alternatively, satellite photogrammetry
using optical-IR (e.g., ASTER, IKONOS) and SAR/InSAR (e.g., ERS-1/2 and ENVISAT) measurements
have been successful in providing glacier raster DEMs [56,57]. In particular, the SAR Interferometer
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Radar Altimeter (SIRAL) onboard Cryosat-2 is capable of measuring changes in the thickness of both
sea ice and land ice under three different measurement modes (low resolution, SAR and InSAR) [58].

Glacier movement can be detected from repeat-pass satellite images using feature tracking and
Differential InSAR (DInSAR) techniques. The feature tracking method identifies and matches ice surface
features from satellite images and calculates the moving distance of the features over different acquisition
times. The methods have been applied to both optical-IR and SAR image series, including Landsat
Operational Land Imager (OLI) [59], Moderate Resolution Imaging Spectroradiometer (MODIS) [60],
and ERS-1/2 SAR [61] sensors. DInSAR uses repeat-pass SAR imagery to calculate glacier motion
velocity after removing the topography signals from the sensor interferograms using an external DEM
or a combination of interferograms [62,63]. The accuracy of the feature-tracking method can be within
the sub-pixel level, while that of DInSAR is up to half of the radar wavelength.

2.1.2. Lake Ice Cover

Ice cover plays an important role in lake-atmosphere interactions at high latitudes. The presence
(or absence) and extent/concentration of ice cover on large lakes has a significant impact on regional
weather and climate (e.g., lake-effect snowfall, thermal moderation effect) [64–68]. Ice cover (extent)
and ice thickness have recently been identified as Essential Climate Variables by the Global Climate
Observing System (GCOS) of the World Meteorological Organization [69]. Both ice extent, from which
ice phenology (i.e., ice dates during freeze-up and break-up, and ice cover duration) can be determined,
and ice thickness are sensitive indicators of climate change [70,71]. Not identified by GCOS is the
bedfast ice regime of shallow Arctic/sub-Arctic lakes (less than about 3-m). Such lakes are widespread
across permafrost regions of Alaska, Northern Canada, and Siberia. Determining if and when entire
lakes or lake sections become bedfast (i.e., ice cover is thick enough to reach lake bottoms) in winter has
been shown to also be relevant for climate monitoring [72,73]. Winters with a larger (smaller) fraction
of bedfast ice are generally indicative of colder (warmer) air temperature and/or lower (higher) on-ice
snow depth conditions which can lead to thicker (thinner) ice. Considering the sparse distribution of
weather stations in northern high latitudes, whose temperature measurements are not representative
for large areas, satellite remote sensing provides an alternative to measure regional ice cover extent
(phenology), ice thickness, and bedfast ice as summarized below.

Ice cover extent and phenology—Satellite remote sensing has assumed a greater role in lake ice
observations in recent years due to the dramatic reduction in ground-based observational recordings
and the availability of increasingly longer satellite time series, particularly from the 2000s onward [74].
Ice cover extent products are either generated manually, largely from visual interpretation of
multi-source/frequency satellite imagery such as the National Oceanic and Atmospheric Administration
(NOAA) National Ice Center Interactive Multisensor Snow and Ice Mapping System (IMS). The IMS
products are produced manually through assimilation of various sources of data, including polar-orbit
and geostationary satellite imagery and in situ data. In some cases, automated algorithms are applied to
these data to facilitate analysis. The IMS products are available at various resolutions (1 km, 4 km, and
24 km) [75]. Ice phenology dates (freeze-up/ice-on and break-up/ice-off dates) and ice cover duration
can also be derived from the IMS products [74,76]. MODIS 500-m snow (MOD10A1/MYD10A1) and
250-m surface reflectance (MOD09GQ) products have been used in a few recent studies, alone or in
combination with each other and 1-km MODIS (MOD11A1/MYD11A1) Land Surface Temperature
(LST), to derive ice dates (start and end of break-up and freeze-up dates) and their associated trends
(2001-2017 or shorter) [77–82]. Approaches that use top-of-atmosphere or surface reflectance (e.g.,
MODIS near-infrared and red bands) are based on threshold values where ice is determined to be
present/absent above/below a certain value. High solar zenith angle, which is important during
freeze-up for high-latitude lakes, and cloud cover are two factors that affect the quality of lake ice
products. Hence, research has also focused on developing ice phenology retrieval algorithms from
passive and active microwave observations.
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At passive microwave frequencies (e.g., 18–37 GHz) used for satellite remote sensing of lake
ice cover, nadir emissivity from open water is low (ε = 0.443– 0.504 at 24 GHz) compared to that of
ice (ε = 0.858–0.908 at 24 GHz) [83]. This makes the determination of the timing of ice formation and
decay on lakes feasible from brightness temperature (Tb) measurements. The emissivity of ice, and
therefore Tb, further increases during ice formation, as the influence of radiometrically cold water
under the ice cover decreases with ice thickening [84]. Kang et al. (2012) found AMSR-E (Advanced
Microwave Scanning Radiometer for Earth Observing System) 18.7 GHz (H- pol) Tb data (interpolated
onto a 10-km grid) to be the most suitable for estimating ice dates (freeze-onset, ice-on dates, melt-onset,
and ice-off dates), as well as the duration of ice cover and ice- free seasons using a thresholding
approach. Du et al. [17] further demonstrated that ice dates could be derived from AMSR-E and
AMSR2 (Advanced Microwave Scanning Radiometer 2) 36.5 GHz (H-pol) Tb (re-gridded at 5-km)
data using a moving t-test algorithm. Derived ice dates compared favorably with those obtained from
ground-based observations and other satellite products such as IMS.

Threshold-based and semi-automated (region-based segmentation followed by manual labelling
of ice/open water) approaches have also been developed to generate ice cover extent and phenology
products using SAR data. Wang et al. [85] evaluated the semi-automated segmentation algorithm
“glocal” Iterative Region Growing with Semantics (IRGS) [86] for lake ice classification using dual
polarized (HH and HV) RADARSAT-2 imagery acquired over Lake Erie. Their analysis showed that
the algorithm could provide reliable discrimination between ice and open water with high overall
classification accuracy (90.4%) when compared to Great Lakes image analysis charts from the Canadian
Ice Service. Murfitt et al. [87] developed a threshold-based approach for estimating ice phenology
events for mid-latitude lakes in Central Ontario by tracking the temporal evolution in backscatter
from HH-polarization RADARSAT-2 imagery (2008–2017). The authors reported mean absolute errors
of 2.5–10 days for freeze events and 1.5–7.1 days for water clear-of-ice when compared to MODIS
imagery. The method was also successful in detecting multiple freeze (high backscatter) and melt (low
backscatter) events throughout the ice season. By combining acquisitions from ENVISAT Advanced
SAR (ASAR) wide swath and RADARSAT-2 ScanSAR data, Surdu et al. [88] showed the advantage of
more frequent sampling (i.e., every 2–5 days over the 2005–2011 study period), but also the need for
sensor incidence angle correction for more precise ice phenology detection from backscatter thresholds
over Alaskan North Slope lakes.

