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Abstract: Known as input in the Numerical Weather Prediction (NWP) models, Microwave Radiation
Imager (MWRI) data have been widely distributed to the user community. With the development
of remote sensing technology, improving the geolocation accuracy of MWRI data are required
and the first step is to estimate the geolocation error accurately. However, the traditional method,
such as the coastline inflection method (CIM), usually has the disadvantages of low accuracy and poor
anti-noise ability. To overcome these limitations, this paper proposes a novel `p iterative closest
point coastline inflection method (`p-ICP CIM). It assumes that the field of views (FOVs) across
the coastline can degenerate into a step function and employs an `p(0 ≤ p < 1) sparse regularization
optimization model to solve the coastline point. After estimating the coastline points, the ICP
algorithm is employed to estimate the corresponding relationship between the estimated coastline
points and the real coastline. Finally, the geolocation error can be defined as the distance between
the estimated coastline point and the corresponding point on the true coastline. Experimental results
on simulated and real data sets show the effectiveness of our method over CIM. The accuracy of
the geolocation error estimated by `p-ICP CIM is up to 0.1 pixel, in more than 90% of cases. We also
show that the distribution of brightness temperature near the coastline is more consistent with the real
coastline and the average geolocation error is reduced by 63% after geolocation error correction.

Keywords: MWRI; FengYun-3; geolocation error; coastline inflection method; `P sparse regularization
optimization; iterative closest point

1. Introduction

FY-3 satellites are the second generation of Chinese polar orbital series meteorological satellites.
Up to now, four satellites of the FY-3 series, i.e., FY-3A, FY-3B, FY-3C and FY-3D have been launched,
where the last three satellites are still in orbit [1]. FY-3 series satellites are equipped with various
instruments in the visible, infrared and microwave bands, which provide abundant information
for global climate prediction and weather prediction. The Microwave Radiation Imager (MWRI)
is an important remote sensor onboard the FY-3 meteorological satellite, including 10 channels in
five frequency bands: 10.65, 18.7, 23.8, 36.5 and 89.0 GHz V/H. The MWRI radiometer weighs
175 kg and consumes 125 W of power. It consists of an offset parabolic main reflector of size
977.4 mm × 897.0 mm and four independent feed horns. The MWRI calibration system is designed
as an end-to-end all-optical calibration system. Two quasi-optical mirrors with a diameter of 860 mm
and 1300 mm installed in the heat source and cold air observation positions are used to obtain
cold/thermal calibration observation data. MWRI acquired six cold/heat source observations
and 254 observations from Earth scenes within 1.8 s of each scan cycle. The MWRI frequencies,
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polarization, ground resolution, bandwidth, beamwidth, and noise-equivalent temperature sensitivity
(NE∆T) are provided in Table 1. The main task of MWRI is to provide multi-purpose imagery with
emphasis on precipitation. According to the characteristics of MWRI, a variety of engineering functions
have been developed, including precipitation intensity at surface (liquid or solid), sea-ice cover, wind
speed over the surface (horizontal), sea surface temperature, cloud liquid water (CLW) total column,
snow cover and so on [2,3].

The MWRI data can be used in quantitative remote sensing applications, such as disastrous
weather detection and numerical weather prediction. In these quantitative applications, high-precision
geolocation and radiometric calibration are the primary conditions. However, due to the instability of
satellite attitude, the observation position of satellite in orbit will be inconsistent with the actual
position. It is called geolocation error, which is one of the most important factors affecting
the quantitative application of satellite remote sensing data [4–8].

Table 1. FY-3C MWRI instrument characteristics.

Frequency (GHz) 10.65 18.7 23.8 36.5 89
Polarization V/H V/H V/H V/H V/H
Bandwidth (MHz) 180 200 400 400 3000
Sensitivity (K) 0.5 0.5 0.5 0.5 0.8
Samples/scan 254
Beam Width 2.3◦ 1.35◦ 1.22◦ 0.81◦ 0.41◦

Ground Resolution (km) 51× 85 30× 50 27× 45 18× 30 9× 15
Scan Mode Conical scanning
Orbit Width 1400 km
Viewing Angle (◦) 45
Integration time (ms) 15.0 10.0 7.5 5.0 2.5
Sampling Interval 2.08 ms
Sampling angle 0.4111◦

Scan period 1.8s

Up to now, several methods have been proposed for the geolocation error estimation of MWRI,
such as coastline inflection point method (CIM) [9–12] and node differential method (NDM) [13–16].
The NDM estimates satellite attitude angle error and corrects geolocation error by minimizing
the brightness temperature difference between ascending and descending orbit data in the same
region. The CIM assumes that the brightness temperature of four continuous field of views (FOVs)
across the coastline satisfy the cubic curve equation, and the inflection point of the cubic curve is set
as the coastline point. As shown in Figure 1a, four FOVs (blue circles) are first selected and then used
to fit a cubic polynomial curve (blue line). The inflection point of the fitted cubic curve is set as the
coastline point denoted as a red circle. When the coastline point is estimated, the vertical distance
between the estimated coastline point and the real coastline is taken as the geolocation error [14],
which is shown as a green arrow in the right enlarged image of Figure 1b.

