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Abstract: The increasing spatial and spectral resolution of hyperspectral imagers yields detailed
spectroscopy measurements from both space-based and airborne platforms. These detailed
measurements allow for material classification, with many recent advancements from the fields
of machine learning and deep learning. In many scenarios, the hyperspectral image must first be
corrected or compensated for atmospheric effects. Radiative Transfer (RT) computations can provide
look up tables (LUTs) to support these corrections. This research investigates a dimension-reduction
approach using machine learning methods to create an effective sensor-specific long-wave infrared
(LWIR) RT model. The utility of this approach is investigated emulating the Mako LWIR hyperspectral
sensor (∆λ ' 0.044 µm, ∆ν̃ ' 3.9 cm−1). This study employs physics-based metrics and loss
functions to identify promising dimension-reduction techniques and reduce at-sensor radiance
reconstruction error. The derived RT model shows an overall root mean square error (RMSE) of less
than 1 K across reflective to emissive grey-body emissivity profiles.

Keywords: hyperspectral imagery; machine learning; autoencoders; radiative transfer modeling

1. Introduction

Next-generation hyperspectral imagers continue to improve in both spatial and spectral
resolution with increasingly lower noise-equivalent spectral radiance (NESR) values, presenting
unique opportunities in efficiently characterizing pixel materials [1]. A pixel in a hyperspectral image
can be represented as a vector across all spectral channels, producing a three-dimensional data cube for
an entire image, width by height by spectral channel [2]. Hyperspectral imagers have been deployed
in both airborne and space-based platforms with uses ranging from precision agriculture to search and
rescue operations [3]. The spectral bands making up a hyperspectral cube can span from the visible
to the LWIR, sampled across hundreds of narrow spectral channels [4]. The visible to short-wave
infrared (SWIR) (0.4–3.0 µm) is dominated by scattering while the LWIR (5.0–14.0 µm) is dominated by
material emission [5]. The atmospheric state—which includes the altitude-dependent temperature
and pressure; how column water vapor content, carbon dioxide, ozone, and other trace gases are
distributed vertically; the kind and size distributions of various aerosols—has a significant impact
on the at-sensor radiance. Understanding and accounting for these atmospheric effects is critical for
quantitative exploitation of hyperspectral imagery, especially in the domain of material identification.
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RT calculations convert the atmospheric state parameters—temperature, water, and ozone values
as functions of altitude or pressure—into spectral radiances observed at the sensor by discretizing the
atmosphere into thin, homogeneous layers. At each layer, high spectral resolution RT calculations
(e.g., LBLRTM) are performed, or approximations thereof (e.g., MODTRAN). Due to the large number
of discrete absorption lines of the many trace gases in the atmosphere, millions of calculations are
required to model a sensor’s entire spectral range with high fidelity [6]. This computational complexity
is the primary bottleneck in remote sensing retrieval problems, often limiting the use of RT models in
real-time data analysis.

To avoid the high computational cost of line-by-line RT calculations, approximate RT models
are used to increase computational speed while trading off accuracy [7]. One of the most widely
used approaches to improve RT computation time is the correlated-k method, which divides opaque
spectrum into a subset of b bands and then applies a weighting k to these bands, dependent on the
opacity distribution of the b bands [8].

Similar to the weighting scheme employed in the correlated-k method, principal component
analysis (PCA) has also been implemented to reduce RT computation time [6]. PCA can be applied
on the input space (atmospheric state parameters) and/or on the output space (spectral radiances) to
reduce RT computational time. In [9], PCA was applied to atmospheric state parameters for quickly
estimating spectra in the O2 A-band with an accuracy of 0.3% compared to multi-stream methods
with a 10-fold reduction in computation time. In [6], PCA was applied to database spectral radiances
identifying a lower-dimensional space of only a few hundred components compared to the thousands
of dimensions in the original data space. Implementations such as principal component radiative
transfer model (PCRTM) [6] or principal component radiative transfer for TOVs (PCRTTOV) [10]
perform RT computations for a subset of bands and map these to the low-dimensional space to create
the highly efficient RT model. In [11], PCA was considered on both the input atmospheric parameter
space and the output spectral radiance space to further reduce computational time with an overall
error of 0.05%.

This study focuses on efficient conversion of atmospheric state parameters into spectral
radiances for the LWIR domain using neural network approaches. This is achieved by performing
dimension reduction on the output spectral radiance space (transmittance, upwelling radiance, and
downwelling radiance (TUD) vectors) and then fitting a neural network to sample the low-dimensional
space. Our approach is similar to PCRTM [6]; however, we use autoencoder networks for the
dimension-reduction step instead of PCA.