Ice thickness—Field measurements of ice thickness are spatially and temporally sparse in cold
regions. Recent investigations have developed approaches to estimate ice thickness from passive
microwave, active microwave (altimetry and SAR) and thermal remote sensing data. Kang et al. [84]
showed that the temporal evolution of Tb measurements from AMSR-E at 10.7 GHz and 18.7 GHz
frequency (V polarization) during the ice growth season on Great Bear Lake (GBL) and Great Slave
Lake (GSL), Canada, is strongly related to ice thickness. The authors proposed simple linear regression
equations to estimate ice thickness for the lakes using 18.7 GHz V-pol data (2002–2009), while the
estimated ice thicknesses compared favorably with in situ measurements (Mean Bias Error, MBE, 6 cm;
Root Mean Square Error, RMSE, 19 cm). Beckers et al. [89] explored waveforms from CryoSat-2 Ku-band
radar altimetry to estimate ice thickness also on GBL and GSL. Their study obtained ice thickness
estimates with RMSE of 33 cm when compared to in-situ measurements obtained at GSL. Murfitt et
al. [90] evaluated RADARSAT-2 data for estimating lake ice thickness in Central Ontario, Canada.
They reported RMSE values of 11.7 cm and attributed the uncertainty to unexplored questions about
scattering mechanisms and the interaction of the radar signal with lake ice having complex structure
within the ice layer and at the ice–water interface. In addition to the radar-based investigations, lake
surface (ice/snow) temperature observations from MODIS have also been evaluated for estimating
lake ice thickness [91]. Using heat balance terms derived from the Canadian Lake Ice Model [92], the
authors retrieved ice thicknesses up to 1.7 m from MODIS with RMSE of 17 cm and MBE of 7 cm when
compared to field measurements acquired on GSL and Baker Lake, Canada. Work on the estimation of
ice thickness from satellite remote sensing is still in its infancy. Biases in retrievals are relatively large
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from some spaceborne instruments, while the remote sensing time series are generally too short to
analyze climate trends in satellite-derived ice thickness.

Bedfast ice—Radar remote sensing allows for distinguishing lakes with bedfast (grounded) ice
due to the difference in backscatter intensities between floating ice (generally higher backscatter
return) and bedfast ice (lower return) [93]. Recent analyses of polarimetric SAR (X-, C-, and L-band)
satellite and ground-based scatterometer (Ku- and X-band) measurements, supported by radiative
transfer modeling experiments, have revealed that the high backscatter of floating ice on shallow
Arctic lakes is from the ice–water interface (due to appreciable surface roughness or preferentially
oriented ice facets), dominated by single-bounce scattering [94,95]. Areas of bedfast and floating lake
ice are monitored/mapped from SAR using image thresholding [73] or region-based segmentation
approaches [96]. Analyses of C-band SAR time series (ERS-1/2, RADARSAT-1/2, ENVISAT ASAR, and
Sentinel-1) have been used to document trends and variability in bedfast ice across Alaska, over the
last 20–25 years [73,88]. Antonova et al. [97] have also shown the potential of a unique time series
of three-year repeat-pass TerraSAR-X imagery with higher temporal (11 days) and spatial (10 m)
resolutions than available in past studies for monitoring both bedfast ice and lake ice phenology in the
Lena River Delta, Siberia. The authors also analyzed an 11-day sequential interferometric coherence
time series from TerraSAR-X as a supplementary approach for bedfast ice monitoring. Coherence time
series have been found to detect most areas of bedfast ice as well as spring snow/ice melt onset.

2.2. Remote Sensing of Snow

Snow and glaciers provide one-sixth of the world’s population with fresh drinking water, and
seasonal snow is the main fresh-water source at mid-latitudes [98]. Snow is also a crucial factor
controlling the seasonal radiation balance of the land surface, and a sensitive indicator of global
climate change. Snow measurement is essential to snowmelt driven runoff predictions, water resources
management, flood control, and climate change studies [99]. Key snow properties derived from remote
sensing include snow cover area or extent, structure (e.g., depth, density), and water equivalent.

2.2.1. Snow Cover Area

Snow cover area has been estimated using satellite optical sensors such as Landsat TM, Aqua/Terra
MODIS, and NOAA AVHRR (advanced very-high-resolution radiometer). Snow cover can be identified
under clear-sky conditions using the Normalized Difference Snow Index (NDSI), which exploits the
contrasting reflectance of snow in the visible and short-wave infrared bands [100,101]. Utilizing
ancillary spectral indices such as Normalized Difference Vegetation Index (NDVI) and Normalized
Difference Forest Snow Index (NDFSI) helps incorporate vegetation information in snow detection and
improves performance in mapping forest snow cover [102,103]. Radiation transfer models can also be
used for improved snow mapping over forest areas [104]. Recent snow mapping efforts have focused
on generating long-term snow cover products using observations from multiple satellite sensors [105],
high-spatial resolution snow mapping using Sentinel-2 and Landsat optical imagery [106,107] and
machine-learning techniques [108,109]. In addition, satellite sub-pixel snow cover is valuable for
improved estimation of snowmelt runoff and understanding energy exchanges between the land surface
and atmosphere [110]. Two main approaches to derive sub-pixel snow fraction include empirical linear
regression of NDSI [111] and spectral mixture analysis [112–116].

Cloud contamination can significantly limit the signal quality of snow property detections made
by satellite optical-IR remote sensing. Daily composites of half-hourly to hourly observations from
geostationary satellites enable optimized snow detection while suppressing cloud contamination
effects. Automated snow mapping has been achieved for a variety of geostationary satellites including
GOES (Geostationary Operational Environmental Satellite) over North America [117]; Meteosat
Second Generation (MSG) satellites over Europe [118,119]; and Multifunctional Transport Satellites
(MTSAT)-2, Himawari-8, and Feng Yun (FY)-2 over Asia [120,121]. A linear interpolation method [117]
has been used to derive fractional snow cover from FY-2 satellite observations [122]. Cloud-free
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snow cover products have also been derived using combined observations from polar-orbiting and
geostationary satellites [121], additional observations from satellite microwave sensors [123–126];
and through processing of satellite data using advanced spatiotemporal filters and interpolation
techniques [127,128]. Optical-IR sensors have limitations in distinguishing between dry and wet snow,
which can be effectively addressed by incorporating SAR observations.

2.2.2. Snow Water Equivalent

Snow water equivalent (SWE) describes the amount of water contained in the snowpack when
completely melted. To estimate SWE from satellite microwave observations, the scattering and
emission contributions from intervening atmosphere, snow surface, snowpack, and underlying soil and
snow–soil interactions need to be distinguished and accounted for, which can be done by exploiting
the frequency-dependent sensitivity of microwaves to land surface components [129,130] (Figure 1).
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Figure 1. Components of snow emissions and scattering observed by space-borne microwave radiometer
and radar observations. By neglecting atmosphere scattering and upward emission, the satellite signals
mainly consist of contributions from the air–snow surface (as), snow pack (v), underlying soil (g), and
snow–soil interactions (gv).