Due to the simplicity and efficiency, the CIM has attracted considerable attention and been widely
applied on many satellites. For example, it has been applied to the Earth Radiation Budget Experiment
(ERBE) scanner on the Earth Radiation Budget Satellite (ERBS) and the NOAA-9 spacecraft [14],
the Clouds and the Earth’s Radiant Energy System (CERES) scanner [9], the Atmospheric Infrared
Sounder (AIRS) on Aqua [10], and the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations
(CALIPSO) [17]. Recently, Tang applied the CIM to estimate the geolocation error and adjusted
the attitude angle of FY-3C according to the geolocation error on FY-3C MWRI data [11].
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Figure 1. The estimation of coastline point and determination of geolocation error based on the CIM.
(a) the estimation of coastline point. Black circles are the original FOVs, blue line denotes the fitted cubic
curve based on the four chosen FOVs (blue circles), the inflection point of cubic curve is the estimated
coastline point denoted as red circle, and black line denotes the step function that is the assumption
of the `p-ICP CIM algorithm; (b) the determination of geolocation error. The red solid point denotes
the detected coastline point, red hollow points are the edge information near the detected coastline
point, and blue forks denote the correspondences between red hollow points and actual coastline.
In the `p-ICP CIM, the geolocation error is set to be the distance between the estimated coastline point
and its corresponding point, i.e., blue arrow in the right enlarged image. In the CIM, the geolocation
error is set to be the vertical distance between the estimated coastline point and the actual coastline,
i.e., green arrow in the right enlarged image.

Despite great success in practical applications, CIM still has some problems to solve. First,
the cubic curve cannot show the sudden change of brightness temperature near the coastline well
and is also prone to being affected by noise, as shown in Figure 1a. Second, the vertical distance
between the coastline point and the real coastline cannot depict the geolocation error accurately.
When the coastline is not completely straight, taking the vertical distance from the detected coastline
point to the real coastline as geolocation error will lead to wrong results. These two problems are
the main factors limiting the accuracy of CIM.

Presently, some advanced algorithms have been proposed to improve the accuracy of CIM.
For example, Li et al. [18] proposed an `0 sparse approximation model for geolocation error estimation.
They use the jump point of the step function to estimate the true coastline point. Although it improves
the geolocation accuracy, it does not solve the problems mentioned above. Therefore, the `p-ICP
CIM algorithm was proposed in order to further improve the accuracy. To solve the first problem,
we increase the number of FOVs used in solving the coastline point to alleviate the effect of noise,
and propose a novel `p(0 ≤ p < 1) sparse regularization optimization model to estimate the original
brightness temperature curve. Considering that the temperature on both sides of the coastline point
should have a step change, the original ideal brightness temperature curve is modeled as a step
function (black line in Figure 1a). By assuming that the observed brightness temperature curve is the
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convolution of the original ideal brightness temperature curve (i.e., a step function) with an unknown
kernel function, the step function can be solved according to an `p(0 ≤ p < 1) sparse regularization
optimization model [18–22], and the step point of the step function is considered the coastline point.

To solve the second problem, we consider the neighborhood information or contour information
of the estimated coastline point (neighboring points are shown as red hollow points in Figure 1b),
and assume that there is a rigid transformation [23] between the real coastline and the estimated
coastline. Here, the Iterative Closest Point (ICP) algorithm [24,25] is used to estimate the rigid
transformation. When the rigid transformation is estimated, the corresponding points of neighboring
coastline points can be obtained, as shown in blue forks in Figure 1b). For the detected coastline
point (red solid point), we can find the corresponding point by the ICP algorithm. Note that
the corresponding point does not necessarily coincide with the real coastline. Thus, we find a point on
the real coastline that is closest to the corresponding point, which is denoted as the corresponding point
on the real coastline. Finally, the distance between the detected coastline point and the corresponding
point on the real coastline is defined as geolocation error, which is shown as a light blue arrow in
the right enlarged image of Figure 1b.

The main contributions of this paper are as follows:

1. According to the characteristics of FY-3 MWRI data, we model the observed brightness
temperature curve as the convolution of a step function with an unknown kernel function
and propose a novel `p sparse regularization optimization model to solve the step function
and locate the coastline point. In addition, we provide a fast solution based on the fast Fourier
transform (FFT).

2. We propose a new definition of geolocation error by introducing the contour information of the
coastline and employing the ICP algorithm to estimate the rigid transformation between the real
coastline and the estimated coastline points.

This paper is organized as follows: Section 2 introduces the method proposed in this paper in
detail. Section 3 provides the experimental results and analysis, while Section 4 provides a discussion.
The summary and conclusions are given in Section 5.

2. Proposed Method

The proposed method includes the following two parts: (1) locating the coastline point by
the `p sparse regularization optimization model; and (2) finding the corresponding points between
the coastline point and the real coastline and calculating the geolocation error.

To accurately describe the variation of brightness temperature near the coastline, we increase
the number of FOVs per group from 4 to 12. These FOVs should satisfy the following conditions [14]:

(1) No unusual terrain features, such as lakes and mountains, next to the coastline.
(2) Probable high thermal contrast between land and water, and the maximum temperature difference

is obtained between the 6th and 7th FOV.
(3) Interesting coastline. A coastline with regular curves, peninsulas, and bays is most useful.
(4) Cloudless disturbance.

2.1. Data Interpolation

In order to improve the accuracy, it is necessary to interpolate the 12 selected FOVs before
calculating the coastline point. In this paper, an interpolation scheme is designed according to the
characteristics of MWRI data. The latitude, longitude and brightness temperature of 12 selected FOVs
are recorded as Lat0, Lng0, g0. According to the required interpolation accuracy, the original longitude
and latitude are interpolated linearly, and recorded as Lat1, Lng1. The brightness temperature is
interpolated by 0 and reshaped to a column vector as g1. Let g be the brightness temperature value to
be interpolated with the same dimension as g1. The following optimization model is established:
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arg min
g
‖Ag− g1‖2

2 + µ‖Kg‖2
2, (1)

where A is a sparse matrix formed by zeroing the position on the diagonal line of the unit matrix
corresponding to the position, where g1 is zero. ‖ · ‖2 represents 2 norm. K is a sparse matrix with
the same dimension as A: K = [1,−2, 1, 0, ..., 0; 0, 1,−2, 1, 0, ..., 0; ...]. µ is a regularization parameter
for balance [26]. The first term in Equation (1) is the data fidelity term, which ensures the similarity
between g and the original observed data [20,27]. The second part is the smoothing term. When
the resolution of g is improved, it guarantees the smoothness of g (non-smoothness means low
resolution). The solution of model (1) is given by the following equation:

g = [AT A + µKTK]−1 AT g1. (2)

Given 12 FOVs, we can use the interpolation method to generate many points. It should be
noted that 12 selected FOVs refer to the brightness temperature values across the coastline rather than
the point on the coastline. The temperature variation curve around the coastline can be considered
as a smooth curve.

