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Abstract: The classification of synthetic aperture radar (SAR) images is of great importance for rapid
scene understanding. Recently, convolutional neural networks (CNNs) have been applied to the
classification of single-polarized SAR images. However, it is still difficult due to the random and
complex spatial patterns lying in SAR images, especially in the case of finite training data. In this
paper, a pattern statistics network (PSNet) is proposed to address this problem. PSNet borrows
the idea from the statistics and probability theory and explicitly embeds the random nature of SAR
images in the representation learning. In the PSNet, both fluctuation and pattern representations
are extracted for SAR images. More specifically, the fluctuation representation does not consider the
rigorous relationships between local pixels and only describes the average fluctuation of local pixels.
By contrast, the pattern representation is devoted to hierarchically capturing the interactions between
local pixels, namely, the spatial patterns of SAR images. The proposed PSNet is evaluated on three
real SAR data, including spaceborne and airborne data. The experimental results indicate that the
fluctuation representation is useful and PSNet achieves superior performance in comparison with
related CNN-based and texture-based methods.

Keywords: convolutional neural networks (CNNs); image classification; image statistics;
representation learning; synthetic aperture radar (SAR)

1. Introduction

Synthetic aperture radar (SAR) has been used in a wide range of remote sensing applications
for many years because it provides many unique advantages, such as day-and-night acquisition,
certain penetrability, and polarimetric capability [1,2]. With the development of SAR sensors, e.g.,
TerraSAR-X [3], RADARSAT-2 [4], Sentinel-1 [5], and Gaofen-3 [6], large amounts of SAR images have
become available and the automatic interpretation of such massive data has been an active research
topic. This paper deals with the classification of single-polarized SAR image, which is one of the
fundamental problems in the automatic interpretation task [7–10]. In recent years, the classification
techniques based on convolutional neural networks (CNNs) [11] have drawn a lot of attention in the
remote sensing community. Significant efforts have been made to shift to this paradigm [12,13].

1.1. Motivation and Objective

The CNN-based classification methods mainly depend on the representation learning by which
data representations are automatically extracted to make it easier to perform the classification
task [14,15]. However, it still remains a challenge in representation learning to identify the random and
ever-changing patterns lying in SAR data, especially in the case of finite training data. The convolution
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in CNNs is basically a type of inner product in the Euclidean space [16], and it is equivalent to the
matched filtering [17]. For example, the response (or feature) of the convolutional transformation to an
image reflects the underlying spatial patterns of this image. For the SAR images, the above matched
filtering becomes difficult because the spatial patterns are random and ever-changing, as shown in
Figure 1. In this context, to cover the varying spatial patterns, the degrees of freedom of CNNs need to
be increased, which in turn requires a large amount of training data. However, the lack of training
data in SAR remote sensing is a common problem. In fact, the backscattered echoes in SAR are always
varying because of the coherent imaging mechanism [18], and therefore collecting enough training
samples may be intractable.

Figure 1. High intra-class diversity of SAR images. These six images come from a high-density
residential area. Although they share the same class, i.e., the high-density residential area, they present
random and ever-changing spatial patterns.

The effective representation should capture the underlying explanatory factors of the observed
data for a specific task [15,19]. It is widely believed that the specific domain knowledge of the data
plays an important role in helping to design effective data representation [15,20]. For the SAR image,
its chaotic and unordered appearance indicates that it is a type of statistical signal. Therefore, its
statistics are potentially useful for data representation [21,22]. For example, most of the traditional
methods are based on the statistical analysis, and the first- and second-order statistics of SAR image
have been widely used for data representation [23,24]. For example, the mean and standard deviation
of SAR image do not consider the rigorous relationships between local pixels, and they can be regarded
as the fluctuation representations of SAR image. Since the average operation is used to calculate the
order statistics, the high variability of SAR image is significantly weakened. Figure 2 illustrates such a
scatter plot. It can be observed that the high intra-class variations of SAR images become non-salient.
Therefore, the objective of this paper lies in: embedding the statistical properties of SAR images in the
representation learning to make it easier to perform the classification task.
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Figure 2. SAR image representation with the mean and standard deviation. Here, the slope of the
straight line is associated with the estimated coefficient of variation (see Equation (6)), which measures
the local development of speckle patterns. The red points, corresponding to images in Figure 1, closely
locate around the straight line. The high intra-class variations become non-salient.
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1.2. Contribution

This paper explicitly makes use of the statistical nature of the SAR image in the representation
learning. The proposed pattern statistics network (PSNet) has two sub-nets, including a discriminative
net (DiscNet) and a pattern net (PatterNet). In the PSNet, both fluctuation and pattern representations
are learned to describe an SAR image:

• The fluctuation representation is derived from SAR image statistics, including the mean and
standard deviation. These image statistics are adaptively mapped into a high-dimensional space
by the DiscNet to fit discriminative fluctuation representation. The fluctuation representation
does not consider the rigorous relationships between local pixels, and only describes the average
fluctuation of local pixels.

• In contrast to the fluctuation representation, the pattern representation, which are automatically
extracted by the PatterNet, devotes to hierarchically capturing the relationships between local
pixels, namely, the spatial patterns lying in SAR images.

The contributions of the fluctuation representation and pattern representation to the final
representation of SAR image are learned by minimizing the classification error.

The proposed PSNet is distinguished from other CNN-based methods in that it explicitly
integrates the statistical mechanism of SAR image into the representation learning. The representation
extracted by the PSNet not only describes the relationships between local pixels, but also captures the
average fluctuations of local pixels from a global view.

This paper is organized as follows. In Section 2, the related works are briefly reviewed. Section 3
presents the proposed PSNet in detail. In Section 4, the experimental results are provided and analyzed.
Finally, the discussion and conclusion are presented in Sections 5 and 6, respectively.

2. Related Work

A wide variety of methods for SAR image representation have been proposed. These methods
can be divided into three categories: statistical models, textural analysis, and deep neural networks.
This section briefly reviews the related works from which this paper draws inspiration.