Satellite passive microwave SWE estimation relies on multi-frequency observations from SMMR
(Scanning Multichannel Microwave Radiometer), SSM/I (Special Sensor Microwave/Imager), SSMIS
(Special Sensor Microwave Imager Sounder), AMSR-E/2, and FY-3 MWRI (Microwave Radiation
Imager) [125] sensors. The associated SWE algorithms include (a) static [130] and dynamic
semi-empirical algorithms [131,132]; (b) iterative algorithms [133]; (c) physically based statistical
algorithms [134]; (d) probabilistic approaches [135]; (e) machine learning methods [136,137]; and (f)
data assimilation methods [138,139].

The satellite SAR SWE retrieval algorithms can be grouped into two categories: (a) physical
inversion algorithms and (b) interferometry methods. By utilizing the frequency-dependent sensitivity
to snow and underlying soil properties, combined multi-frequency SAR observations (e.g., X-
and Ku-band) are capable of SWE retrievals as demonstrated by model simulations and field
experiments [140–143]. The uncertainties related to snow density, ice microstructure, snow layer
stratification, vegetation, and terrain effects are the main issues affecting the performance of both
passive and active microwave snow retrieval algorithms [144–146]. Alternatively, SAR interferometry
techniques show promise in overcoming many of the above difficulties by utilizing interferometry
phase difference information for SWE estimation [147,148].

2.3. Remote Sensing of Frozen Soil

2.3.1. Landscape Freeze/Thaw States

The landscape FT status is closely linked to ecosystem carbon, water and energy exchanges, snow
melt dynamics, and permafrost extent and stability [21,34,149,150]. Global FT observational data
records spanning the modern satellite era have been used to document environmental trends from
global warming, including earlier and longer non-frozen seasons as a driver of northern vegetation
greening, increased trends in damaging frost events in early spring [9], degrading permafrost, and an
earlier spring flood pulse across the pan-Arctic [151]. By availing of the high sensitivity of microwaves
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to significant dielectric shifts between solid and liquid water phase transitions, the FT signals can be
captured by classifying Tb or radar backscatter coefficient (σ0) changes relative to frozen or non-frozen
reference conditions [35].

FT algorithms applied to both active and passive microwave observations include threshold-based
methods [35,38,152], change-detection approaches [48,153], and multi-channel data fusion or machine-
learning methods [154–158]. The threshold-based methods determine FT conditions by comparing the
satellite observations with reference Tb or σ0 values representative of seasonal frozen and non-frozen
conditions. Such approaches are robust and relatively easy to implement for operational FT retrievals.
More sophisticated multi-channel combinations, decision tree, and probabilistic model methods can
effectively distinguish FT conditions from precipitation events in sparsely vegetated and drier climate
zones. As a recent development, data fusion, and machine learning methods show promise in providing
potentially enhanced FT retrievals by exploiting massive archives of satellite observations and ancillary
data [157–159].

Multiple global FT data records have been developed using observations from satellite microwave
radiometers and scatterometers, including SMMR and SSM/I[S] [160], AMSR-E/2 [161], Aquarius [162],
SMOS (Soil Moisture and Ocean Salinity) [46], SMAP [163,164], and ASCAT [165]. Long-term (>39-year)
global daily FT data records have been developed using similar overlapping 37 GHz Tb retrievals
from SMMR and SSM/I[S] sensors with moderate (~25km) spatial resolution [160]. Finer (~12km)
resolution FT data have also been developed using calibrated 36.5 GHz orbital swath Tb records from
the AMSR-E/2 sensors [161,166]. The SMAP mission provides an operational FT data record derived
from L-band (1.4 GHz) Tb retrievals with global coverage, 1–3-day temporal fidelity, and 9-km and
36-km resolution gridding [163,164,167]. Example maps of the observed non-frozen days in 2017 are
shown (Figure 2) from three different FT data products and operational satellite sensors, including
SMAP [167], SSM/I [160], and AMSR2 [161]. The SSM/I and AMSR2 FT records are derived from
vertically polarized Tb retrievals and a modified single channel algorithm. The SMAP FT record is
derived using a dual algorithm approach including a normalized polarization ratio (NPR) of vertically
and horizontally polarized Tb differences from NPR reference states, and a single channel algorithm
where conditions are unfavorable for the NPR. All of these records show similar FT regional patterns,
including generally fewer frost days at lower latitudes and altitudes, and in coastal areas relative to
higher latitude, alpine, and inland areas. However, the SMAP and AMSR2 products show generally
enhanced spatial delineation of FT patterns due to the respective finer 9-km and 6-km resolution
gridding of these products, relative to the 25-km resolution SSM/I global grid product. The SMAP
L-band products also have greater soil FT sensitivity than the K-band retrievals from AMSR2 or
SSM/I [152].

In addition, the SMAP radar produced operational FT retrievals over northern (≥45◦N) land areas
with ~3-km resolution and 1–3-day fidelity until the radar transmitter failed in July, 2015; however,
these data are overlapping with SMAP radiometer based FT records which share the same satellite
antenna receiver [152]. FT retrievals have also been acquired from L-band Global Navigation Satellite
System (GNSS) signals captured from the SMAP radar receiver, which has provided kilometer scale
observations of FT seasonal transitions.
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Figure 2. Estimated annual non-frozen season in 2017 derived from three operational satellite FT data
products, including: (a) SSM/I (37 GHz; 25-km), (b) AMSR2 (36.5 GHz; 6-km), and (c) SMAP (1.4 GHz;
9-km). Areas outside of the FT global domain for each product are shown in grey and white.