2.2. `p Sparse Regularization Optimization Model

In this paper, we assume that the observed brightness temperature signal is convoluted by
a step function and an unknown Equation (convolution kernel). The step point (where the value
of step function mutates) of the step function is considered to be the coastline point. The `p sparse
regularization optimized model is used to restore the step function. The previous interpolation results
are brought into this model to solve the coastline point.

Let the observed signal (interpolation fitting curve) be g, the original signal be f , and the
convolution kernel be h. The subscript n represents the n-th sample. Because the derivative of f
is highly sparse, we use `p(0 ≤ p < 1) norm to restrict its sparsity. Based on the above assumptions,
the `p sparse regularization model was proposed:

min
f ,h

{
∑
n

(
( f ⊗ h)n − gn

)2
+ ϕ‖∂h‖2

2 + λ‖∂ f ‖p
p

}
, (3)

where ⊗ represents convolution operator, ∂ represents gradient operator, and ‖ · ‖p represents p norm.
The first part of Equation (3) guarantees the structural similarity between f ⊗ h and g. The second
part guarantees the smoothness of h, and ϕ is the regularization parameter. The third part restricts
the sparsity of the gradient of f , and λ is a regularization parameter [28].

Since the original h and f are both unknown, we use the iterative blind deconvolution (IBD)
algorithm [29–31] to solve the regularization model. The optimization problem involves two variables,
f and h, which can be solved by alternating optimization the following two equations:

hj = min
h

{
∑
n

(
( f j ⊗ h)n − gn

)2
+ ϕ‖∂h‖2

2

}
(4)

and

f j+1 = min
f

{
∑
n

(
( f ⊗ hj)n − gn

)2
+ λ‖∂ f ‖p

p

}
, (5)

where j denotes the number of iterations. To speed up the convergence speed, λ is set as a variable
parameter. Initially, λ is set to a small value λ0. Given a step size κ1, and λ is updated after each
iteration: λj+1 = λj × κ1. When step size κ1 > 1, λ will increase with iterations. Given a threshold
λmax, the iteration stops until λ > λmax. In our experiment, λ0, λmax, κ1, ϕ are set to 0.09, 100, 1.5,
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5, respectively. This method has been proved to be effective in accelerating convergence [31–34].
In the following, we focus on solving models (4) and (5).

2.2.1. Minimizing Model (4)

Because the model (4) is convex, it has a global optimal solution. Considering the existence of
gradient operator and convolution operator in model (4), the computational process can be accelerated
through the FFT [28]. Fixed f j, hj can be solved by:

hj = F−1
(
F (g) ◦ F ∗( f j) + ϕF (∂) ◦ F ∗(∂)
F ( f j) ◦ F ∗( f j) + ϕF (∂) ◦ F ∗(∂)

)
, (6)

where F , F−1, ∗ and ◦ denote the FFT operator, the inverse FFT operator, the complex conjugate
and the componentwise multiplication, respectively. Note that the addition and division in Equation (6)
are also component-wise operators; the calculation speed is much faster than that in the original space.

2.2.2. Minimizing Model (5)

It should be noted that model (5) is non-convex [30] and is difficult to be optimized directly.
To date, a number of algorithms have been proposed for solving this problem [33,35–41]. In this paper,
we apply the Generalized Iterated Shrinkage algorithm (GISA) [35] to solve model (5). For this purpose,
a new variable d = ∂ f is introduced and the model (5) is rewritten as:

min
f ,d

{
∑
n

(
( f ⊗ hj)n − gn

)2
+

ηλ

2
‖∂ f − d‖2

2 + λ‖∂ f ‖p
p

}
, (7)

where η is a variable parameter. When η → ∞, model (7) is equivalent to model (5). Note that model (7)
contains two variables f and d, an alternating optimization of f and d is introduced as follows:

Step 1: fixed f j,i, solving di.

Fixing f j,i, and denoting dre f = ∂ f , di can be solved by the following sub-problem:

min
d

{
η

2
‖d− dre f ‖2

2 + ‖d‖
p
p

}
. (8)

The generalized soft-thresholding (GST) function can be used to solve the sub-problem (8),
and the corresponding solution di is:

di = TGST
p

(
dre f

i ;
1
η

)
, (9)

where TGST
p is a soft threshold function:

TGST
p (y; λ) =

{
0, i f |y| ≤ τGST

p (λ),
sgn(y)SGST

p (|y|; λ), i f |y| > τGST
p (λ),

(10)

where τGST
p (λ) is defined by:

τGST
p (λ) =

(
2λ(1− p)

) 1
2−p

+ λp
(

2λ(1− p)
) p−1

2−p
(11)

and SGST
p can be solved by:

SGST
p (y; λ)− y + λp

(
SGST

p (y; λ)
)p−1

= 0. (12)
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Like the soft-thresholding function [42], the GST function also involves a thresholding rule

TGST
p (y; λ) = 0 when |y| ≤ τGST

p (λ) and a shrinkage rule TGST
p (y; λ) = sgn(y)SGST

p (|y|; λ),

when |y| > τGST
p (λ). Compared with the thresholding function in [33], the GST function

adopted a different thresholding value τGST
p (λ) and can always find the correct solution to

the simple `p-minimization problem. Thus, GST can be regarded as a better generalization of
soft-thresholding for `p-minimization.

Step 2: fixed di, solving f j,i.