2.1. Statistical Model

The chaotic and unordered appearance of speckle patterns bears no obvious relationships to
the properties of illuminated objects, and most of the traditional works are based on the statistical
analysis. In this line of work, the primary goal is to model the joint distribution of the texture and
speckle random variables in the so-called multiplicative model [24]. In the case of fully developed
speckle pattern, Gaussian assumption is valid [25]. That is, the real and imaginary parts of the
backscattered signal are independent and identically distributed Gaussian variables [21]. Therefore, the
exponential distribution and the gamma distribution can be respectively derived from this assumption
for single-look and L-look intensity SAR images [21,26]. As the resolution increases, more details of
the illuminated objects can be resolved, but the Gaussian assumption does not hold anymore [27]. In
this case, the speckle patterns are partially developed, and therefore the statistical models should account
for the texture variable. Many statistical models have been proposed for the high-resolution SAR
images, such as Weibull, Log-Normal, and K distribution [28,29]. These statistical distributions have
shown success in modelling high-resolution SAR images. However, they are not flexible enough
to fit different types of non-Gaussian SAR images, since these models have limited degrees of
freedom. Therefore, to further increase the flexibility of the statistical models, researchers have
proposed the compound and mixture probability models, such as generalized compound probability
model [30], Fisher distribution [7], Gamma mixture model [31], and generalized Gamma mixture
model (GΓMM) [32]. The basic idea behind the statistical model is to capture the statistical properties of
SAR image. This idea inspires the proposed PSNet which explicitly considers the statistical properties
of SAR image in the representation learning.
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2.2. Texture Analysis

Texture is probably the most important feature used for describing the spatial variations of SAR
images. A considerable amount of research has been dedicated to texture analysis, which can be
roughly categorized into statistical, geometrical, model-based, and signal processing methods [33]. The
statistical methods take the random variation of texture into account and extract a set of textural features
based on the assumption that the textural information of SAR images exists in an “average” way. For
example, textural features extracted by the statistical methods have been suggested for SAR image
analysis in [23], and these features have been demonstrated to be effective in the classification task.
However, the multiplicative property of speckle was not considered for the texture modelling in [23].
Ulaby et al. subsequently proposed a multiplicative model from which the second-order statistics of
texture were derived [24], and textural features based on the second-order grey-level co-occurrence
matrix (GLCM) [34] were applied to the classification of SAR images. In 2010, Esch et al. [35] used
the concept of heterogeneity to describe the local development of speckle patterns. With this concept,
the deviations of partially developed speckle patters from the fully developed speckle are measured
with a series of thresholds, and these deviations are used for SAR image segmentation. This idea was
further extended in [8] where the coefficient of variations of texture was estimated and its statistical
characteristics were applied to SAR image classification. The geometrical methods borrow the idea
from human visual perception and regard the texture as a superposition of a set of primitives, or the
so-called textons [36]. The spatial layouts of these primitives are governed by the unordered and ordered
rules, such as bag-of-features (BoF) [37] and spatial pyramid matching (SPM) [38]. The model-based
methods believe that the texture is a realization of a generative model. Generally, the connections
between local pixels are modeled by the Markovian framework [39,40], such as Hidden Markov
Random Fields (HMRF) [41], Gaussian Markov Random Fields (GMRF) [42], and Lognormal Random
Fields [43]. The signal processing methods analyze the texture from the perspective of frequency
components [44]. The textural features are extracted with a bank of filters and multi-scale processing is
generally used, e.g., Gabor filtering and Wavelet transforms [45–47]. The aforementioned methods use
hand-crafted features to describe the texture information. By contrast, the presented PSNet integrates
SAR image statistics into the representation learning and describes the texture with the learned features.

2.3. Deep Neural Networks

Deep neural networks automatically discover representations for SAR image with multiple
processing layers. They generally fall into two categories: the deep generative and the deep
discriminative networks [48,49]. The deep generative networks, such as deep Boltzmann machines
(DBM) [50] and deep belief networks (DBN) [51], are devoted to learning and approximating the true
distribution of SAR images [33] with hierarchical architectures. Liu et al. proposed Wishart–Bernoulli
DBN (WDBN) for Polarimetric SAR imagery classification, where the conditional probabilities between
the visible and hidden units were modeled by the Wishart and Bernoulli distributions [52]. In [53],
the DBM model was used for SAR image classification, and it achieved higher classification accuracy
than traditional methods on RADARSAT-2 data. Gao et al. combined DBN with the ensemble
learning to extract discriminant features for SAR images, and they obtained promising classification
performance [54]. In particular, the latest proposed generative adversarial networks (GAN) [55] have
shown success in data generation, which is expected to be extended to SAR image interpretation. For
the deep discriminative networks, they exploit the hierarchical architectures to directly predict the
classification probability. A variety of deep discriminative networks have been proposed, such as
standard CNNs [11], deep residual network (ResNet) [56], densely connected convolutional network
(DenseNet) [57], and spatial pyramid pooling deep convolutional network (SPPNet) [58]. Several
deep discriminative networks have been applied to SAR image classification. A deep supervised
and contractive neural network (DSCNN) was presented to extract primitive features for SAR image
classification [59,60]. Standard CNNs and complex-valued CNNs were proposed for PolSAR imagery
classification, where both polarimetric and spatial features of PolSAR data were exploited [61,62].
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Deep memory convolution neural network (M-Net) resorts to the information recorder to alleviate the
overfitting problem in SAR image classification [63]. The above methods rely on the representation
learning to extract features for SAR images, while the proposed PSNet integrates the inherent statistical
mechanism of SAR data into the representation learning. The representations extracted by the PSNet
not only capture the spatial patterns lying in SAR image, but also describe the statistical properties of
SAR images.

3. Methodology

Figure 3 illustrates the framework of PSNet by which both the fluctuation and pattern
representations of the input can be jointly learned. The fluctuation representation, deriving from
the input statistics, does not consider the interactions between local pixels and only describes the
average fluctuation of the input. By contrast, the pattern representation hierarchically captures the
relationships between local pixels, namely, the spatial pattern lying in the input.