2.3.2. Surface Deformation

In cold regions, climate change could significantly affect surface morphology (e.g., permafrost
melting due to global warming), which may pose a threat to 70% of current infrastructure in Arctic
permafrost regions by 2050 (Figure 3) [26]. Remote sensing technologies could offer a useful platform
to better understand these geomorphic changes, especially those that guarantee high-resolution
topography analysis [168].
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Liu et al. [169] used spaceborne InSAR data to map surface subsidence trends at a thermokarst
landform located near Deadhorse on the North Slope of Alaska. The motivation of this study was
the fact that the intrinsic dynamic thermokarst process of surface subsidence remains a challenge to
quantify and is seldom examined using remote sensing methods. Subsequent InSAR analysis using
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Phased Array type L-band SAR (PALSAR) images revealed localized thermokarst subsidence of a
few cm yr−1 between 2006 and 2010. Luo et al. [170] used terrestrial laser scanning for quantifying
surface deformation pertaining to underlying hydrological–thermal processes affecting active layer FT
conditions in the Tibetan Autonomous Region (China). The Terrestrial Laser Scanner and six Trimble
5700 GNSS systems were deployed in the region between May 2014 and October 2015, where the site
was monitored four times. The results indicated that as air temperature and precipitation increase with
climate warming the active layer will become more unstable, exacerbating slope instability as phase
changes (thawing and freezing) occur. Jorgenson and Grosse [171] summarized recent developments
(2010–2015) in remote sensing applications to detect and monitor landscape changes in permafrost
regions, analyzing surface temperatures, snow cover, topography, surface water, vegetation cover, and
disturbances from fire and human activities. According to this review, repeated light detection and
ranging (LIDAR), InSAR, and airborne geophysics will be key tools for monitoring permafrost changes
(topographic and subsurface) in Arctic and boreal regions. Arenson et al. [172] stressed the fact that in
situ monitoring of periglacial dynamics is essential for the study of periglacial morphology and the
design of mitigation and adaptation measures for infrastructure in permafrost zones. The application of
structure-from-motion photogrammetric techniques is relatively low-cost and easy to use (e.g., see [173]
for details), and provide capabilities for multi-temporal surveys of surface deformation. Meng et
al. [174] used X-band SAR Interferometry for the detection of surface deformation in the Sichuan–Tibet
Grid Connection Project Area (China). In this area, landslides, and debris flows triggered by climate
change are becoming a major threat. Surface deformation time series observations were obtained
through sequential TerraSAR X-band images. The analysis suggested that the deformation rate tends
to increase dramatically during the late spring and late autumn, but with reduced deformation during
colder winter months. Stettner et al. [175] discussed the capability of high spatiotemporal resolution
X-band microwave satellite data (obtained from the TerraSAR-X satellite) to quantify cliff-top erosion
of an ice-rich permafrost riverbank in the central Lena Delta. The results indicated continuous erosion
from June to September in 2014 and 2015 with no significant seasonality across the thawing season.
The authors identified X-band backscatter time series as a useful tool complementing optical remote
sensing and in situ monitoring for rapid analysis of tundra permafrost erosion along riverbanks and
coastal areas. Chen et al. [176] used Persistent Scatterer Interferometry (PSI) to map and quantify
permafrost thaw subsidence in the Qinghai–Tibet Plateau. According to the authors, the PSI approach
is less affected by temporal or geometric decorrelation, while their results indicated that permafrost
areas near gullies are more vulnerable to gradual thawing and degradation.

2.4. Remote Sensing of Water Bodies

Surface water (SW) over inland areas is a key component of the water and energy cycles, covering
about three percent (4.46 million km2) of Earth’s land [177]. The dynamics of SW in cold land regions
are closely linked to terrestrial water storage changes [178], flood and drought events [179], seasonal
thawing and the spring flood pulse [180], microtopography, underlying geology and permafrost
conditions [181]. SW changes are also occurring in Arctic-boreal wetlands, lakes, rivers, and streams as
permafrost degrades with regional climate warming [29,180,182]; surface subsidence during the initial
stages of permafrost degradation leads to increased inundation, while later stages of permafrost thaw
lead to surface drying and reduced wetland extent as drainage pathways increase [27]. The emerging
glacier and thermokarst lakes formed as ice melts have a strong climate feedback and may increase
regional hazards from outburst flooding [183,184].

Clear and calm water appears dark and is readily distinguished from surrounding land features
using optical-IR, microwave radiometer, and mono-static radar sensors. Optical-IR satellite sensors
such as PlanetScope multispectral cameras, MODIS, AVHRR, and Landsat provide potential daily
to 16-day repeat global observations of SW cover at moderate to high-resolution (3–1000 m), while
screening and temporal compositing of the data to reduce the influence of cloud and atmosphere
contamination may degrade temporal fidelity [177,181,185].
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Potential drawbacks from optical-IR sensors can be partially overcome by active [186] and
passive [178,187–189] microwave remote sensing. Daily satellite passive microwave observations were
used to monitor spatial variability and multi-year trends in surface inundation in permafrost affected
regions [29,188]. Lower frequency (e.g., L-band) microwave retrievals have shown greater sensitivity
and detection of surface water even under low to moderate vegetation cover [190]. The synergistic
use of optical-IR and microwave observations, and ancillary hydrologic information has shown
promise in producing optimum SW mapping results in terms of accuracy, and spatial and temporal
resolution [190–195].

2.5. Remote Sensing of Terrestrial Ecosystems

Vegetation growth in cold regions is limited by multiple environmental constraints including
low temperatures, frozen sub-surface soils in permafrost affected terrain, low light levels in winter
and shoulder seasons, water stress in summer, and nutrient limitations due to the very slow release
of plant available nitrogen and phosphorus from seasonally frozen or inundated soils [196,197].
Although ground-based measurements are needed to inform local-scale investigations, remote sensing
is especially important for the cold regions because it provides spatially and temporally resolved data
over broader scales, allowing for synoptic investigations of vegetation ranging from individual plots
to regional and global extents.

2.5.1. Vegetation Mapping

Land cover type is a general term encompassing a range of important information about ecosystems,
including biotic and abiotic properties related to vegetation, energy balance, and carbon exchanges.
Satellite remote sensing has been used throughout the cold regions to provide various maps of land
cover that group vegetation according to geobotanical themes, including physiology. The spatial
patterns in the vegetation maps can provide useful insight into how microclimates, soil type, and
hydrology, disturbance and plant succession contribute to variations in plant community characteristics
at landscape to regional levels. These maps are also used to parameterize ecosystem process models by
means of parameter look-up tables aggregated according to generalized plant functional types [198,199].

Classification algorithms trained on satellite optical-IR spectral information have been used to
map land cover and vegetation type over large areas. For example, the United States Geological
Survey (USGS) provides 30-m land cover data for the state of Alaska for years 2001 and 2011, using the
C5 decision-tree classifier applied to Landsat TM and ETM+ (Enhanced Thematic Mapper) imagery
(http://www.mrlc.gov). For the Anderson Level II classification (19 classes, defining different types of
forest, shrub, herbaceous, and wetland), the overall accuracy ranged from 59% to 76%, depending on the
definition of agreement with reference data [200]. The Earth Observation for Sustainable Development
of Forests (EOSD) project used an unsupervised k-means clustering approach with Landsat ETM+

data to map land cover across Canada at 25-m resolution for the year 2000, using a detailed 23-class
system [201]. In another study, phenological data derived from Landsat 8 NDVI timeseries, along
with other inputs, were used to classify land cover across ice-free portions of Greenland at 30-m
resolution [202]. Mapped classes included fen, dry heath and grasslands, wet heath, and copse and
tall shrubs, with an overall classification accuracy of 89%. Other studies have used higher resolution
imagery to map vegetation communities in heterogenous tundra landscapes (e.g., using IKONOS
imagery [203]). For sites across the North Slope of Alaska, tundra vegetation communities were shown
to be separable based on visible wavelengths collected through field spectroscopy, and vegetation
type was mapped at 2-m resolution with ~70% accuracy using linear discriminant analysis applied to
WorldView-2 data [40].