For each fixed di, f j,i can be solved by the following sub-problem:

min
f

{
∑
n

(
( f ⊗ hj)n − gn

)2
+

ηλ

2
‖∂ f − di‖2

2

}
. (13)

Similar to model (4), the solving process of model (13) can be transformed into the Fourier
domain. With fixed di, f j,i can be solved by:

f j,i = F−1

(
F (η λ

2 ∂d) +F ∗(h) ◦ F (g)

η λ
2F (∂T∂) +F ∗(h) ◦ F (h)

)
. (14)

Step 3: back to step 1 until convergence.

The solution of model (7) can be obtained by alternatively updating f and d. Similar to
the parameter setting of λ, η is also set as a variable parameter to accelerate convergence.
Let η0, ηmax, κ2 be the initial value, threshold and step size, respectively. In the experiment, η0,
ηmax, κ2 are set as 1.4, 218, 1.1, respectively.

Algorithm 1 gives an overview of the proposed `p sparse regularization optimization model.
It will output a step function which can be considered as an ideal brightness temperature
signal and the step point of step function is taken as the coastline point.

Algorithm 1 `p Sparse Regularization Optimization Model

Input: 12 FOVs data, parameters ϕ, λ0, λmax, η0, ηmax, and rates κ1, κ2.
Output: Step function f .

1: Fit interpolation curve g by Equation (2);
2: Initialization: f 1 ← f 0, λ← λ0, j← 1;
3: repeat
4: With f j, solve hj by Equation (6);
5: Initialization: f j,1 ← f j, β← β0, i← 1;
6: repeat
7: With f j,i, solve for di in Equation (9);
8: With di, solve for f j,i+1 in Equation (14);
9: Set η ← κ2 × η, i← i + 1;

10: until η ≥ ηmax
11: Set f j+1 ← f j,i, λ← κ1 × λ, j← j + 1;
12: until λ > λmax

2.3. Correspondence Point Estimation and Error Calculation

The purpose of this subsection is to find the corresponding points of the detected coastline points
on the real coastline. The neighborhood information of detected coastline point is considered in
the calculation process. We assume that there are only rotation and displacement transformations
(rigid transformations) [23] between the real coastline and the estimated coastline. Thus, the key is to
estimate the rigid transformation.
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In fact, the real coastline and estimated coastline are composed of two point sets. Let the real
coastline be the target point set Qm, the estimated coastline be the source point set Pn (m, n are not
necessarily equal) and there is a transformation H between the two point sets. Since we assume that
there is only a rigid transformation between them, H can be expressed by the following formula:

H =

[
R2×2 T2×1

01×2 1

]
, (15)

where the rotation matrix R2×2 and translation matrix T2×1 can be expressed by the following formulas:

R2×2 =

[
cos θ − sin θ

sin θ cos θ

]
, (16)

T2×1 =
[

tx ty

]T
, (17)

where θ denote the rotation angle. tx, ty represent displacements along x- and y-axes, respectively.
The coordinate transformation of Pi and Qi in two different coordinate systems can be achieved by
the following formulas:

Pi = R2×2 ×Qi + T2×1, (18)

where Pi = [xi, yi]
T , Qi = [x′i , y′i]

T . Submit Pi and Qi into Equation (18):[
x′i
y′i

]
=

[
cos θ − sin θ

sin θ cos θ

] [
xi
yi

]
+

[
tx

ty

]
(19)

In this paper, the ICP algorithm is used to estimate the rigid transformation due to its simplicity
and low computational complexity [24,43–45]. The ICP algorithm is an optimal matching method
based on a least square method essentially [46,47]. It repeats the process of “determining the set
of corresponding points—calculating the optimal rigid body transformation” until a convergence
criterion representing the correct matching is satisfied. The purpose of the ICP algorithm is to find
the rotation (R2×2) and translation(T2×1) transformation between the target point set and the source
point set, so as to minimize the error function E:

E(R, T) =
1
n

n

∑
i=1
‖Qi − (R× Pi + T)‖2, (20)

where n is the number of nearest point pairs, Qi is a point in the target point set Q, Pi is the nearest
point corresponding to Qi in the source point set P, R is the rotation matrix, and T is the translation
vector. The specific steps of ICP algorithm are as follows:

(1) Calculate the corresponding nearest points of each point in P in the point set Q.
(2) The rigid transformation that minimizes the average distance between the corresponding points

mentioned above is obtained, and the translation and rotation parameters are obtained.
(3) For P, the translation and rotation parameters obtained in the previous step are used to obtain

a new set of transformation points.
(4) If the average distance between the new transformation point set and the reference point set is

less than a given threshold, the iteration will be stopped, otherwise the new transformation point
set will continue to iterate as a new P until it meets the requirements of the objective function.

In the experiment, we use Global Self-consistent, Hierarchical, High-resolution Shoreline
(GSHHS) fine-resolution database (∼40 m resolution) [48] to define the truth coastline. Note that
the x-axis and y-axis coordinates of two point sets P, Q are determined by their geographical location.
When the rigid transformation is estimated, the corresponding point of the detected coastline point
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on the GSHHS can be found, and then the geolocation error can be obtained by the distance between
them. The detailed process is as follows:

(1) Denote an estimated coastline point as a, define a neighborhood near a and compute the extreme
points of the brightness temperature gradient within the neighborhood, record the extreme
points as A. Find the true coastline points corresponding to the neighborhood from the GSHHS
and denote them as B. Here, A and B are the estimated and real coastlines, respectively.

(2) Estimate the rigid transform T from A to B by the ICP algorithm.
(3) Let A be transformed into C by T, and c is the corresponding point of a in C. Let d ∈ B be the point

with the closest distance to c, and the distance between a and d is taken as the geolocation error.
(4) Repeat until geolocation error for all points are calculated.

3. Experiments and Results

In this section, we first analyze the causes of geolocation errors, then give the experimental results,
and finally show the results of geolocation error correction.