Spatial Pattern 
Extraction

Joint
 Optimization

Input Image Statistics Extraction Adaptively Scale & Shift

Multilayer Pattern Representation

Fluctuation Representation

Classification

Backpropagation 

Backpropagation 

Error

Figure 3. Framework of the proposed PSNet. The representation learned by the PSNet not only
describes the average fluctuation of the input, but also captures the spatial pattern of the input.

In the following subsections, firstly, the statistical behavior of SAR image is briefly reviewed and
the fluctuation representation of SAR image is explained. Secondly, the proposed PSNet is described
in detail. Finally, the optimization of PSNet is presented.

3.1. Statistical Behavior of SAR Images

SAR images are characterized by its unordered and granular appearance known as speckle, which
is generally described by the following multiplicative model [24]:

I = Ī · τs, (1)

where I denotes the intensity of the SAR image, Ī is the mean of I, τ and s respectively represent
the texture and speckle random variables. Note that the texture variable describes the intrinsic spatial
variations of illuminated object. In this context, I is basically a random variable and its statistical
behaviors are governed by the interplays of texture and speckle variables. To describe the random
behaviors of SAR image, the statistical models are commonly used. For example, in the case of fully
developed speckle [21], the texture variable τ in Equation (1) is equal to 1, and the intensity I can be
decomposed as:

I = Ī · s
2L

, (2)

where L denotes the number of looks, and s follows a chi-squared distribution with 2L degrees of
freedom. The probability density function (PDF) of s is [24]

f (s; 2L) =
sL−1e−

s
2

Γ(L)2L , (3)
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where Γ(L) = (L− 1)! is the Gamma function. According to the product model in Equation (2), the
Gamma distribution can be derived for the intensity I, and its PDF is [24]

f (I; L, β) =
IL−1e−

I
β

Γ(L)βL , (4)

where β is defined as:

β =
Ī
L

. (5)

With the increase of spatial resolution, the texture feature becomes more salient, leading to the
partially developed speckle patterns. In this case, the statistical distribution of speckle patterns becomes
more complex, and therefore the coefficient of variation CI is commonly used to describe the local
development of speckle patterns. CI is defined by

CI =
σI
µI

, (6)

where σI and µI denote the standard deviation and mean of I, respectively. Note that Equation (6) is
also defined as the contrast of speckle patterns by Goodman [21]. In this context, for the textureless
and single-look intensity I, CI is always unity, since I is negative exponential distributed where its
mean is precisely equal to its standard deviation [21]. As for the textured I, according to Equation (1),
CI can be reformulated as [24]:

CI =
√

C2
τC2

s + C2
τ + C2

s , (7)

where Cτ = στ/µτ and Cs = σs/µs represent the coefficients of variation of the true texture and fully
developed speckle, respectively.

The component Cτ in Equation (7) makes the textured speckle patterns deviate from the fully
developed speckle, and this deviation is information bearing [8,35]. To extract this information, one
straightforward strategy is to measure the difference between CI and Cs, namely, CI − Cs. The other
strategy is to calculate Cτ by

Cτ =

√
C2

I − C2
s

1 + C2
s

. (8)

Theoretically, Cs is equal to 1/
√

L, since the random variable s follows a normalized chi-squared
distribution with 2L degrees of freedom [24], namely, E{s} = 1 and Var{s} = 1/L. In most
practical cases, however, the actual Cs needs to be estimated because the image at hand may undergo
non-independent multilooking and postprocessing. This problem is equivalent to estimating the
effective number of looks (ENL) [64]. ENL describes the degree of independent averaging resulted
from the multilooking and postprocessing.

This paper bypasses the above estimation problem and lets σI and µI as the fluctuation
representation for SAR image. In this context, the feature type is selected according to the
specific domain knowledge about SAR data. When an SAR image is described by this fluctuation
representation, the classification of this image can be performed straightforwardly based on this
representation. However, the discrimination of this representation is often unsatisfactory. Figure 4
illustrates such an example. In Figure 4, the contrast of fully developed speckle is equal to 1/

√
L,

since the intensity of fully developed speckle follows a Gamma distribution with unit mean and 1/L
variance. It can be observed that there are apparent inter-class confusions. In this paper, the mean
and standard deviation of SAR images are used as primitives, and they are adaptively mapped into a
high-dimensional feature space to fit more discriminative fluctuation representations by leveraging
the power of neural networks.
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Figure 4. The discriminative capability of the mean and standard deviation. Five classes of TerraSAR-X
images are represented by the mean and standard deviation which are estimated according to
Equation (9). Although distinctive cluster centers are formed by River, Pool, and Vegetation, there
are still apparent confusions between the high-density (HD) area and the low-density (LD) area.

3.2. Speckle Patterns Statistics Network

PSNet is composed of two sub-nets, including the discriminative net (DiscNet) and the pattern
net (PatterNet), as shown in Figure 5. More specifically, in the DiscNet, the mean and standard
deviation of the input are first extracted, and then they are adaptively mapped into a high-dimensional
feature space to obtain the fluctuation representation for the input. In the PatterNet, the pattern
representation of the input is extracted with hierarchical architecture. The contributions of the
fluctuation representation and pattern representation to the final input representation are learned by
minimizing the classification error.
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Figure 5. Architecture of the PSNet. PSNet consists of two sub-nets, including the DiscNet and the
PatterNet, in which both fluctuation and pattern representations of SAR image are learned for the
classification task. Max pooling is used in the PatterNet.