In addition to optical-IR data, airborne and satellite SAR data can be effective for separating land
cover classes due to its sensitivity to vegetation structure and water content [204–206]. A supervised
classification approach was applied to airborne, multifrequency polarimetric SAR imagery to map
functional vegetation types at 30-m resolution across a boreal forest area [204]. Classes such as jack pine,

http://www.mrlc.gov
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black spruce, and trembling aspen were mapped with high accuracy (> 90%). Radar data can also be
used to distinguish different types of wetland vegetation, as higher frequency microwave data can detect
flooded short vegetation (e.g., fens and bogs), while lower frequency data are better at detecting flooded
tall vegetation (e.g., forests and swamps) [206]. The fusion of microwave and optical data through
traditional supervised classification (e.g., maximum-likelihood classifier) [205] and machine-learning
approaches [206,207] enables improved land cover classification over the high-latitudes. Deep-learning
approaches also show promise in utilizing semantic information of satellite imagery for classifying
complex ecosystems [208].

2.5.2. Vegetation Growth and Photosynthetic Carbon Assimilation

A number of remote sensing vegetation indices such as NDVI, leaf area index (LAI), and
enhanced vegetation index (EVI) have been developed to characterize vegetation properties related to
photosynthesis on a per-pixel basis [209]. In Arctic-boreal regions, multispectral satellite data have
been used to quantify variables related to vegetation growth [210], biomass [211,212], and carbon
fluxes [213]. Satellite microwave systems can also provide information about vegetation growth and
carbon assimilation. For example, vegetation optical depth (VOD) derived from satellite microwave
Tb observations is sensitive to vegetation water content and provides information on both canopy
biomass (photosynthetic and non-photosynthetic) phenology and drought stress [214–218]. VOD has
also been used to monitor vegetation growth and recovery after fires in boreal forests [219].

Much of the remote sensing-based work for plant growth and carbon cycling has focused on
modeling gross primary productivity (GPP), which represents carbon biomass created by plants through
the process of photosynthesis over a given length of time and space (e.g., m2 day−1). GPP also represents
the amount of atmospheric CO2 sequestered by plants within biomass. GPP models are often based on
a light-use efficiency (LUE) framework, which estimates GPP as a function of APAR, the fraction of
absorbed photosynthetically active radiation (PAR), and a photosynthetic efficiency parameter which
describes the rate at which absorbed radiation is used for carbon fixation [220]. To model APAR, inputs
of LAI and fPAR (the fraction of canopy absorbed PAR) are needed, which can be modeled using
spectral reflectance data combined with radiative transfer algorithms [221]. Alternatively, NDVI can be
used as a proxy for fPAR [222]. The efficiency parameter is more difficult to model and can vary based
on vegetation type, water limitations, and light conditions [220]. However, GPP has also been shown to
be directly related to the EVI, which tends to be less saturated than NDVI over higher canopy densities
and less sensitive to soil background noise [220]. Relationships between EVI and GPP were shown to
vary among sites, with correlations generally stronger for deciduous sites than for evergreen sites [220].
Another important and newer proxy for GPP is solar-induced fluorescence (SIF) [223]. SIF quantifies
the amount of light reemitted by chlorophyll molecules as a byproduct of photosynthesis, and has
been shown to be directly proportional to GPP [224]. Satellite-based SIF (e.g., from the Global Ozone
Monitoring Experiment 2 [225] and Orbiting Carbon Observatory-2 [226]), allows for global monitoring
of terrestrial GPP and the carbon cycle. However, the SIF signal has relatively small magnitude and
generally requires a large sensor footprint and coarse temporal compositing of the data to obtain an
adequate signal-to-noise ratio relative to NDVI and EVI observations [227].

Aboveground biomass (AGB) is an important component of global carbon accounting. Remote
sensing techniques are used to estimate AGB by capturing both vertical structure and spatial variability
of canopies. For example, AGB has been estimated from LIDAR-derived canopy height and vertical
structure metrics [228,229]. Biomass was mapped for the circumboreal zone using multi-step modeling
that combined field-based biomass data, airborne and satellite LIDAR data [230,231], and similarly
at the regional scale for boreal forest in Québec [232]. Other studies demonstrated the potential of
low-frequency (e.g., L- and P-band) polarimetric SAR/InSAR data for estimating AGB in boreal forests
and over complex terrain [233–237].
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3. Changes and Trends

Climate warming in cold regions has been altering the phenology of snow, lake, and river ice,
and vegetation, causing accelerated ice melting in polar regions, and leading to complex wetting and
drying trends, and greening and browning patterns in northern high latitudes and TP. Multi-decade
remote sensing observations are essential in documenting the environmental changes and revealing
the long-term trends

3.1. Northern High Latitudes

The long-term (1979–2017) anomalies of the annual non-frozen season derived from the satellite
microwave FT observational record show a lengthening non-frozen season trend over vegetated lands
(excluding large water bodies and permanent ice/snow covered areas) in the high-northern latitudes
(3.30 day decade−1; p-value <0.001), with similar trends over the Northern Hemisphere (3.98 day
decade−1), Southern Hemisphere (3.61 day decade−1), and global domains (3.93 day decade−1) as
shown in Figure 4.Remote Sens. 2019, 10, x FOR PEER REVIEW  13 of 36 
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Hemisphere (SH), high-northern latitudes (HNL), and global domain. The anomalies were calculated
as annual differences from the long-term mean. Grid cells dominated by permanent snow/ice cover
and large water bodies (open water fraction ≥ 20%) are excluded from the analysis.

The changes in the annual non-frozen season length reflect the overall warming trend in the climate
system. The timing and duration of the non-frozen season is an important factor affecting water, carbon,
and energy budgets in cold land areas. Recent trends toward earlier and longer non-frozen seasons
coincide with global warming and have been shown to be a major driver of northern vegetation greening,
active layer deepening and permafrost degradation, enhanced evapotranspiration, earlier snowmelt
onset, and associated changes in terrestrial water and energy budgets [21,34,149]. For example, satellite
observations indicate that the snow end date in spring advanced by 5.11 days from 2001 to 2014 in the
high northern latitudes (52–75◦N) [238], along with shorter lake ice cover duration at higher latitudes
from 2002 to 2015 [17]. The melting of permafrost ice provides the water supply to thermokarst
lakes [239] and leads to surface water expansion detected within continuous and discontinuous
permafrost zones [29].