The most salient contributions and findings of this research include:

• Employing machine learning techniques which: (1) are computationally faster than correlated-k
calculation methods; (2) reduce the dimension of both the TUD and atmospheric state vectors;
(3) produce the desirable latent-space-similarity property such that small deviations in the
low-dimension latent space result in small deviations in the high-dimension TUD

• Developing a data augmentation method using PCA and Gaussian mixture models (GMMs) on
real atmospheric measurements that lead to improved model training and generalizability

• Improving machine learning model training by introducing a physics-based loss function which
encourages better fit models than traditional loss functions based on mean squared error

• Demonstrating an effective autoencoder (AE) pre-training strategy that leverages the
local-similarity properties of the latent space to reproduce TUDs from atmospheric state vectors

Together, these contributions form the basis of a novel method for efficient and effective RT
modeling, using a small number of parameters.

Background

Atmospheric compensation techniques estimate the atmospheric effects imposed on the at-sensor
signal, leading to atmospherically corrected data for material classification and identification. In the
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LWIR, the simplest RT model for describing the at-sensor radiance, L(λ), from a diffuse (lambertian)
thermal emitter and scatterer, can be expressed as [3]:

L(λ) = τ(λ)

[
ε(λ)B(λ, T) +

[
1− ε(λ)

]
Ld(λ)

]
+ La(λ) (1)

λ : wavelength

T : material temperature

τ(λ) : atmospheric transmission

ε(λ) : material emissivity

B(λ, T) : Planckian distribution

Ld(λ) : downwelling atmospheric radiance

La(λ) : atmospheric path (upwelling) radiance

Both τ and La are specific to the line of sight between the sensor and the surface, whereas
Ld represents a cosine-weighted average of the downwelling radiance for the hemisphere above
the surface. Planck’s blackbody distribution function, B(λ, T), is given by

B(λ, T) =
2hc2

λ5
1

ehc/λkT − 1
(2)

where k is Boltzmann’s constant, c is the speed of light and h is Planck’s constant.
Atmospheric compensation recovers the surface leaving radiance Ls(λ) by estimating τ(λ) and La(λ)

in Equation (1) as shown in Equation (3).

Ls(λ) = ε(λ)B(λ, T) + [1− ε(λ)] Ld(λ) (3)

One of the most popular LWIR atmospheric compensation techniques is the In-Scene Atmospheric
Compensation (ISAC) method which first identifies blackbody pixels within the scene to estimate τ(λ)

and La(λ) [12]. By using only pixel spectra from blackbodies, the surface leaving radiance is equivalent
to Planck’s blackbody distribution and the simplified LWIR at-sensor radiance can be expressed as

L(λ)ε(λ)→1 = τ(λ)B(λ, T) + La(λ). (4)

Under the assumption that distinct blackbody pixels can be identified, and their temperatures
known, a linear fit can be performed across all spectral channels to identify τ(λ) and La(λ). In practice,
temperatures estimates are made in the most transmissive part of the at-sensor spectral radiance
but they are often systematically biased since τ(λ′) and La(λ′) are unknown and assumed to be 1
and 0, respectively, in that particular spectral channel λ′. A common method to remove the biases
introduced into τ and La by inaccurate surface temperatures relies on spectral analysis near the
isolated water absorption feature near 11.73 µm. This method is very similar to the Autonomous
Atmospheric Compensation (AAC) method, which estimates a transmittance ratio and an upwelling
radiance parameter derived from the off- and on-resonance spectral values at the same isolated
water band [13]. By assessing this water feature, both transmittance and path radiance contributions
can be independently estimated, allowing the biased ISAC estimates of τ and La to be fixed,
or under further assumptions about the atmosphere, allowing full estimates of τ and La to be made.
To ensure algorithmic efficiency for both ISAC and AAC, precomputed look-up tables of τ(λ) and
La(λ) are forward-modeled with a RT model over a wide range of possible atmospheric water and
temperature profiles. In the LWIR portion of the spectrum, Temperature-Emissivity Separation (TES)
follows atmospheric compensation to estimate material emissivity and surface temperature from
Ls(λ) [14].
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In this study, we conduct dimension reduction on the TUD vectors (τ(λ), La(λ), Ld(λ))
in Equation (1) which span a wide range of global atmospheric variability. Specifically, this
research uses the Thermodynamic Initial Guess Retrieval (TIGR) database comprising myriad
atmospheric conditions in the form of temperature, water vapor, and ozone profiles on a fixed
pressure grid. The 2311 atmospheric profiles provided in the TIGR database are based on 80,000
radiosonde measurements collected worldwide [15,16]. The TIGR atmospheric profiles are first
filtered for cloud-free conditions and then forward-modeled using the Line-by-Line Radiative Transfer
Model (LBLRTM) (version 12.8) to create realistic TUD vectors which also span a broad range of
atmospheric conditions.