3.2.1. DiscNet

The fluctuation representation is learned by DiscNet to describe the average fluctuation of SAR
image. In the DiscNet, the mean and the standard deviation of the input are first extracted. Given an
image x, the mean µx and the standard deviation σx are given byµx = 1

n ∑n
i=1 xi

σx =
√

1
n−1 ∑n

i=1 (xi − µx)
2,

(9)

where xi denotes the ith pixel value, and n is the number of pixels. In order to extract σx with existing
deep learning framework such as Caffe and Tensorflow [65,66], σx is re-expressed as

σx =

√√√√ n
n− 1

(
1
n

n

∑
i=1

x2
i

)
− n

n− 1

(
1
n

n

∑
i=1

xi

)2

. (10)
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The extracted µx and σx are then automatically scaled and shifted by DiscNet to map them into
a high-dimensional space V ∈ RD, resulting in the feature vectors zµ ∈ V and zσ ∈ V . Taking zµ for
example, it can be mathematically expressed as

zµ = wµµx + bµ, (11)

where wµ = [w1, w2, . . . , wD]
T and bµ = [b1, b2, . . . , bD]

T represent the scaling and shifting vectors,
respectively. Finally, the interplays of zµ and zσ are optimized with respect to the classification error to
form the fluctuation representation zfl ∈ RM as follows:

zfl = ReLU

(
W

[
zµ

zσ

]
+ b

)
, (12)

where ReLU(·) denotes the rectified linear unit activation function [67], W ∈ RM×2D and b ∈ RM

are the weight matrix and bias vector, respectively. Here, it is required that M ≥ 2D to ensure the
fluctuation representation zfl lies in a feature space with high dimensionality. This implementation is
equivalent to the convolutional transformation with 1× 1 kernel size and M output channels. The
intuition behind this implementation can be interpreted as: increasing the dimensionality of feature
space with the expectation to improve the discrimination of the fluctuation representation.

3.2.2. PatterNet

The pattern representation is extracted by PatterNet to hierarchically capture the spatial patterns
lying in the input. PatterNet is a multi-layer model, including convolution, Pooling, ReLU and SPP
layers [67]. The convolution layer performs spatial filtering to extract the texture feature, and this
spatial filtering can be expressed as a matrix-vector multiplication [68]. Concretely, let zl−1 and Wl be
the input and convolution matrix of the lth convolution layer, the spatial filtering can be expressed as
Wlzl−1. Note that Wl has a sparse structure because of the weight sharing strategy [68], as illustrated
in Figure 6. Subsequently, a series of transformations are performed, such as ReLU and Pooling. These
transformations can be uniformly given by

zl = H (Wlzl−1 + bl) , (13)

where zl is the output of the lth layer, and H(·) is a composite function, such as ReLU or Pooling [67].
With this multi-layer model, the pattern representation zpa ∈ RM is extracted by PatterNet for the input.

Filter Bank

Stride

Figure 6. Convolution matrix with sparse structure. Here, the columns of the filter bank correspond to
the filters used for spatial filtering, e.g., three filters in this example, and the stride is associated with
the displacement in the convolution process. See more details in [68].
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3.2.3. Optimization

The contributions of the fluctuation and pattern representations, zfl and zpa, to the final input
representation are learned by minimizing the classification error. The final representation z is
expressed as

z = ReLU
(
Wflzfl + Wpazpa

)
, (14)

where Wfl and Wpa denote the weight matrices. The representation z is fed into a softmax layer [67]
for classification.

PSNet is an end-to-end learning model where the data representation and the classifier are learned
together. More specifically, given a training set D = {(xk, yk)}N

k=1, where yk ∈ {1, 2, . . . , C} denote the
label of training sample xk and N is the number of training samples, the learning procedure of PSNet
can be mathematically formulated as the following optimization problem:

min
{Wl ,bl}L

l=1

1
N

N

∑
k=1
L
(

yk, ŷk

(
xk, {Wl , bl}L

l=1

))
, (15)

where ŷk denotes the predicted label of xk, Wl and bl are the parameters to be learned in the lth layer
of PSNet, and L (·) represents a loss function. In this paper, the cross-entropy [67] is used as the loss
function measuring the divergence between two distributions, which is given by

L = 〈yk,−lnak〉, (16)

where 〈·〉 and ln(·) denote the inner product [16] and the natural logarithm, respectively; yk is the label
vector of the true label yk, generated by the One-Hot Encoding; ak represents the output of softmax
layer [67]. Here, the jth output of softmax layer, aj

k, is defined by

aj
k =

ezj

∑M
m=1 ezm

, (17)

where zj is the jth input of softmax layer and M is the number of input.
The above optimization problem can be effectively solved by the Stochastic Gradient Descent

(SGD) algorithm [67]. In this paper, the gradients of loss function L with respect to the parameters
are estimated by every mini-batch of the training samples. Thus, the parameter θl in the lth layer is
updated according to the following strategy:

θl
i+1 = θl

i − η · ∇θl

(
1
K

K

∑
k=1
〈yk,−lnak〉

)
, (18)

where ∇θl (·) represents the gradient of loss function with respect to the parameter θl , and K is the
number of training samples in a mini-batch, and η is the learning rate. The gradient∇θl (·) is calculated
by the Back Propagation algorithm [67]. It should be noted that L2 regularization [69] is used to avoid
the overfitting problem during the training procedure.

4. Experiments

This section evaluates the performance of PSNet on real SAR data. The dataset and the
experimental setting are given in Sections 4.1 and 4.2, respectively. The experimental results are
analyzed in Section 4.3.

4.1. Data Sets

Guangdong data: This data was acquired by the TerraSAR-X with StripMap model over an urban
area of Guangdong province, China, in 2008. Figure 7 shows these data, which is a level 1B product
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with spatial enhanced and multi-looking ground range detected. These data were radiometrically
calibrated and geometrically corrected with SNAP, a toolbox provided by the European Space Agency.
The size of this data is 4656 × 7518 with 1.25 m pixel spacing both in the range and azimuth, and the
looks in azimuth and range are 1.033 and 1.334, respectively. The ground truth image was generated
by manual annotation according to the associated optical image which can be found in the Google
Earth by the information (including longitude, latitude and acquisition date) provided in the metadata
file. These data are mainly composed of five classes, including Vegetation, High-Density Residential
Areas, Low-density Residential Areas, River, and Pool.
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Figure 7. Overview of the Guangdong data. The unidentifiable class is shown in black in the ground
truth image.