Satellite remote sensing observations have been used to detect changes in warming Arctic–boreal
ecosystems. Increasing temperatures and atmospheric CO2 concentrations can impact the production,
dynamics, and composition of vegetation, as well as soil moisture and other soil properties [240]. One
of the most pronounced ongoing changes is tundra shrub expansion [203]. Changes to vegetation
are likely to occur around vegetation ecotones [203,240]. Much effort has been given to identifying
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regions of vegetation production increase (greening) or decrease (browning). A 10-year time series of
monthly average AVHRR NDVI indicated an increase in photosynthetic activity in the northern high
latitudes from 1981 to 1991 driven by earlier growing season onset [241]. A subsequent study using a
longer AVHRR time series indicated an increase in tundra vegetation growth in boreal North America,
largely driven by longer growing seasons, but decreasing growth in interior forests [242]. Recent work
used time series of Landsat vegetation indices in Arctic sites, with results indicating more areas with
increasing growth than decreasing growth [243]. Analysis of a 28-year Landsat NDVI record indicated
that greening and browning of Canadian boreal forests were largely driven by disturbances from wild
fire and insect damages; and, in forests not affected by disturbance, climate changes were associated
with both areas of greening and browning [240]. Regarding phenological changes, a 30-year Landsat
record was used to detect an earlier/heterogeneous leaf emergence trend in temperate/boreal deciduous
forests [197], while a 33-year AVHRR NDVI time series revealed regional trends toward earlier growing
season onset, later growing season end, and longer growing season duration over the high northern
latitudes [31]. Based on recent satellite optical and microwave observations for years 2003 through 2017
over the high northern latitudes, the mean summer (JJA) MODIS NDVI record (MYD13A1.006; [244])
showed similar spatial patterns with the AMSR-E/2 VOD record [216], despite the different spatial
resolutions and underlying physics of the observations (Figure 5a,b). Major greening and biomass
growth trends are found in northern taiga and tundra regions, where both NDVI and VOD show
significant increases (p-value < 0.05) (Figure 5c,d). However, declining NDVI and VOD trends are
also widespread, indicating decreasing productivity. The declining trend areas largely occur in boreal
forest but are generally less significant than positive trend areas.
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3.2. Antarctic and Greenland Ice 
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Figure 5. Vegetation conditions and growth trend over the high northern latitudes from 2003 through
2017. (a) Mean summer MODIS NDVI; (b) Mean summer AMSR-E/2 VOD; (c) Trends in mean summer
NDVI; (d) Trends in mean summer VOD. In c and d, positive values indicate an increasing trend and
negative values indicate a decreasing trend; pixels with significant trend (p-value < 0.05) are shown
with crosshatch.
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3.2. Antarctic and Greenland Ice

The Antarctic and Greenland ice sheets are the largest ice bodies on Earth and are significantly
affected by changing air temperatures and solar radiation. If completely melted, the polar ice sheets
would raise global sea level by 70 m [245]. Recent studies show that the magnitude of recent melting of
the Greenland ice sheet is exceptional over at least the last 350 years [246]. Greenland’s ice is melting
so fast that it could become a major contributor to sea-level rise within two decades. Greenland ice loss
mainly occurred in the southeast and northwest margins of the ice sheet in the 2000–2010 period; while
the largest sustained acceleration (~10 years) in ice loss was detected in southwest Greenland from
GRACE (Gravity Recovery and Climate Experiment) observations [247]. The overall transformation of
ice into liquid water appears to be accelerating and Greenland loses an average of 270 billion tons of
ice each year [248].

The recent loss of continental ice includes both the northern and southern hemispheres. An estimate
of the mass balance of the entire Antarctic ice sheet over a 25-year record (1992 to 2017) shows that
the Antarctic Peninsula, the smallest ice sheet in Antarctica, has lost an average of 20 Gigatonnes
(Gt) of ice per year. The loss rate increased during the study period especially after the year 2000.
The West Antarctic Ice Sheet lost 53 ± 29 Gt yr−1 from 1992-1997, and the loss rate accelerated to
159 ± 26 Gt yr−1 from 2012-2017. The East Antarctic Ice Sheet is relatively stable, with small gains over
the study period [249]. The changes of polar mass balance are associated with snow and ice surface
darkening [250], warmer atmosphere and ice surface conditions [251–253], and increased surface melt
duration and extent [253–255] as observed by satellite optical and microwave sensors.

The velocity of ice flow in the Antarctic has been closely monitored using optical and radar remote
sensing due to its importance in determining ice discharge and sea level rise [60,256]. The velocity map
derived from the MODIS-based Mosaic of Antarctica data showed the general flow patterns of glaciers
and ice sheets moving from interior Antarctica toward the ocean for the periods from 2003–2004 and
2008–2009 (Figure 6). Continuous monitoring of the widespread ice flow over the entire continent is
highly needed for improving our understanding of ice sheet dynamics and evolution in a warming
climate [60,256].
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3.3. Tibetan Plateau

The Tibetan Plateau (TP), the most extensive highland in the world, has an area of approximately
2.5 × 106 km2 and an average elevation of over 4000 m. The TP also has the Earth’s largest storage
of ice outside of the north and south polar regions. The climate of the TP is changing rapidly with
temperatures warming at a rate of around 0.36 ◦C/decade [3], which is twice the mean global trend [4].
Consequently, the impacts of climate change on the TP environment are most pronounced, leading to
earlier onset of seasonal thawing, accelerating glacier melting, permafrost degradation, and complex
changes in snow, lakes, and vegetation.

Glacier melting has been observed over the TP and larger High Mountain Asia region.
Kaab et al. [257] used ICESat to analyze glacier mass change in the Hindu Kush–Karakoram–Himalaya
region during 2003–2008 and found a mass loss rate of −12.8 ± 3.5 Gt yr−1 in this region, which is faster
than the rate previously estimated using GRACE [258]. For the whole TP region, Neckel et al. [259]
estimated an overall mass loss rate of −15.6 ± 10.1 Gt yr−1 using ICESat observations from 2003 to 2009.
For the same period, Gardner et al. [260] estimated a total mass change of –29 ± 13 Gt yr−1 over High
Mountain Asia by integrating GRACE and ICESat observations.

Global and localized satellite snow products have been used for studying environmental
changes in the TP, including snow impacts on the regional water cycle, ecosystems, and atmospheric
circulation [261].

Based on the MODIS snow cover product (MOD10A2) and observations from 37 meteorological
stations, a significant trend of earlier onset of snow ablation during the 2001-2015 period was detected
over the TP [262]. By analyzing MODIS snow cover data from 2001 to 2011, other research [263] found
about 34.14% (5.56%) of the TP area having a declining (significant declining) trend in snow duration,
while 24.75% (3.9%) of the region showed increasing snow duration. To further enhance the accuracy
of TP snow products, Chen et al. [264] integrated snow cover data from multiple sources to generate a
gap-filled daily 5-km Tibetan Plateau snow cover extent record (TPSCE) from 1981–2016. As revealed
by the TPSCE, the snow cover fraction increased in the northern interior TP river basins and upper
reaches of the Yangtze, Mekong, and Brahmaputra River basins (Figure 7).
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Beside the global FT products available from satellite microwave observations [160], Kou et al. [265]
developed an enhanced resolution (0.05 degree) FT product over the TP by merging MODIS LST with
AMSR-E Tb records. Li et al. [266] analyzed changes in the soil FT cycle over the TP using SSM/I
data from 1988-2007. They identified a trend toward earlier onset of soil thaw by approximately
14 days/decade and later onset of soil freeze by approximately 10 days/decade. The observed changes
in FT patterns over the TP are also closely related to regional climate warming [265].