3.1. Geolocation Error Analysis

The geolocation error of MWRI is closely related to the uncertainty of basic measurement
data used in the calculation. Satellite position deviation, satellite attitude angles (e.g., pitch, roll,
and raw) deviation and instrument installation error are the main sources of geolocation errors.
In general, the geolocation error can be classified into dynamic and static errors. Dynamic error
sources include thermal deformation and structural deformation of instruments, thermal deformation
and structural deformation of satellites, attitude angles and position measurement deviation of
satellites. These dynamic errors vary all the time and are difficult to simulate. Static error sources
include antenna scanning angle deviation, installation deviation of detector, antenna and instrument,
and systematic error of star tracker (stellar position deviation). These static errors are invariable
and can be reduced or eliminated by the processing of ground application systems [49,50].

In order to measure geolocation errors, two basic performance indicators (i.e., cross-track
error and along-track error) are adopted in this paper [14]. The conversion equation from latitude
and longitude coordinates to cross-track and along-track coordinates is:(

εc

εa

)
=

(
± sin η cos η

− cos η ± sin η

)(
εΛ
εΦ

)
, (21)

where η, εc, εa, εΛ, εΦ represent the spacecraft heading angle, cross-track error, along-track error,
longitude error and latitude error, respectively. The upper sign ‘+’ in Equation (21) is used when
the scan direction is left to right; otherwise, the lower sign ‘−’ is used. The transformation from
latitude and longitude coordinates to cross-track and along-track coordinates is also shown in Figure 2.
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Figure 2. Geometry of transformations from latitude and longitude coordinates to cross-track
and along-track coordinates.
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3.2. Experimental Results

In experiment, the FY-3C MWRI data covering four geographical regions with unique coastline
orientations are selected to produce a database of crossing errors, including Libya, South America,
Australia and Arabian peninsula as shown in Table 2. Their geographical location is shown in Figure 3.
These four regions are selected for the following reasons:

1. There are obvious temperature differences between ocean and land. For example, in summer,
the temperature on land at night is lower than that on water surface, while in the daytime it is
just the opposite.

2. The selected area should always be in a clear sky because the long-wave radiation value of land
and water surface will be very small under the influence of clouds, which should be excluded in
the calculation.

3. The coastline of the selected area should be regularly distributed, diversified and representative,
and the land surface should be uniform. The cloud-free FOV at MWRI 89 GHz data was defined
by FY-3C Medium Resolution Spectrum Imager (MERSI) data [11].

Table 2. Coordinated Universal Time (UTC) times of FY-3C MWRI data used in the experiment.

Region Libya South America Australia Arabian Peninsula

Date and UTC Time

201601052022 201601040346 201601061458 201601051840
201601121950 201601110314 201601081420 201601101847
201601152034 201601210326 201601121445 201601121808
201601272008 201601260332 201601221458 201601171814
201602112026 201602060325 201601221458 201602111845

201602081438 201602131807
201602171832
201602181813
201602191754

Figure 3. Baseline areas for geolocation analysis.

Firstly, in order to give the results of geolocation qualitatively, we retrieve the types of land
and water according to the results of geolocation calculation in the land and water template database,
then superimpose the water-land boundary on the MWRI image, and judge the accuracy of geolocation
by the coincidence between the calculated water-land boundary and the actual MWRI image.
The overlay maps of the water-land boundary and MWRI images in the Arabian Peninsula at 6:13 p.m.
UTC 18 February 2016 and the western coast of Australia at 2:31 p.m. UTC 19 February 2016 are
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shown in Figure 4. The red points in Figure 4 represent the land-sea boundary. It can be found
that the geolocation accuracy of FY-3 MWRI is about one pixel, but there are still geolocation errors
at the sub-pixel level.

a

b

Figure 4. (a) location results of an MWRI image in the Arabian Peninsula region; (b) location results of
an MWRI image in the west coast of Australia.

Table 3. Mean and standard deviations of along- and cross-track errors on four geographical regions.

Region Libya South America

Error Direction Cross-Track Along-Track Cross-Track Along-Track

CIM Mean error 0.0130 0.0258 0.0011 0.0635
Standard deviation 0.0342 0.0344 0.0315 0.0288

`p-ICP
CIM

Mean error 0.0180 0.0916 −0.0033 0.1025
Standard deviation 0.0268 0.0338 0.0259 0.0239

Region Australia Arabian Peninsula

Error Direction Cross-Track Along-Track Cross-Track Along-Track

CIM Mean error 0.0030 0.0357 0.0452 0.0516
Standard deviation 0.0362 0.0370 0.0330 0.0282

`p-ICP
CIM

Mean error 0.0022 0.0732 0.0236 0.0981
Standard deviation 0.0241 0.0408 0.0229 0.0263

By using the proposed method, the geolocation errors expressed by latitude and longitude
are detected. Note that each geolocation error can only represent the coastline point used to solve
the geolocation error rather than the geolocation error of 12 FOVs used to solve the coastline point.
Then, the cross- and along-track errors can be calculated by the Equation (21) easily. We compare CIM
with our method in terms of mean and standard deviation of geolocation error.

Firstly, the mean and standard deviation of the cross- and along-track errors of each data are
calculated, and then the results belonging to the same region are averaged to get the mean and standard
deviation of the geolocation errors in each region. Note that there are geolocation errors for each FOV
of MWRI data. On average, each MWRI data will get dozens of geolocation errors after applying
`p-ICP CIM. The mean and standard deviation of geolocation errors in four geographical regions
are given in Table 3. It can be seen that the geolocation errors in both directions of along-track
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and cross-track estimated by the two methods are approximately the same. They are greater than zero,
except for the cross-track errors estimated by our method at the South America data. At the same
time, the along-track errors are greater than the cross-track errors. It shows that both methods can
reflect the real geolocation error roughly. However, the value of the geolocation error obtained by
the two methods are quite different. In the along-track direction, the geolocation errors estimated
by `p-ICP CIM are much larger than those estimated by the CIM, while, in the cross-track direction,
the geolocation errors of our method are less than the errors of CIM. Overall, the estimated geolocation
errors of `p-ICP CIM are greater than those of CIM: an averaged increase of 60% for each region.
This is mainly due to the fact that the CIM uses the vertical distance between the estimated coastline
point and GSHHS as the geolocation error. It is conservative and often causes the underestimation of
the geolocation error [5]. In `p-ICP CIM, we consider the neighborhood information of the coastline
point when calculating the geolocation error, and measure the geolocation error by the ICP algorithm.
Although the mean value of geolocation errors estimated by `p-ICP CIM are relatively larger than CIM,
they are true geolocation errors.