Orchard data: This data, displayed in Figure 8, was provided by the China Electronics Technology
Group Corporation (CETC) 38th Institute [70]. It was acquired by the airborne sensor with X-band in
Hainan province, China, in 2010. These data are a level 2 product, and the radiometric calibration and
terrain correction were done by the provider. The size of these data is 2200 × 2400 with 0.5 × 0.5 m
spatial resolution and four looks. The ground truth image, the left one in Figure 8, was generated by
manual annotation according to our practical survey. This data consists of seven classes, including
Mango1, Mango2, Mango3, Betel Nut, Longan, Forest, and Building. The unidentifiable target is shown in
white in the ground truth image.
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Figure 8. Overview of the Orchard data. The unidentifiable class is shown in white in a ground
truth image.

Rice data: It comes from an airborne sensor with an X-band over a cultivated area of Hainan in
China in 2010. These data are a level 2 product, and it has 2048 × 2048 pixels with 0.5 × 0.5 m spatial
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resolution and four looks. Figure 9 shows these data; they are composed of seven categories where
Rice1 to Rice6 represent the rice at different growth stages.
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Figure 9. Overview of the Rice data. The unidentifiable class is shown in white in the ground
truth image.

The training, validation and test sets are obtained as follows. Firstly, sub-images are randomly
sampled from the original image according to the associated ground truth. Both non-overlapping
and overlapping schemes are used to sample the sub-image. More specifically, for the Guangdong
dataset, non-overlapping samples are drawn from the vegetation and river, while sub-images with an
overlap of 14 pixels are sampled from other categories. As for the Orchard dataset and Rice dataset, an
overlapping scheme (14 pixels) is used. Secondly, these sampled sub-images are shuffled and then
m images per class, e.g., m = 200 for the Orchard dataset, are randomly selected from these shuffled
sub-images. Finally, these selected images are randomly divided into the training, validation and
test sets which account for 60%, 15% and 25% of the total selected sub-images, respectively. Table 1
displays the details of Guangdong, Orchard and Rice datasets.

Table 1. Details of the Guangdong, Orchard and Rice datasets.

Dataset #Class #Samples per Class Patch Size

Guangdong 5 1000 64 × 64 pixels
Orchard 7 200 64 × 64 pixels

Rice 7 200 64 × 64 pixels

4.2. Experimental Settings

The CNN- and texture-based methods are considered for comparison, including standard CNN,
spatial pyramid pooling network (SPPNet), GLCM, Gabor filtering and local binary pattern (LBP) [71].
The experimental settings are given as follows.

CNN: The structure of standard CNN is presented in Table 2. It consists of four convolution
layers and two fully connected (FC) layers. This structure is used as the basic model in the experiment.
Note that ReLU and Pooling layers are included in each convolution layer.

Table 2. Structure of the standard CNN deployed in the experiments.

Conv1 Conv2 Conv3 Conv4 FC1 FC2

3 × 3 kernel 3 × 3 kernel 3 × 3 kernel 3 × 3 kernel
1 stride 1 stride 1 stride 1 stride
12 channels 32 channels 64 channels 128 channels 256 channels 7 channels
ReLU ReLU ReLU ReLU ReLU
2 × 2 pooling 2 × 2 pooling 2 × 2 pooling 2 × 2 pooling
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SPPNet: The architecture of SPPNet is similar to that of standard CNN except for the Pooling
layer in Conv4. This Pooling layer is replaced by the SPP layer which performs max pooling with one
level pyramid.

DiscNet: As displayed in Figure 5, both Conv1-1 and Conv2-1 have 64 output channels, and
Conv3-1 has 128 channels. The output of Conv3-1 is fed into FC2 for classification. DiscNet is used to
evaluate the effectiveness of the fluctuation representation.

PSNet: PSNet has two sub-nets: the DiscNet and the PatterNet, as shown in Figure 5. For the
PatterNet, it shares the similar convolutional layers with the ones in standard CNN except Conv3 and
Conv4. The Pooling layer in Conv3 is replaced by an SPP layer which performs max pooling with one
level pyramid. The Conv4 is a 1× 1 convolution layer and the followed Pooling layer is removed.
PSNet also has two FC layers and the settings remain consistent with that of standard CNN.

GLCM: Multiple GLCMs are created with two offsets, four orientations, (0◦, 45◦, 90◦, 135◦), and
eight gray levels. The features considered for image description include contrast, correlation, energy,
and inverse different moment.

Gabor: Gabor filters are implemented on four scales, (1, 3, 5, 7), and eight orientations,(
0, π

4 , π
2 , 3π

4 , π, 5π
4 , 3π

2 , 7π
4
)
. The ratio of the mean and the standard deviation of each sub-band is

used to describe the texture characteristics.
LBP: The input image is first divided into 4× 4 sub-patches, then the uniform LBP features are

extracted from these sub-patches. These LBP features are concatenated to form the feature vector for
the input image.

In the following experiments, the standard CNN, SPPNet, DiscNet, and PSNet are implemented
with the Caffe deep learning framework [65]. Table 3 presents the training parameters. Note that the
weight decay, namely, L2 regularization, is used to prevent the overfitting. The classification in the
GLCM, Gabor and LBP is performed by a nonlinear Support Vector Machine (SVM) [72]. The kernel
type used in the SVM is the radial basis function, where the cost is tuned on the validation set and the
gamma is set to default.

Table 3. Training parameters.

Parameter Value

base learning rate 0.01
learning rate policy “inv”
gamma 0.05
power 0.75
momentum 0.90
weight decay 0.001
number of epochs 100

Evaluation metrics include the classification accuracy for each class, the average accuracy (AA),
the overall accuracy (OA), and the Kappa coefficient (κ). AA is calculated by dividing the sum of
accuracy of individual classes to the total number of classes. OA is the ratio of the number of correctly
classified pixels to the total number of pixels. κ measures the proportion of agreement after chance
agreements have been removed from considerations. It is defined as: κ = po−pe

1−Pe
, where po is the

accuracy of observed agreement, and pe is the estimate of chance agreement [73].