Conducting dimension reduction on the TIGR-derived TUD vectors creates a low-dimensional
representation that can be sampled to create new TUD vectors without the need for costly
RT calculations. Research performed in [17] specifically considered a low-rank subspace of τ(λ)

and La(λ) for atmospheric compensation in the LWIR spectrum. They performed a singular value
decomposition on representative τ(λ) and La(λ) vectors generated by MODTRAN for a given seasonal
model and flight altitude. Blackbody pixels were identified within a scene based on their projection
onto these subspaces, thus providing a way to directly estimate transmittance and upwelling radiance
for a scene. The neural network approach we take for TUD vector compression is not invertible;
therefore, we cannot directly apply the approach outlined in [17] for atmospheric compensation.
The RT model can assist the atmospheric compensation in [17], by quickly providing a wide range of
transmittance and upwelling vectors to construct the low-rank subspaces.

Creating a low-dimensional TUD representation is also important for data augmentation
applications, distinctly different from atmospheric compensation. To identify a material of interest,
many augmented representations of that material through diverse atmospheric conditions can
be created using a low-dimensional TUD representation. By providing many of the commonly
investigated classification techniques augmented at-sensor data representative of diverse and realistic
TUD vectors, atmospherically robust classification can be improved. This was the approach employed
in [18], where a small neural network was trained to detect specific materials in the LWIR across
varying atmospheric conditions. The neural network-based approaches investigated here offer a highly
efficient method to generate realistic TUD vectors to support data augmentation.

Additionally, the utility of the low-dimensional representation is explored by mapping the
atmospheric state (temperature, water vapor and ozone profiles) to the low-dimensional space, thus
creating a highly efficient RT model. This RT model can be used for data augmentation as discussed
above or to support model-based compensation techniques where hundreds of possible transmittance
and upwelling vectors can be computed in real time, avoiding the use of precomputed look-up tables.
By performing dimension reduction prior to fitting this mapping, similar atmospheric conditions
cluster together in the low-dimensional space. Additionally, based on this clustering, small deviations
in the low-dimensional space correspond to small changes in generated TUD vectors, further improving
the mapping from atmospheric measurements to the low-dimensional space.

In the next section dimension-reduction techniques are reviewed and the TIGR dataset is explained
in further detail. Metrics based on Equation (1) are also derived to ensure dimension-reduction
techniques are correctly evaluated. Sampling of the low-dimensional TUD representation is
also outlined to demonstrate the utility of these techniques and highlight the importance of
latent-space-similarity where deviations in the latent space correspond to similar deviations in
high-dimension TUD space.

Following the methodology section, results are presented comparing dimension-reduction
performance derived from the TIGR data and an augmented version of the TIGR data. After confirming
improved performance with the augmented data, a novel physics-based loss function is compared
to mean squared error (MSE) to further improve dimension-reduction reconstruction error. Finally,
a RT model is formulated from the dimension-reduction algorithms, showing the importance of the
dimension-reduction pre-training step toward reduced TUD prediction error.
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2. Methodology

This section first reviews the atmospheric measurement data and corresponding forward-modeled
TUD vectors used for dimension reduction. Metrics for comparing the performance of each technique
are also reviewed, with a focus on incorporating properties from the simplified RT model in
Equation (1). A unique data augmentation scheme is also discussed to increase the number of TUD
samples for model fitting.

2.1. Data

The TIGR database consists of 2311 atmospheres selected from over 80,000 worldwide
radiosonde reports. These atmospheric conditions represent a broad range of conditions favorable for
capturing atmospheric variations in remotely sensed data. Each sample contains temperature, water
content and ozone at 43 discrete pressure levels ranging from the earth’s surface (1013 hPa) to > 30 km
(<1 hPa) [15,16]. Cubic interpolation was used to upsample these profiles to 66 pressure levels, with
finer sampling in the lower, most dense part of the atmosphere. Additionally, the profiles are grouped
by air mass category such as polar, tropical, and mid-latitude. The entire TIGR data matrix shape
is 2311 atmospheric profiles by 198 measurements, where the 66 pressure level measurements for
temperature, water content, and ozone are concatenated.

By using atmospheric profiles that span nearly all expected atmospheric variability, RT can
be conducted to generate TUD vectors encapsulating nearly every possible atmospheric scenario.
The LBLRTM was used to create high-resolution TUD vectors; however, the spectral resolution must
be downsampled for a particular sensor to ensure the dimension-reduction techniques are applicable
to real-world sensor resolutions.