Figure 5 shows the standard deviations of the cross- and along-track errors of 25 selected MWRI
data (as shown in Table 2), respectively. In Figure 5, the circle represents the standard deviation of
the geolocation error estimated by `p-ICP CIM, and the fork represents the standard deviation of
the geolocation error estimated by CIM. It is clear that the standard deviation of the geolocation errors
obtained by `p-ICP CIM is much lower than that of CIM: an average reduction of 28%. It demonstrates
that `p-ICP CIM is much more stable than CIM. The reasons are:

1. Compared with the CIM, `p sparse regularization optimization algorithm utilizes more pixel
information in solving coastline point, which improves the robustness of the method in estimating
the real coastline point when the coastline has irregular distribution and is corrupted by
random noise.

2. We use the ICP algorithm to measure the geolocation error, which makes it possible to estimate
the geolocation error stably and accurately when the coastline is indented.

a

b

Figure 5. (a) standard deviation of cross-track error; (b) standard deviation of along-track error.
In Figure 5, a point represents the standard deviation of a MWRI data geolocation error. There are
25 data sets as shown in Table 2, i.e., five points for Libya, five points for South America, six points for
Australia, and nine points for Arabian Peninsula. Black, blue, red and green points represent the coastal
region of Libyan, South America, Australia and the Arabian Peninsula, respectively.

Furthermore, since the true geolocation error of the operational MWRI data are unknown,
it is difficult to measure the accuracy of the estimated geolocation error directly. In this paper,
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a method is used to evaluate the accuracy of `p-ICP CIM: we give the operational geolocation results
(latitude and longitude) a fixed offset artificially, and then use `p-ICP CIM and CIM to estimate
the geolocation error, respectively. The original geolocation of MWRI can be understood as follows:

original geolocation = correct geolocation + original geolocation error.

After giving an offset, the original geolocation results change:

original geolocation + offset = correct geolocation + original geolocation error + offset.

Therefore,

original geolocation error = geolocation error - offset.

If the estimated geolocation error is accurate, it should be close to the geolocation error. Therefore,
the difference between the estimated geolocation error and offset should be close to the original
geolocation error, i.e.,

estimated geolocation error - offset ≈ original geolocation error.

Based on the above equation, the computed difference between the estimated geolocation error
and offset should be equal to the original geolocation error. This means that, for different offsets,
the corresponding differences should be ideally equal.

The FY-3C MWRI data over the coastal region of the Arabian Peninsula at 6:13 p.m. UTC
18 February 2016 is used in this experiment. As shown in Table 4, we give offsets of −0.1, −0.5, 0,
0.5 and 0.1 degrees in the longitude and latitude directions and show the mean geolocation errors
measured by the CIM and `p-ICP CIM, respectively. Note that the estimated geolocation error cannot
be compared with the given offsets directly, due to the existence of the geolocation error at original
MWRI data. Fixing the longitude (latitude) offset and changing the latitude (longitude) offset, the
geolocation errors estimated by `p-ICP CIM can remain stable in the longitude (latitude) direction
and change accurately in the latitude (longitude) direction. However, the geolocation errors estimated
by the CIM are inconsistent with the real changes of latitude and longitude. The CIM wrongly estimates
the direction of the geolocation error.

Table 4. The mean error measured by the CIM and `p-ICP CIM when there are different offsets in
the longitude and latitude directions.

Lat
Lng −0.1 −0.05 0 0.05 0.1

−0.1 (0.0429, −0.0349) (0.0197, −0.0458) (0.0124, −0.0272) (0.0429, −0.0349) (0.0090, 0.0147)
−0.05 (0.0660, −0.0413) (0.0533, −0.0502) (0.0353, −0.0410) (0.0176, −0.0161) (0.0060, 0.0033)

0 (0.0852, −0.0380) (0.0636, −0.0525) (0.0551, −0.0510) (0.0373, −0.0307) (0.0271, −0.0088)
0.05 (0.0336, −0.0857) (0.0478, −0.0686) (0.0556, −0.0586) (0.0585, −0.0406) (0.0493, −0.0249)
0.1 (−0.0041, −0.1178) (−0.0023, −0.0864) (0.0261, −0.0579) (0.0491, −0.0471) (0.0453, −0.0341)

Lat
Lng −0.1 −0.05 0 0.05 0.1

−0.1 (−0.0586, −0.1864) (−0.0596, −0.1376) (−0.0591, −0.0875) (−0.0599, −0.0361) (−0.0588, 0.0105)
−0.05 (−0.0096, −0.1884) (−0.0096, −0.1381) (−0.0096, −0.0884) (−0.0109, −0.0363) (−0.0109, 0.0115)

0 (0.0351, −0.1840) (0.0404, −0.1384) (0.0404, −0.0881) 0.0391, −0.0363) (0.0391, 0.0119)
0.05 (0.0766, −0.1801) (0.0904, −0.1381) (0.0876, −0.0879) (0.0891, −0.0363) (0.0891, 0.0119)
0.1 (0.1163, −0.1666) (0.1290, −0.1326) (0.1376, −0.0879) (0.1391, −0.0363) (0.1391, 0.0119)

* The upper and lower tables represent the mean of geolocation error estimated by CIM and `p-ICP CIM, respectively.