4.3. Results

4.3.1. Validation Accuracy

Figure 10 shows the average accuracy (AA) on the validation set with different numbers of
training samples. Here, the validation set remains unchanged, while the samples used for training
are randomly selected from the training set. The number of training samples, e.g., 10%, refers to the
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percentage of samples accounting for the total data in the dataset. The results in Figure 10 are obtained
by 10 Monte Carlo runs.
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Figure 10. Average accuracy achieved on the validation set at different number of training samples.
The proposed PSNet improves the average accuracy and it requires less training samples.

From Figure 10, it can be observed that PSNet provides the highest AA than other methods even
in the case of 10% training samples. This indicates that PSNet requires less training data. It is also
interesting to note that DiscNet achieves promising performance, e.g., the results in Figure 10a,c. These
results indicate that the fluctuation representation of SAR image is effective. However, DiscNet shows
poor performance on the Orchard dataset, as displayed in Figure 10b. This is mainly because the
images in the Orchard dataset present apparent structural features, as shown in Figure 11, whereas
these features are not exploited by the DiscNet. For the GLCM, Gabor, and LBP, experimental results
indicate that GLCM is better than Gabor and LBP. In the following experiments, GLCM is selected
for comparison.

(a) (b) (c) (d)

Figure 11. Representative examples with structural features in the Orchard dataset. (a) Mango2;
(b) Mango3; (c) Longan; (d) Building.

To verify the effectiveness of DiscNet, the following experiments are performed:

• Scheme I: the mean and standard deviation are directly used as the fluctuation representation;
• Scheme II: the fluctuation representation is fitted by the DiscNet.

Softmax classifier is used for Scheme I and Scheme II. Figures 12 and 13 show the training loss and
validation accuracy on the Guangdong dataset and the Orchard dataset, respectively. These results are
obtained by 10 training runs. It can be observed that the validation accuracy benefits from the Scheme
II, which demonstrates the effectiveness of DiscNet.
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(a) Scheme I (validation accuracy: 76.746%) (b) Scheme II (validation accuracy: 81.226%)

Figure 12. Training loss and validation accuracy of DiscNet on the Guangdong dataset (using 10% of
data for training).
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(a) Scheme I (validation accuracy: 47.028%) (b) Scheme II (validation accuracy: 63.657%)

Figure 13. Training loss and validation accuracy of DiscNet on the Orchard dataset (using 30% of data
for training).

4.3.2. Classification Accuracy

The classification accuracy on the test set is investigated. In the following experiments, the
samples used for training are 10% of the total samples in the Guangdong dataset and 30% both in the
Orchard dataset and the Rice dataset.

Table 4 shows the results on the Guangdong dataset. It can be observed that PSNet achieves
the highest AA of 85.04% and outperforms CNN and SPPNet in classifying the Vegetation, HD Area,
and LD Area. The Vegetation and HD Area are typical mixed regions, resulting in high intra-class
variations. For example, the HD Area consists of small-scale buildings, open land, streets, trees, and
other classes. The higher classification accuracy benefits from the fluctuation representation extracted
by the PSNet. This is also confirmed by the DiscNet, the classification accuracies of Vegetation and HD
Area by DiscNet are up to 89.20% and 92.00%, respectively. For the LD Area, it is often composed of
large-scale man-made buildings such as an industrial factory. Besides the structural feature, LD Area
presents strong randomness. This is because: (1) the backscattering of LD Area is highly random and
complex due to the existence of several phase centers; and (2) the spatial layouts of image elements
in LD Area are generally random, since remote sensing images do not have an absolute reference.
Therefore, it is crucial to describe the randomness of LD Area. In contrast to SPPNet and CNN, PSNet
explicitly captures this randomness and therefore performs well in the LD Area.

Table 5 displays the results on Orchard dataset. The classification accuracy is improved by the
PSNet, especially for Mango2, Longan, and Building. The AA of 90.29% achieved by PSNet is also higher
than other methods. DiscNet performs effectively in classifying Mango1 with accuracy of 86.00%.
However, the classification accuracy of Forest by DiscNet is only 20.00%. This is because the scattered
echoes of Forest exhibit structural information, while DiscNet is not sensitive to the structural features.
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Table 4. Classification accuracy (%) on the Guangdong dataset. The bold number highlights the
greatest classification accuracy per row.

GLCM DiscNet CNN SPPNet PSNet

Vegetation 88.40 89.20 ± 0.01 84.80 ± 0.11 84.40 ± 0.04 87.60 ± 0.03
Pool 84.40 79.20 ± 0.01 85.20 ± 0.02 89.60 ± 0.01 88.40 ± 0.10
River 93.20 96.00 ± 0.00 92.00 ± 0.02 94.00 ± 0.01 93.20 ± 0.01

LD Area 63.20 47.20 ± 0.07 48.40 ± 0.06 60.80 ± 0.06 71.20 ± 0.16
HD Area 82.40 92.00 ± 0.09 52.00 ± 0.01 78.00 ± 0.04 84.80 ± 0.26

AA 82.32 80.72 ± 0.04 72.48 ± 0.04 81.36 ± 0.03 85.04 ± 0.11

Table 5. Classification accuracy (%) on the Orchard dataset. The bold number highlights the greatest
classification accuracy per row.