The LWIR Mako hyperspectral sensor is a high-performance, airborne sensor imaging across
7.8–13.4 µm into 128 spectral channels with a noise-equivalent temperature difference of 0.02 K at
10 µm and 300 K [1,19]. The high-resolution LBLRTM generated TUD vectors (11,513 spectral channels)
are downsampled according to the Mako instrument line shape creating representative TUD vectors
for this sensor. Additionally, the TUD vectors are generated to represent a sensor altitude of 3.3 km.
The result of this process is shown in Figure 1, where after downsampling, the TUD data matrix
shape is 2311 samples by 384 spectral measurements (τ(λ), La(λ), Ld(λ) concatenated). The goal
of the dimension-reduction algorithms discussed next is to project the length 384 TUD vectors to a
lower-dimensional space such that reconstruction error is minimized.
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Figure 1. The high-resolution LBLRTM transmittance, upwelling and downwelling vectors are shown
with their downsampled counterparts for the Mako LWIR sensor. The downsampled vectors are the
data used in the remainder of this study.

2.2. TUD Dimension-Reduction Techniques

PCA removes correlation from data by projecting it onto a new coordinate system which
maximizes data variance. Let xi be a single measurement with P features and X be the data
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matrix containing N measurements such that X ∈ RN×P. To apply PCA to data matrix X, first
an eigendecomposition is performed on the data covariance matrix Cx such that

Cx = ADAT (5)

where the matrix A is an orthonormal square matrix consisting of P eigenvectors and D is a diagonal
matrix consisting of the corresponding eigenvalues [20]. The eigenvalues are sorted in descending
order and the L eigenvectors corresponding to the largest eigenvalues are kept, where L << P.
This selection is based on the cumulative sum of data variance explained with the eigenvectors.
The smallest eigenvalue components are considered noise and have little impact on reconstructing the
original signal. In this study, we will vary the number of L components to minimize reconstruction error.
The subset of selected eigenvectors are used to linearly transform the data to the low-dimensional
representation y ∈ RL by:

yi = ATxi.

An AE is a neural network designed for performing nonlinear compression by projecting data to
a low-dimensional latent space, followed by nonlinear reconstruction from the latent space. An AE is
composed of two networks to perform this operation: an encoder network and a decoder network.
The encoder compresses the input data, x, into a lower-dimensional latent space, z, and the decoder
reconstructs the data based on the latent space mapping into y [21]. Equations for these two
transformations are

z = f (Wzx + bz)

y = f (Wyz + by)
(6)

where x ∈ Rd is the input data, z ∈ Rl is the latent space representation with l � d. The reconstructed
data is y ∈ Rd and by and bz are the biases of the hidden and output layer layers, respectively. Wz and
Wy are the weight matrices from the input to hidden layer and hidden layer to output layer, respectively.
An AE diagram is shown in Figure 2 specifically for TUD compression and decompression using the
encoder, decoder, and latent space nomenclature. This figure is only notional, and does not represent
the number of nodes actually used in this study.

Figure 2. An example AE model where the TUD vectors are compressed through one or more encoder
layers to a low-dimensional latent space. The decoder transforms the low-dimensional latent space
back to the original TUD vector.

The AE predicted TUD vectors are compared to the LBLRTM generated TUD vectors through
a loss function to determine model performance and update the weight matrices. The loss function
used for measuring reconstruction error between TUD vectors is an important design variable



Remote Sens. 2019, 11, 1866 7 of 20

influencing how the AE structures the latent space and ultimately what the network understands
about TUD reconstruction. A commonly used loss function is MSE, calculated according to:

MSE =
1
K

K

∑
i=1

(xi − yi)
2 (7)

where K equals the number of dimensions in the TUD vector, and xi and yi are the predicted and
truth TUD vectors, respectively. MSE will be used in this study, but an additional loss function will be
derived later based on the underlying LWIR RT model. In many applications, a series of hidden layers
are used to create a latent space representation of the data. This architecture is commonly referred
to as a stacked autoencoder (SAE), where the functions shown in Equation (6) are nested to include
additional layers. The activation function, f , can be linear or nonlinear. A comprehensive search of
activation functions found the Rectified Linear Unit (ReLU) [22] yielded the best results over functions
such as hyperbolic tangent, sigmoid, exponential linear units, and scaled exponential linear units.
The ReLU function used in this study is

RELU(x) =

{
x, if x > 0

αx, if x < 0

where α controls how much information is passed through the network for negative inputs. This small
slope increases information flow during backpropagation allowing more weights to be influenced by
training samples [23].

The number of latent components is an important design parameter controlling model complexity
and reconstruction performance. Using two latent components allows for visualizations of the latent
space by overlaying measurement parameters such as surface temperature and total atmospheric
water vapor content. For the PCA model, the first two components capture 99.50% of the data variance.
Plotting just these two components shows a smoothly varying relationship between the components
and these physical parameters as shown in Figure 3. Both the validation set (158 samples) and test set
(176 samples) are plotted to highlight this underlying dependence on atmospheric conditions.