Figure 6 shows the differences between the estimated geolocation error and the given offsets
intuitively. In principle, the difference between the estimated geolocation error and the given offset
should be equal to the original geolocation error of the MWRI data, if the estimated geolocation error
is accurate. As shown in Figure 6, for the `p-ICP CIM, the differences between estimated geolocation
errors and the given offsets always remain near the original geolocation error (about 0.045◦ in latitude,
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−0.085◦ in longitude). However, for the CIM, the differences fluctuate dramatically. This is because
CIM does not accurately respond to the change of geolocation when the offset is given on the original
geolocation. From the mechanism of CIM, the estimated geolocation error is defined as the nearest
distance between the estimated coastline point and the real coastline point. The nearest distance
is an overoptimistic metric as shown in Figure 1 and it can easily be affected by noise. Because
the estimated geolocation error is inaccurate, the difference between the estimated geolocation error of
CIM and offset varies.

a b
Number of Dataset Number of Dataset

Figure 6. The difference between the mean of detection error and the given offset. (a) the first, second,
third, fourth and fifth point correspond to the latitude difference in the case of longitude offset of
−0.1, −0.05, 0, 0.05, 0.1, respectively; (b) the first, second, third, fourth and fifth point correspond to
the longitude difference in the case of latitude offset of −0.1, −0.05, 0, 0.05, 0.1, respectively.

It should be noted that Figure 6 shows the difference between the estimated geolocation error
and the given offset. Table 4 shows the estimated geolocation error (latitude error, longitude error)
when the offset in the longitude or latitude direction changes. Intuitively, when fixing the longitude
offset and changing the latitude offset, the estimated longitude error should be unchanged and
the latitude error will change. From the lower part of Table 4, for our `p-ICP CIM algorithm, for each
row (latitude offset fixed), the estimated latitude errors are almost unchanged when the longitude
offset changes. Meanwhile, we can see that the estimated longitude errors decrease as the decrease
of longitude offset and the difference between the estimated longitude error and offset keeps stable
at value −0.085◦. Similarly, for each column (longitude offset fixed), the estimated longitude errors
are almost unchanged when the latitude offset changes, and the difference between the estimated
latitude error and offset keeps stable at value 0.045◦. The longitude error −0.085◦ and the latitude
error 0.045◦ can be considered as the original geolocation error in the MWRI data. However,
for the CIM, both the estimated latitude and longitude errors do not show these characteristics.
The CIM misestimates the value of the geolocation error in both latitude and longitude directions.

3.3. Geolocation Error Correction

This subsection shows the results of geolocation error correction. Moradi [15] proposed that
the geolocation errors of satellite data caused by various factors can be corrected by adjusting the
satellite attitude angle. When the geolocation error is obtained, it needs to be converted into a
satellite attitude angle error. This process involves the transformation between several coordinate
systems. The specific information can be referred to [2]. After adjusting the satellite attitude
angle, the MWRI data are relocated. The relocation algorithm provided by the National Satellite
Meteorological Center, China Meteorological Administration is used in the process of geolocation error
correction. In order to analyze the effect of geolocation error correction comprehensively, the qualitative
and quantitative results are given in Figures 7 and 8. The brightness temperature distribution of FY-3C
MWRI 89 GHz corresponding to four regions are given in Figure 7 and the black curves represent
real coastlines. In detail, Figure 7a shows the brightness temperature distribution over the coastal
region of the Libyan at 8:22 p.m. UTC 5 January 2016. Figure 7b shows the brightness temperature
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distribution over the coastal region of the South American at 3:07 a.m. UTC 22 January 2016. Figure 7c
shows the brightness temperature distribution over the coastal region of Australia at 2:26 p.m.
UTC 29 January 2016. Figure 7d shows the brightness temperature distributions over the coastal
region of the Arabian Peninsula at 6:13 p.m. UTC 18 February 2016. It can be seen from Figure 7 before
geolocation errors’ correction that there is a geolocation error towards the southwest in each region.
At the same time, the geolocation error in the north–south direction is greater than that in the east–west
direction. It is consistent with our previous experimental results. After applying the geolocation
error correction to the FY-3C MWRI, the brightness temperature transition is much more natural, with
the sharpest gradient occurring at the coastline. It indicates that the geolocation accuracy of MWRI
data has been improved.

a

b

c

d

Figure 7. The MWRI brightness temperature distributions before (left) and after (right) correction.
(a) Libyan coast; (b) South American coast; (c) Australia coast; (d) Arabian Peninsula coast.

The quantitative results on the mean geolocation errors before and after correction are given in
Figure 8. Blue and red bars denote the cross-track error and along-track error before the correction of
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geolocation errors, while green and yellow bars denote the cross-track error and along-track error after
the correction, respectively. As shown, the geolocation errors are mainly concentrated in the along-track
direction: the along-track errors of the four regions are between 0.08◦ and 0.1◦, and the cross-track errors
are about 0.02◦. After correction, the geolocation errors have been greatly reduced: in the along-track
direction, the geolocation errors of Libya, South America and Australia have been significantly reduced,
while that of the Arabian Peninsula is relatively small; in the cross-track direction, the geolocation
errors of Australia and the Arabian Peninsula have been significantly reduced. Overall, the average
geolocation error of each region was reduced by 63% after correction. It demonstrates the superiority
of `p-ICP CIM from a quantitative point of view.

Libya South America Australia Arabian peninsula
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Figure 8. Mean error before and after geolocation error correction. Blue bar and red bar represent
the cross-track and along-track error before geolocation error correction, green bar and yellow bar
represent the cross-track and along-track error after geolocation error correction.