GLCM DiscNet CNN SPPNet PSNet

Mango1 80.00 86.00 ± 0.02 92.00 ± 0.04 90.00 ± 0.13 92.00 ± 0.02
Mango2 76.67 62.00 ± 0.17 64.00 ± 0.19 80.00 ± 0.21 86.00 ± 0.03
Mango3 93.33 80.00 ± 0.10 62.00 ± 0.14 88.00 ± 0.14 88.00 ± 0.07

Betel Nut 93.33 70.00 ± 0.03 100.00 ± 0.07 94.00 ± 0.28 96.00 ± 0.05
Longan 73.33 72.00 ± 0.03 92.00 ± 0.07 86.00 ± 0.20 96.00 ± 0.03
Forest 76.67 20.00 ± 0.06 90.00 ± 0.20 74.00 ± 0.18 82.00 ± 0.15

Building 73.33 54.00 ± 0.01 62.00 ± 0.11 76.00 ± 0.16 92.00 ± 0.07

AA 80.95 63.43 ± 0.06 80.29 ± 0.12 84.00 ± 0.19 90.29 ± 0.06

Table 6 presents the results on the Rice dataset. It can be seen that PSNet performs better than
other methods. The AA is significantly improved by PSNet, e.g., 13.92% and 3.92% respectively higher
than CNN and SPPNet. In addition, Table 6 indicates that the classification of Rice3 and Rice4 is difficult.
Compared with other methods, PSNet correctly classifies these two classes with high accuracy. The
results in Table 6 demonstrate the effectiveness of PSNet.

Table 6. Classification accuracy (%) on the Rice dataset. The bold number highlights the greatest
classification accuracy per row.

GLCM DiscNet CNN SPPNet PSNet

Rice1 80.00 97.50 ± 0.01 75.00 ± 0.19 85.00 ± 0.31 72.50 ± 0.14
Rice2 85.00 100.00 ± 0.00 100.00 ± 0.02 97.50 ± 0.02 100.00 ± 0.00
Rice3 52.50 60.00 ± 0.13 65.00 ± 0.18 72.50 ± 0.25 92.50 ± 0.15
Rice4 55.00 40.00 ± 0.02 37.50 ± 0.21 65.00 ± 0.16 90.00 ± 0.11
Rice5 52.50 72.50 ± 0.05 62.50 ± 0.17 82.50 ± 0.17 77.50 ± 0.13
Rice6 97.50 82.50 ± 0.04 85.00 ± 0.11 90.00 ± 0.31 87.50 ± 0.07
Grass 97.50 92.50 ± 0.03 95.00 ± 0.03 97.50 ± 0.04 97.50 ± 0.02

AA 74.29 77.86 ± 0.04 74.29 ± 0.13 84.29 ± 0.18 88.21 ± 0.09

4.3.3. Confusion Matrix

Figure 14 shows the confusion matrices for Guangdong dataset. It can be observed that the
confusions mainly exist between the HD Area and the LD Area. For example, the misclassification
probabilities of HD Area by CNN and PSNet are over 15.00%, as shown in Figure 14a,b. This confusion
is reduced by the DiscNet, and the misclassification probability of HD Area drops to 4.00%. However,
DiscNet misclassifies the LD Area as the HD Area with high risk. Compared with CNN and SPPNet,
PSNet provides better performance in distinguishing the HD Area from the LD Area.
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Figure 14. Confusion matrices for the Guangdong dataset.

Figure 15 displays the results on Orchard dataset. It can be observed that Mango2 is difficult to
be correctly recognized. For example, Mango2 is misclassified as Betel Nut by CNN and SPPNet with
probabilities of 12.00% and 10.00%, respectively. This misclassification is significantly reduced to 6.00% by
the PSNet, as shown in Figure 15d. The discriminative capability of DiscNet is unsatisfactory, especially
for the Forest and the Building. This is because the structural feature is not extracted by the DiscNet.
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Figure 15. Confusion matrices for the Orchard dataset.
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Figure 16 presents the confusion matrices for Rice dataset. It is apparent that there are confusions
among Rice3, Rice4, and Rice5, as shown in Figure 16a,c. These confusions are reduced by the SPPNet,
but there are still obvious confusions between Rice4 and Rice3. The confusions are further eliminated
by the PSNet, as displayed in Figure 16d. The probability of misclassifying Rice3 as Rice4 drops to
3.00%. However, PSNet shows performance loss in recognizing Rice1.
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Figure 16. Confusion matrices for the Rice dataset.

4.3.4. Classification Map

The classification maps of Guangdong and Orchard data are qualitatively compared. To obtain
the classification map, the sub-images, which are selected by a sliding window from the original image,
are first classified to get the initial result. Then, this initial result is smoothed with a post-processing
approach based on the conditional random fields [74] to generate the classification map. The strides
of the sliding window in row and column directions for the Guangdong and Orchard data are set to
12 pixels and eight pixels, respectively.

Figure 17 displays the results of Guangdong data. Three regions are highlighted in Figure 17a for the
convenience of comparison. In the highlighted region 1, SPPNet and PSNet provide better performance
than GLCM, DiscNet and CNN, as shown in Figure 17e,f. In region 2, PSNet performed well, while
SPPNet misclassified a large portion of HD Area as the LD Area. It is interesting to note that DiscNet
shows superior performance in region 2, which indicates that the fluctuation representation is useful.
In region 3, the results achieved by DiscNet, CNN, SPPNet and PSNet were comparable, while the
results by GLCM were unsatisfactory. Table 7 shows the qualitative comparison of each method. PSNet
achieves the highest OA of 82.64% and AA of 72.37% with a κ of 0.75.
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(a) Ground Truth (b) GLCM (c) DiscNet

(d) CNN (e) SPPNet (f) PSNet

Vegetation Pool RiverLow-density areasHigh-density areas

Figure 17. Classification map overlaid with ground truth for the Guangdong data (using 10% of data
for training). Three regions are highlighted in (a) for the convenience of comparison. The unidentifiable
class is shown in black.

Table 7. Classification performance comparison on Guangdong data using overall accuracy (OA),
average accuracy (AA) and Kappa coefficient (κ).