Similar plots are shown in Figure 4 when considering a 2 component SAE model.
Interestingly, the SAE disperses the validation and test set points throughout the latent space which is
beneficial for sampling the low-dimensional representation. Small changes in latent space components
should result in small changes in the generated TUD vectors. This latent-space-similarity is an
important property when fitting a sampling method to correctly identify a small number of components
to generate a TUD vector. Small sampling errors should not result in large TUD deviations. Since it is
difficult to visualize higher-dimension latent spaces, this property can be observed by fitting a small
neural network to correctly predict the latent components for a known TUD.

The PCA model has little change in components 1 and 2 for cold, dry atmospheric conditions as
shown by the tight clustering of these points. There appears to be a stronger dependence on component
2 for cold, dry atmospheres, while hot, humid conditions are dependent on both components. The SAE
components are both influenced by surface temperature, while component 2 appears more dependent
total water vapor content. Based on the preliminary results shown in Figures 3 and 4, sampling the
two-dimensional AE latent space will result in lower reconstruction error because of the tight clustering
of cold dry atmospheric conditions shown in the PCA latent space. Using only two components results
in large reconstruction error, therefore, we will consider additional latent components to cluster similar
atmospheric conditions together in a low-dimensional space while minimizing reconstruction error.
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Figure 3. The first two principal components using a 6 component PCA model with the augmented
TIGR data. Hot, humid atmospheric conditions vary with component 1 and 2 while cold, dry
atmospheres are more dependent on component 2.
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Figure 4. Autoencoder latent space when trained using 2 components. The points are
scattered throughout the latent space with an overall clustering of similar atmospheric conditions.
Both components appear dependent on surface temperature. Component 1 also appears more
dependent on total water content versus component 2.

2.3. Metrics

For all methods considered, the reconstruction error must be placed in context of the at-sensor
radiance to provide meaningful reconstruction performance. At-sensor radiance errors are dependent
on the material emissivity as shown in Equation (4) where downwelling radiance does not play a role
in the total error. However, if the surface material is reflective (ε(λ) = 0), the simplified LWIR RT
equation becomes

L(λ)ε(λ)→0 = τ(λ)Ld(λ) + La(λ) (8)

where errors in τ(λ) and Ld(λ) are now exaggerated. Using a standard metric, such as MSE, does
not capture this dependence on material emissivity and provides misleading model performance for
reflective versus emissive materials. A more appropriate metric for this domain considers the material
emissivity in the at-sensor radiance error calculation.

For a test emissivity, εt(λ), the estimated at-sensor radiance, L̂(λ) is calculated based on the
reconstructed TUD vector. Additionally, the original TUD vector is used in conjunction with εt(λ)

to calculate the true at-sensor radiance L(λ). The RMSE, Et, is calculated across all spectral channels
such that

Et =

√√√√ 1
K

K

∑
i=1

(
L(λi)− L̂(λi)

)2 (9)

where K represents the number of spectral channels and Et is now in radiance units representing
the emissivity dependent RMSE. For the LWIR domain, errors are typically expressed in terms of
temperature where conversion of radiance to brightness temperature is defined as [3]:
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TBB(λ) =
hc

λk ln
(

2hc2

λ5L(λ) + 1
) (10)

By transforming at-sensor radiance to brightness temperature, the at-sensor error between L̂(λ)
and L(λ) can now be expressed in Kelvin. In general, reconstruction performance improves as
εt(λ) approaches 1.0 based on Equation (4). The actual emissivity values used are assumed grey
bodies (spectrally flat) and linearly sampled between 0 and 1. Calculating the emissivity dependent
RMSE provides additional information over standard MSE between predicted and truth TUD values.
Model selection is performed based on performance across the entire emissivity domain resulting in
lower error for reflective materials.

Constructing a model with low error across a range of emissivity values requires modifications to
model training. As shown by the emissivity dependent RMSE metric, standard MSE will not provide
sufficient information to properly update model weights. Instead, the loss function for training the
SAE must include emissivity dependent information. The loss function must still be differentiable and
result in stable training performance. To achieve this, we use the TUD MSE calculation for stabilized
training, but also include an at-sensor radiance MSE dependent on material emissivity:

L (x, y) =
1

3K

3K

∑
i=1

(xi − yi)
2 +

γ

MN

M

∑
j=1

K

∑
i=1

(
Lx(λi, εj)− L̂y(λi, εj)

)2 (11)

where x is the truth TUD vector, y is the reconstructed TUD vector and K is the number of spectral bands.
The terms Lx(λi, εj) and L̂y(λi, εj) represent the at-sensor radiance using the truth and predicted TUD
vectors respectively. The at-sensor radiance loss is calculated using a linear sampling of M emissivity
values between 0 and 1, noted by εj in the loss calculation. A regularization term, γ, is included in
Equation (11) to trade-off at-sensor radiance error and the TUD reconstruction error. In this study,
we only consider γ = 1; however, future work will consider this additional hyperparameter in the
network optimization.