There are more than 1000 lakes with an area greater than 1 km2 on the TP. Generally, the total
TP lake area is expanding, from 41,800 km2 in 2005–2006 [267] to 46,600 km2 in 2015 [268]. The lake
expansion can be directly measured through optical satellite remote sensing. Wang et al. [269] analyzed
the trend of lake area changes during 1960-2000 by integrating aerial photos, satellite images (Landsat
and CBERS-1 (China-Brazil Earth Resources Satellite)), and topography information. They found
that most lakes in the central TP were expanding, while the lakes in the source regions of the Yellow
River were shrinking. For lakes in the central TP, Wan et al. [270] analyzed Landsat TM/ETM+ and
CBERS images, and found that lakes southeast of the Qiangtang area were expanding from 1975 to
2005. Another study [271] analyzed Landsat images from 1970 to 2010 and found a shrinking lake
trend in the southwest TP contrasting with rapid lake expansion in the northeast TP. Yang et al. [272]
investigated lake extent fluctuations in the Hindu Kush–Himalaya–Tibetan (HKHT) regions over
the past 40 years using Landsat images obtained from the 1970s to 2014. They showed that the TP
lake trends are distinct from region to region, with the most intensive lake shrinking observed in
northeastern HKHT (HKHT Interior, Tarim, Yellow, Yangtze), while the most extensive expansion was
observed in the western and southwestern HKHT (Amu Darya, Ganges Indus, and Brahmaputra),
largely caused by the proliferation of small lakes in high-altitude regions from the 1970s to 1995.

Lake water levels measured from LIDAR/Radar altimetry can also be used to quantify lake changes.
Based on 10-year TOPEX/Poseidon altimetry data, the water level of La’nga lake in the western TP was
found to decrease steadily from 1993 to 2001, while that of Ngangzi lake in the eastern TP decreased
from 1993 to 1997 and then increased monotonically afterwards [273]. Another study [274] used
ICESat altimetry data to analyze water level changes from 2003–2009 for 74 TP lakes and identified
an increasing lake level trend (~0.23 m yr−1) over 84% of the lakes represented. Consistent with
the findings of [275], an average water level increase of 0.20 m yr−1 was detected from GLAS data
over 154 TP lakes for the same period [276]. By integrating multi-altimeter data from Envisat/RA-2,
Cryosat-2/Siral, Jason-1/Poseidon-2, and Jason-2/Poseidon-3, Gao et al. [277] found that water levels
increased by about 0.275 m yr−1 for over 82% of 51 TP lakes sampled, while major lake expansion and
shrinking were identified over the northern and southern TP, respectively.

A general greening trend from the 1980s to 2010s was detected from satellite remote sensing
over the TP [278]. Seasonal analysis based on GIMMS (Global Inventory Monitoring and Modeling
System) NDVI data further revealed that the largest NDVI increase occurred in autumn over 61%
of the TP, while the smallest increase occurred in spring over 41% of the region [279]. Vegetation
changes in the northeast, southwest, mid-eastern, and southern TP regions were driven by three
different factors, including changes in surface air temperature, water availability, and solar radiation,
respectively. Anthropogenic disturbances may offset climate-driven vegetation greening and exacerbate
vegetation browning, while ecosystem conservation efforts contributed to vegetation recovery in the
TP Three-River Headwaters Region [280].

Based on the NDVI data from 1982 to 2014, an advancing start of growing season, delayed end of
season and increasing length of growing season were identified for meadow areas in the eastern TP;
while the opposite changes were found for the steppe and sparse herbaceous or sparse shrub areas in
the northwest and western edges of the TP. The satellite-observed phenology changes were driven
by a number of environmental factors including temperature [281–283], precipitation [284], sunshine
duration [285], and snow cover [286]; and may be partially attributed to aerosol contamination in the
satellite observations [287].
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4. Challenges and Opportunities

4.1. Limitations of Current Approaches

Despite great achievements in cold land remote sensing, comprehensive assessment of both
long-term trends and relatively abrupt environmental changes requires quantifying hydrological and
ecological variables with greater precision, including clearer delineation of different land components,
better accuracy, data consistency, spatial resolution, and temporal sampling.

Ice—The spatial resolution of satellite gravimetry observations of glaciers and ice sheets are
generally very coarse (around 100 km), which limits their ability to precisely detect and locate
glacier mass change at finer scales. LIDAR-based measurements of glacier elevations are of high
accuracy (decimeter level) but with relatively poor spatial coverage, which consequently requires data
interpolation and extrapolation for applications over large areas. For monitoring glacier movement,
feature tracking fails when low coherence occurs in fast moving glaciers or over prolonged time
intervals between observations.

Snow—Snow covered area is mainly derived using optical sensors onboard polar-orbiting or
geostationary satellites. However, it is still challenging to distinguish between clouds and snow
in satellite optical snow mapping. Long-term (>40-year) SWE data records have been generated
for the globe through satellite passive microwave sensors, but the retrieval spatial resolution and
accuracy has generally not met the requirements for regional climate, numerical weather prediction,
and hydrological research. The retrieval uncertainties mainly come from four sources, including mixed
pixel effects, terrain effects, large diversity in snow physical properties, and low microwave sensitivity
to shallow snow.

Landscape Freeze/Thaw States—Most of the available global FT products represent aggregate
landscape FT conditions that do not distinguish land components of the FT signal within a satellite
footprint at several-10s km. Accurate estimates of FT metrics (e.g., spring thaw timing, frost days)
pertaining to soil, snow, and vegetation components isolated from the integrated microwave FT
signals with improved spatial resolution are required for better understanding of land and atmosphere
interactions, including carbon, water, and energy exchanges. It is also needed to understand the scaling
effects for heterogeneous terrain to bridge multi-resolution satellite observations [38].

Water Bodies—It is challenging to detect water within mixed pixels or under overlying vegetation
for both optical-IR and microwave sensors. In addition, near real-time and fine-scale mapping of
regional SW dynamics are urgently needed for monitoring flood hazards and arctic wetting and
drying trends.

Vegetation—The short growing season and generally low vegetation productivity of Arctic–boreal
regions can create challenges in terms of detecting changes in vegetation growth through use of
remote sensing time series data. Other challenges in Arctic–boreal regions include saturated satellite
signals over high-biomass vegetation, high occurrence of shallow water bodies, the presence of
snow and ice cover, and spatially heterogenous snowmelt resulting in pixels mixed with snow and
vegetation. Additionally, long-term and fine-scale delineation (1–200 m) of vegetation (e.g., shrub)
patch distributions is lacking, but greatly needed in high-latitude ecosystem studies [288].

4.2. Opportunities

Progress in remote sensing and information technologies such as the Advanced Topographic
Laser Altimeter System (ATLAS) on-board ICESat-2 [289,290]; near-nadir SAR [291,292]; C-, L- and
P-band SAR [293–295]; small satellites [181,296]; and cloud computation and artificial intelligence [297]
will likely provide opportunities to overcome current challenges.