GLCM DiscNet CNN SPPNet PSNet

OA 73.93% 76.69% 74.93% 81.35% 82.65%
AA 69.03% 69.58% 71.19% 71.92% 72.37%

κ 0.64 0.69 0.69 0.74 0.75

Figure 18 shows the results of Orchard data. In the highlighted region 1, PSNet obtains the best
results. Almost all the Longans are correctly recognized by PSNet. In region 2, the classification of
Mango3 is rather difficult and there apparent misclassification exists. Nevertheless, PSNet and GLCM
perform comparably well. In region 3, most of the Mango2 are correctly classified by PSNet, while other
methods provide poor classification performance. Table 8 shows the qualitative comparison of each
method. PSNet provides the highest OA of 78.77% and AA of 72.47% with a κ of 0.74.

It should be pointed out that this paper mainly deals with the image-level classification problem.
The above semantic segmentation results are only used for evaluation from the perspective of rapid
scene understanding.
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(a) Ground Truth (b) GLCM (c) DiscNet

(d) CNN (e) SPPNet (f) PSNet

Mango1 Mango2 Mango3 Betel Nut Longan Forest Building

Figure 18. Classification map overlaid with ground truth for the Orchard data (using 30% of data for
training). Three regions are selected in (a) for the convenience of comparison. The unidentifiable class
is shown in white.

Table 8. Classification performance comparison on Orchard data using overall accuracy (OA), average
accuracy (AA) and Kappa coefficient (κ).

GLCM DiscNet CNN SPPNet PSNet

OA 73.69% 64.29% 73.60% 73.19% 78.77%
AA 69.01% 53.64% 66.23% 64.77% 72.47%

κ 0.68 0.56 0.68 0.67 0.74

4.3.5. Feature Visualization

Figure 19 shows the feature visualization on the Guangdong dataset. Here, the high-dimensional
features of the first fully connected layer are converted into 2D space by the T-distributed Stochastic
Neighbor Embedding (t-SNE) [75] and the results are visualized. From Figure 19b, the results by CNN
present large overlaps between each class, especially between the HD Area and the LD Area. These
overlaps are reduced by the SPPNet and PSNet, as shown in Figure 19c,d. Moreover, compared with
SPPNet, the clusters of HD Area and LD Area formed by PSNet are more distinctive, and therefore the
separation between these classes becomes easy. These results indicate that the features extracted by the
PSNet are more discriminative.
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Figure 19. Feature visualization on the Guangdong dataset. The high-dimensional features, extracted
by the first fully connected layer, are mapped into 2D space by the t-SNE.

5. Discussion

The experimental results indicate that the proposed PSNet improves classification accuracy. For
example, PSNet respectively outperforms the standard CNN and SPPNet in terms of average accuracy
by 12.56% and 3.68% on the Guangdong dataset, by 10.00% and 5.29% on the Orchard dataset, and by
13.92% and 3.92% on the Rice dataset. Moreover, PSNet performs well in the case of high intra-class
variations. For example, PSNet provides the highest classification accuracy for HD Area, Building and
Rice3. A few discussions on this approach are given as follows.

The sparsity of SAR image representation contributes to the classification accuracy. In [76],
by placing sparsity constraints on an autoencoder, the discriminant of feature is enhanced, which
contributes to the classification accuracy. For example, Figure 20 displays the features extracted by
PSNet for the River and the Vegetation in the Guangdong dataset. It can be observed that the feature
vector of River, with higher classification accuracy, tends to be sparser than that of Vegetation. This
implies that it would be useful to enhance the feature discriminant by placing sparsity constraints.
PSNet has not yet considered the sparsity constraint. Therefore, it would be helpful to further improve
the feature discriminant.
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Figure 20. Feature visualization. Here, ten samples are randomly selected from the River (a) and the
Vegetation (b) in Guangdong dataset. The feature vectors extracted by PSNet for these samples are
visualized.

In the proposed PSNet, the feature vector of SAR image comes from the interplays of its fluctuation
and texture representations. The weight matrices, Wfl and Wpa in Equation (14), not only control the
updating directions of zfl and zpa but also the contributions of zfl and zpa to the feature vector z. The
relationship between Wfl and Wpa will be the interest of future research.

Multi-scale representation has not yet been considered by PSNet. Multi-scale representation is a
well-known concept in image processing. It originated from the scale-space theory [77], multiresolution
analysis [78], and image pyramid [79]. Recently, this concept has gained attention in the field of
representation learning [80–82]. Taking CNNs as an example, the feed-forward architecture implicitly
forms a Markov chain of the successive representations for the input. This means that the representations
in the current layer are only derived from its previously connected layer. As a consequence, only the
features extracted by the last layer are used for image representation. However, it is believed that
the features in different layers describe multiple aspects of the input image [57,82]. Therefore, the
multi-scale representation will be investigated in future work.
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The effectiveness of the PSNet is evaluated on relatively small-scale data sets. SAR data often
present strong variations because of the sensitivity to the imaging conditions, such as the incidence
angle and the descent or ascent orbit. Therefore, the generalization capability of the proposed PSNet
will be assessed on the large-scale dataset. In addition, since data augmentation is a common scheme
used in the case of finite training samples, it would be interesting to enhance the robustness of PSNet
to the speckle noise by data augmentation.

6. Conclusions

This paper has presented a pattern statistics network (PSNet) for single-polarized SAR image
classification. In the PSNet, the inherent randomness of SAR image is explicitly considered in the
representation learning, and both fluctuation and pattern representations for the speckle patterns
are learned. The fluctuation representation describes the average fluctuation of local pixels, while
the pattern representation hierarchically captures the spatial interactions between local pixels. The
interplays of the fluctuation representation and the pattern representation are learned by minimizing
the classification error to obtain the final description for SAR image. The experimental results on three
real SAR data indicate that integrating the statistical mechanism of SAR image into the representation
learning is useful, and the classification results by PSNet are more accurate. It is also observed that the
PSNet performs well in classifying the SAR images with high intra-class variations.

In future work, PSNet will be evaluated on the large-scale dataset and multi-scale representation
will be considered. It would be interesting to exploit more statistical information about the SAR image
in representation learning. In addition, it would be helpful to enhance the discrimination of data
representation by imposing sparsity constraint on the representation.
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