By including a loss component for the at-sensor radiance, network weights are updated to
minimize at-sensor radiance error rather than strictly TUD reconstruction error. This is an important
additional constraint since material emissivity impacts the difficulty of the reconstruction problem
as shown by Equation (8). The MSE component in Equation (11) is necessary to stabilize training
since errors in one component of the TUD vector can cause a reduction in overall loss depending on
material emissivity. In practice, training networks without the MSE component caused large deviations
in loss values as the network weights tried to simultaneously optimize for a range of emissivity values.

2.4. Radiative Transfer Modeling

We consider the utility of the low-dimension TUD representation by applying it to the problem
of RT modeling. Specifically, this section considers how to map atmospheric state vectors to the
previously fit AE latent space. Our approach for creating the RT model is similar to pre-training
performed in other domains such as AEs to create useful feature maps for classification [24]. Figure 5
displays an overview of the entire RT model training process. The first step in Figure 5 is the fitting of
the TUD dimension-reduction technique already discussed.

Next, a sampling network is trained to correctly predict the latent space components using
atmospheric state vectors as shown by the second step in Figure 5. During this step of the training
process, no updates are made to the previously trained decoder network. Once the sampling
network weights have converged, the entire RT model is trained end-to-end (third step in Figure 5),
allowing small weight updates in both the sampling network and the decoder. We observed less than
200 iterations are needed for the final training step as network weights are nearly optimized for the
TUD regression task. As shown later, we compare the results of this process to a fully connected neural
network without the two pre-training steps shown in Figure 5.
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Figure 5. The RT model is created by first creating a low-dimensional representation of the TUD vectors
with acceptable at-sensor radiance reconstruction errors. The latent space and decoder parameters
are locked, and a sampling model is fit to correctly identify the low-dimensional components to map
atmospheric measurements to their corresponding TUD vectors. This diagram is specific for the SAE
approach, but the encoder and decoder can be replaced with equivalent PCA transformations.

Creating a RT model also highlights differences in the latent space construction among differing
dimension-reduction techniques. Ideally, similar atmospheric conditions will form clusters in the
low-dimensional space. Sampling anywhere within these clusters should result in similar TUD vectors
reducing the impact of sampling errors. Additionally, small changes in generative model components
should lead to small deviations in the generated TUD vectors. We found that pre-training an AE to
reconstruct TUD vectors was useful for enforcing a similarity between generative model components
and their corresponding TUD vectors. Both properties allow a sampling method to quickly learn a
relationship between atmospheric measurements and the corresponding generative model components.
Difficulties in sampling the latent space to generate TUD vectors may be the result of one or both
properties not being satisfied.

The loss function for updating the nonlinear sampling layers is dependent on the
dimension-reduction method used to form the latent space. For SAE dimension reduction, the loss
function is simply the MSE calculated between predicted components and truth components. In this
case, truth components are derived from the encoder model. For PCA, components are ordered
according to the variance they capture, therefore, it is important for the sampling method to correctly
predict components capturing higher variance. The loss function used in this case is a weighted MSE
described as:

MSEPCA =
1
K

K

∑
i=1

wi(xi − yi)
2 (12)

where wi corresponds to the percentage of variance (expressed as a fraction) captured by component
i during the PCA fitting process. This scaling ensures a weighted reconstruction reflecting
component importance. Next, TIGR data augmentation is discussed as more atmospheric measurement
samples are needed to fit the large number of dimension-reduction model parameters.

2.5. Atmospheric Measurement Augmentation

The 2311 TIGR atmospheric measurements span expected atmospheric variability, providing a set
of basis measurements to fit dimension-reduction models. To accurately fit the thousands of weights
within a neural network, additional TUD vectors are needed to interpolate between the TIGR samples.
In this section, a data augmentation approach is introduced, resulting in over 11,000 new TUD vectors
derived from the TIGR database.

This study will only consider cloud-free conditions requiring a relative humidity calculation to be
performed on each TIGR measurement. Using a threshold of 96% relative humidity, we downselect the
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TIGR data to 1755 samples. Each remaining temperature, water vapor content, and ozone measurement
is concatenated forming vectors of length 198. A weighted PCA approach is employed by air mass
type (Polar, Tropical, etc.) on the concatenated measurement vectors such that reconstruction error is
minimized at low altitudes. Low-altitude atmospheric dynamics have a larger impact on the resulting
TUD vector, requiring more accurate reconstruction at these altitudes to generate realistic TUD values.
Here, 15 components were used to capture nearly all variance (>99.9%) using the weighted scheme.