It is anticipated that SAR will play a greater role in cold land studies. The European Space
Agency’s Sentinel-1A/B satellites and the Canadian Space Agency’s RADARSAT Constellation Mission
(RCM) launched on 12 June 2019 [293] can provide multi-resolution (1–3 m to 100-m) C-band SAR and
InSAR measurements every 1–6 days globally and at low cost for monitoring glacier movement, river
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ice conditions, water body dynamics, snow, and vegetation parameters [298]. The next generation
NISAR (National Aeronautics and Space Administration - Indian Space Research Organisation SAR)
mission is expected to improve capabilities for dynamic mapping of global surface water at resolutions
from 3–10 m [294] and provide new opportunities to derive SWE in complex terrain from single-
and repeat-pass radar (L-band) interferometry [16]. The surface water ocean topography (SWOT)
mission has a projected launch in 2021 and will enable estimation of the changing volumes of global
water bodies whose surface area exceeds 250 m by 250 m at sub-monthly time scales [178,291]. The
upcoming BIOMASS mission (launch 2021) offers opportunities for mapping vegetation biomass with
enhanced P-band penetration capability [299], though National restrictions on P-band transmissions
will eliminate BIOMASS coverage over North America [300]. Another future direction for analyzing
environmental changes in remote areas under harsh climatic conditions could also involve relatively
low-cost multi-temporal remote sensing surveys. Unmanned aerial vehicle (UAV)-based remote
sensing (e.g., thermal imaging, structure from motion photogrammetric techniques), given relatively
low application barriers (e.g., low cost for repeat seasonal or yearly surveys), is expected to become
a strategic tool for better monitoring and understanding of the geomorphologic dynamics of cold
regions, and related impacts on ecosystems and infrastructures.

Improved retrieval algorithms will better leverage the remote sensing observations. For example,
entropy-based multi-scale image matching and optical flow techniques potentially help overcome the
limitations of conventional image matching approaches for monitoring fast moving glaciers [301,302].
Backward reconstruction techniques using a temperature-index or energy-balance model provide
another promising tool to estimate SWE through the melt season in mountainous regions and
elsewhere [303,304]. There is also great potential for improving snow depth and SWE retrievals using
LIDAR measurements [305,306], microwave interferometry [147,307], and GNSS techniques [308],
which largely avoid issues related to snow microstructure. Considering the complementarity of LIDAR,
optical-IR, and microwave remote sensing, the use of data integration techniques such as deep-learning
approaches [208] from a collection of multi-sensor observations may enable enhanced delineations of
snow, water, soil, and vegetation elements, and accurate mapping of environmental variables at high
spatial–temporal resolutions.

5. Conclusions

The rapid environmental changes in cold land regions have profound impacts on ecosystems,
geomorphology, animal habitats, and human lives. Remote sensing is the most valuable and
indispensable technique for large-scale monitoring of such changes, accurately quantifying both
transient anomalies and longer-term trends, while providing observational benchmarks to test earth
system model projections. Calibrated long-term observations from these sensors have produced
relatively precise satellite data records documenting significant changes in landscape FT states,
snow extent and depth, glacier mass and movement, water body dynamics, and lake ice [309] and
vegetation phenology. Earlier onset of snow melt [310], soil thaw, and lake ice break-up, longer
potential growing seasons, and expanding lakes were identified in both the northern high latitudes
and TP; and continuous ice loss has been observed in both Greenland and Antarctica. Despite these
achievements, pressing issues such as melting permafrost, disappearing glaciers, shrinking ice cover,
and structural and functional changes in ecosystems require more timely and accurate interpretations
from remote sensing observations. Multi-sensor data fusion approaches show promise in overcoming
the drawbacks of single sensor observations, while strengthening capabilities for monitoring and
detecting environmental changes in cold regions. Next generation satellite missions including SWOT,
NISAR, and BIOMASS; emerging techniques such as micro-satellites and data mining; and coordinated
research activities [311–313] will enable cold land mapping with unprecedented sampling frequency,
spatial resolution, and accuracy.
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Acronym list

AGB Aboveground biomass
APAR Absorbed PAR
AMSR2 Advanced Microwave Scanning Radiometer 2

AMSR-E
Advanced Microwave Scanning Radiometer for Earth
Observing System

ASAR Advanced SAR
ATLAS Advanced Topographic Laser Altimeter System
AVHRR Advanced very-high-resolution radiometer
AMSR-E/2 AMSR-E and AMSR2
Tb Brightness temperature
China–Brazil Earth Resources Satellite CBERS-1
DEM Digital Elevation Model
DInSAR Differential Interferometric Synthetic Aperture Radar
DMSP Defense Meteorological Satellite Program
ERS European remote sensing satellite
ETM Enhanced Thematic Mapper
EVI Enhanced Vegetation Index
FT Freeze–thaw
FY Feng Yun
GLAS Geoscience Laser Altimeter System
GIMMS Global Inventory Monitoring and Modeling System
GCOS Global Climate Observing System
GNSS Global Navigation Satellite System
GOES Geostationary Operational Environmental Satellite
GRACE Gravity Recovery and Climate Experiment
GBL Great Bear Lake
GSL Great Slave Lake
GPP Gross Primary Productivity
ICESat Ice, Cloud, and land Elevation Satellite
IMS Interactive Multisensor Snow and Ice Mapping System
InSAR Interferometric Synthetic Aperture Radar
ISRO Indian Space Research Organisation
HKHT Kush-Himalaya-Tibetan
LST Land Surface Temperature
LAI Leaf Area Index
LIDAR Light Detection and Ranging
LUE Light Use Efficiency
MBE Mean Bias Error
MSG Meteosat Second Generation
MWRI Microwave Radiation Imager
MODIS Moderate Resolution Imaging Spectroradiometer
MTSAT Multifunctional Transport Satellites
NASA National Aeronautics and Space Administration
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NISAR NASA-ISRO Synthetic Aperture Radar
NOAA National Oceanic and Atmospheric Administration
NDSI Normalized Difference Snow Index
NDVI Normalized Difference Vegetation Index
NDFSI Normalized Difference Forest Snow Index
Optical-IR Optical and Infrared
OLI Operational Land Imager
PSI Persistent Scattered Interferometry
PALSAR Phased Array type L-band Synthetic Aperture Radar
PAR Photosynthetically active radiation
RMSE Root Mean Square Error
SIRAL SAR Interferometer Radar Altimeter
SMMR Scanning Multichannel Microwave Radiometer
SWE Snow water equivalent
SMAP Soil Moisture Active Passive
SMOS Soil Moisture and Ocean Salinity
SIF Solar Induced Fluorescence
SSM/I Special Sensor Microwave/Imager
SSMIS Special Sensor Microwave Imager Sounder
SW Surface water
SWOT Surface Water Ocean Topography
SAR Synthetic Aperture Radar
fPAR The fraction of absorbed PAR
TM Thematic Mapper
TP Tibetan Plateau
TPSCE Tibetan Plateau Snow Cover Extent record
UAV Unmanned aerial vehicle
USGS United States Geological Survey
VOD Vegetation Optical Depth
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