4. Discussion

This paper improves the original CIM and applies it to estimate the geolocation error of
FY-3C MWRI. The CIM used four FOVs crossing the coastline to solve the coastline points.
However, the information of four FOVs could not describe the variation of brightness temperature near
the coastline very well. It will have a greater impact on the final results, if any FOV data fluctuates due
to cloud interference, topographic change or random noise. At the same time, CIM regards the nearest
distance from the estimated coastline point to the real coastline as geolocation error, which will lead
to underestimation of geolocation error. Therefore, when the coastline is not completely straight
and noise exists (which is almost inevitable), the geolocation error estimated by CIM will be less
than the real error and the variance is larger. We greatly improve the accuracy of geolocation error
estimation through the following two ways: (1) Increasing the number of FOVs per group from 4 to 12
and using an `p(0 ≤ p < 1) sparse regularization optimization model to improve the stability of an
estimated geolocation error; (2) Using an ICP algorithm to determine the ‘corresponding point’ instead
of the ‘nearest point’ of the estimated coastline point on the real coastline.

However, the estimated geolocation error’s accuracy is uncertain as the real geolocation error is
usually unknown. In Section 3, we compare `p-ICP CIM with CIM using the strategy of artificially
setting offsets on the original location data. In this section, we will continue to use this method to
verify the accuracy of our algorithm. The error between the given and estimated latitude and longitude
offsets is taken as the criterion to measure the accuracy of the algorithm. The small differences between
them indicate a higher accuracy of `p-ICP CIM. In this section, the MWRI data over the coastal region
of the Arabian Peninsula at 6:13 p.m. UTC 18 February 2016 is used in experiments. At the same
time, we give the offset from −0.1◦ to 0.1◦ in longitude and latitude respectively in the unit of 0.01◦,
so that we can get 441 pieces of error data. Figure 9 shows the absolute value of the estimated latitude
and longitude offset error in a given range as a percentage of all data. The red line in Figure 9 represents
`p-ICP CIM. As shown in Figure 9, the error of longitude and latitude offset estimated by `p-ICP CIM
is very small, and most of the errors are less than 0.015◦. Specifically, about 90% of the error is less
than 0.005◦, 93% of the error is less than 0.01◦, and 99% of the error is less than 0.02◦. This shows that
`p-ICP CIM can estimate the given offset accurately. At the same time, we estimate the accuracy of
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CIM in the same way. The result is shown by the blue line in Figure 9. It can be seen that the error of
CIM is very large, and only about 10% of the estimated offset error does not exceed 0.02◦. It shows
that the accuracy of `p-ICP CIM is much higher than that of the CIM algorithm.
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Figure 9. The proportion of data whose absolute error of the estimated latitude and longitude offset
is less than a given range (represented by the x-axis) in all data. The red line and blue line represent
`p-ICP CIM and CIM, respectively.

In order to display the algorithm accuracy more intuitively, we transform the longitude
and latitude errors into the pixel errors. The resolution of MWRI image is 9 km × 12 km, and its
corresponding latitude and longitude range is about 0.09◦ × 0.11◦ in the Arabian Peninsula. More than
90% of the latitude and longitude offset errors estimated by our algorithm are less than 0.009◦, as can
be seen from the above analysis. Therefore, the accuracy of the geolocation error estimated by `p-ICP
CIM is up to 0.1 pixel, in more than 90% of cases.

Although our algorithm has achieved a high accuracy in geolocation error estimation, there are
still some problems in the process of testing:

1. Although the accuracy has been effectively improved, the complexity of our algorithm is higher
than CIM. The experiments are performed on a personal computer with an i5-7200U 2.50 GHz
Intel processor and 4 GB of RAM. On average, the time required for our algorithm to process a data
are 31 s, while the time required for CIM is 3 s in the same running environment. The shortage
of computational efficiency leads to obvious disadvantage of our algorithm in dealing with
large-scale data.

2. When there is no obvious noise, the difference between the coastline points located by
`p(0 ≤ p < 1) sparse regularization optimization model and located by CIM is not obvious
(which is natural because they are all sub-pixel level operations), and the difference between
the geolocation error estimated by `p-ICP CIM and CIM is mainly reflected in the process of
finding corresponding point.

5. Conclusions

In this paper, we have proposed a novel geolocation error correction method: `p-ICP CIM for
the FY-3 MWRI data. The proposed method mainly includes two parts: the detection of coastline
point and the determination of geolocation error. To obtain a robust estimation of coastline point,
a novel `p sparse regularization optimization model is proposed to solve the coastline point with
the use of more FOVs. In the determination of geolocation error, rather than using the vertical
distance between the estimated coastline point and the real coastline as the geolocation error,
the neighborhood information of the estimated coastline points are considered, and the ICP algorithm
is employed to estimate the rigid transformation between the real coastline and the estimated coastline.
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Finally, the distance between the estimated coastline point and the corresponding point on the true
coastline is considered geolocation error.

In the experiment, we compare `p-ICP CIM with the CIM algorithm. Experimental results
demonstrate that our proposed method is more accurate and stable than traditional CIM in
the geolocation error estimation of MWRI data. At the same time, we prove that the accuracy of
our algorithm is higher than 0.1 pixels in most cases (more than 90%), through the designed experiment.
Although the accuracy has been improved, the complexity of `p-ICP CIM has been greatly improved
due to the existence of iterative operations, which makes it difficult for us to process a large number of
MWRI data. The future work will focus on reducing the complexity of the algorithm and the analysis
of geolocation error of a long time series of FY-3 MWRI data, which can help us to better understand
the variation of MWRI geolocation error and to correct the geolocation error more accurately [16,51].
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Abbreviations

The following abbreviations are used in this manuscript:

FY-3 FengYun-3
MWRI Microwave Radiation Imager
CIM Coastline Inflection Method
NDM Node Differential Method
FOVs Field of Views
IBD Iterative Blind Deconvolution
ICP Iterative Closest Point
FFT Fast Fourier Transform
GISA Generalized Iterated Shrinkage Algorithm
GSHHS Global Self-consistent, Hierarchical, High-resolution Shoreline
LAT Latitude
LNG Longitude
UTC Coordinated Universal Time
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