Next, a 10 mixture GMM is fit to the 15-dimensional latent space created by the
weighted-PCA approach. Sampling the multivariate normal distribution results in new latent space
samples that are inverse transformed using the weighted-PCA model. This creates new temperature,
water content, and ozone measurement vectors for a particular air mass category. The relative humidity
of the generated measurements is again calculated, removing new measurements exceeding 96%.
Measurement vectors exceeding 10% of filtered TIGR bounds are removed and any measurements
with pressure level gradients larger than the TIGR data are also removed. By filtering the generated
results, the generated measurements closely match the statistics of the original data as shown in
Figure 6. These measurements are forward-modeled with LBLRTM increasing the number of samples
in the TUD training data. This data augmentation step is important as the number of parameters in
most AE models is significantly higher than the number of samples in the original TIGR database.
Model validation and testing will only consider held out sets of original TIGR samples to ensure model
performance is not based on possible errors in the augmentation process.
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Figure 6. Generated atmospheric measurements based on sampled PCA components from the GMM.

Using the metrics, models, and augmented data outlined in this section, algorithm performance
is compared in the next section. The best performing methods are considered for the RT modeling
problem where we show the overall effectiveness of using SAE pre-training to improve RT performance.

3. Results and Discussion

In this section, we first consider the impact of including the augmented atmospheric
measurements in fitting the dimension-reduction algorithms. After validating the augmented
data improves model performance, we next compare the loss function described in Equation (11)
against MSE. Finally, the latent space created by each dimension-reduction technique is sampled
following the process outlined in Figure 5 to compare RT model performance.
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3.1. Atmospheric Measurement Augmentation

Using the data augmentation approach outlined in Section 2.5, over 11,000 new atmospheric
measurements were created from the original 1755 filtered TIGR measurements. These measurements
were forward-modeled through LBLRTM to create high-resolution TUD vectors. The augmented TUD
vectors were downsampled to the Mako instrument line shape (ILS) resulting in 128 spectral channels
for each component of the TUD vector. To test the validity of this augmentation strategy, we consider
dimension-reduction performance with and without the use of the augmented TUD samples.

All results are reported on test TUD vectors derived from the original TIGR database to verify the
models generalize to real measurement data. The validation and test TIGR data points were selected
based on total optical depth. Optical depth, OD(λ), is related to transmittance by τ(λ) = e−OD(λ).
The validation and test sets contain the entire range of optical depth encountered in the TIGR data,
ensuring these sets are not biased toward a particular atmospheric condition. To extract average
performance information, 5-fold cross-validation was used for the PCA model where the training
and validation sets were still configured to contain the entire range of total optical depths in the data.
For the SAE model, random weight initialization was used to derive performance statistics.

As shown in Figure 7, reconstruction performance improves when using the augmented data
to train both the SAE and PCA algorithms. Since the SAE has many parameters to fit, the additional
information encoded in the augmented data allows this technique to extract these underlying
relationships with lower error. This additional information also improves PCA reconstruction
performance by enforcing the axes of maximum variance within the data.
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Figure 7. Dimension-reduction techniques show improved results when using the augmented TIGR
data. All models reduce the input data to 5 components in this plot; however, the number of components
is an additional hyperparameter that will be considered later.

The SAE encoder and decoder have mirrored configurations with the encoder consisting of
40 nodes followed by 15 nodes connecting to the latent space. The overall network node structure is
384-40-15-N-15-40-384 where N represents the number of latent components and 384 corresponds to the
TUD vector dimension. This configuration was found by conducting a hyperparameter sweep across
the number of layers, nodes per layer, learning rate, batch size, and activation functions. In Figure 7,
all models use 5 components to evaluate the utility of the augmented data. A learning rate of 0.001 was
found to achieve acceptable results when training for 500 epochs. Additionally, the ReLU activation
function was used for all nodes, except the output layer which consisted of linear activation functions.
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MSE loss was used for all SAE models in Figure 7. Next, the augmented data is used to evaluate the
utility of the physics-based loss function described in Equation (11).

3.2. At-Sensor Loss Constraint

The same SAE architecture used to create Figure 7 is used again in this analysis where we evaluate
the utility of the loss function in Equation (11). To compare the MSE against our new loss function,
two identical networks were trained. Specifically, each network was initialized with the same weights
and samples presented in identical order, where the only difference between the networks is in
the loss calculation. Both networks use 5 components in the latent space for dimension-reduction
to demonstrate differing loss characteristics for a particular network configuration. As shown in
Figure 8, the physics-based loss function provides lower reconstruction error for reflective materials
(ε(λ) < 0.5). This is the designed behavior of the loss function since the at-sensor radiance error
for reflective materials increases based on the relationship shown in Equation (8). As the material
emissivity trends toward one, the at-sensor radiance can be described by Equation (4), where errors are
no longer multiplicative. In this regime, MSE and the physics-based loss function converge. The error
bars in Figure 8 are based on random weight initialization of the networks for repeated training trials.
MSE shows significantly less variance across repeated training but is unable to reach the lower RMSE
values for reflective materials observed with the physics-based loss function. MSE outperforms the
physics-based loss function for emissive materials since the reconstruction problem no longer benefits
from this additional information and inhibits the model training process.
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Figure 8. Comparison of SAE performance when using strictly MSE loss or the loss function
described in Equation (11). Updating the model using information from the at-sensor radiance
error improves reconstruction performance for reflective materials. The error bars represent the
performance standard deviation when training multiple networks with identical architectures and
random weight initialization.

3.3. Dimension-Reduction Performance

Using the same SAE structure discussed in Section 3.1, the augmented training data
and the physics-based loss function, the number of components were adjusted to compare
dimension-reduction performance. Rather than creating plots similar to Figure 7 for each component
configuration, the area under the RMSE curve was calculated (smaller is better), creating the plot shown
in Figure 9. When the area under the curve is similar for multiple methods, we cannot determine
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which method is better without further analysis. This is because the individual curves demonstrate
different performance characteristics for emissive and reflective materials. For example, we cannot say
which method is best when using 8 components without also considering the material emissivity.

From Figure 9, it is clear lower reconstruction error can be achieved with the SAE when using a low
number of components. While PCA can achieve overall lower error with greater than 8 components,
this is not ideal for sampling the low-dimensional space as additional components complicate
the sampling process. For the SAE model, 4 components is adequate for reconstructing the data,
when considering the 176 test samples used to create these results.
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Figure 9. Varying the number of latent components and calculating the area under the RMSE curve
shown in Figure 8 shows how many components are necessary to reconstruct the TIGR data. Results are
plotted for the validation set consisting of 158 samples using the augmented data for training and the
loss function outlined in Equation (11) for SAE training. The PCA error bars correspond to performance
standard deviation when using 5-fold cross-validation. The SAE errors bars show the performance
standard deviation when random weight initialization is used.

3.4. Radiative Transfer Modeling

The low-dimensional representations created by PCA and SAE can be used for efficient
radiative transfer modeling by mapping TIGR atmospheric measurements to the encoder-predicted
latent components. This mapping is more difficult if diverse atmospheric conditions are closely
grouped in the latent space, or similarly, if small deviations in the latent space create large TUD
vector differences. The same metrics used for developing the dimension-reduction methods are also
used to compare RT models as we are primarily concerned with at-sensor radiance reconstruction
error across a range of material emissivities.

The 66 pressure level measurements for air temperature, water content and ozone interpolated
from the TIGR database are concatenated together forming a 198-dimensional input vector for latent
space prediction. A two layer, fully connected neural network (58–29) is used to map the atmospheric
measurement vector to the latent space. This network uses ReLU activation functions, a learning
rate of 0.001, and a batch size of 16. This network configuration was identified by performing a
hyperparameter sweep across number of layers, nodes per layer, activation functions, batch sizes,
and learning rates resulting in over 1400 model comparisons. The atmospheric measurements were
z-score standardized by feature and the latent space components were normalized between 0 and 1.
This network configuration was used for the 6-component PCA model and the 4-component SAE model.
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The 6-component PCA model was selected for this analysis because of the large reduction in RMSE
error from 5 to 6 components. In both cases, the network was trained for 500 epochs with validation
and training loss stabilizing between 200 and 300 epochs. This model configuration was found
by performing a hyperparameter sweep for the PCA model and identifying the configuration with
minimum validation set at-sensor reconstruction error for a range of emissivity values. The sampling
network weights were updated based on latent space component prediction errors with SAE using
standard MSE loss. For sampling the PCA latent space, weighted MSE loss was used as outlined in
Equation (12).

The resulting RMSE for each RT model is shown in Figure 10 where the RT model derived from
the SAE decoder has the lowest error across all emissivity values. The artificial neural network (ANN)
model results shown in Figure 10 represent a baseline approach where an end-to-end neural network
was trained with the same network configuration as the SAE RT model (198-58-29-4-15-40-384) using
MSE for the model loss function. The performance difference between the SAE RT model and the
ANN model highlight the advantages of first using an AE to initially fit network weights before
training the RT model. Initially training the SAE weights clusters similar atmospheric conditions
together, limiting the impact of RT model sampling errors, improving overall RT model performance.
Additionally, the at-sensor radiance loss function used in the SAE approach significantly improves
model performance for reflective materials. Without the at-sensor radiance loss function or the weight
initialization imposed by training an AE model, the ANN model is unable to reconstruct TUD vectors
with the accuracy of the SAE RT model.
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Figure 10. The performance of the RT models is shown as a function of emissivity where it is clear the
SAE derived RT models create a latent space that is easier to sample with a small neural network. In all
cases performance improves as materials become more emissive since downwelling radiance plays a
less significant role in these cases. The 15 component PCA model is also shown, where sampling the
15 components correctly becomes a complex problem resulting in lower overall performance.

The SAE RT model was trained by first fitting encoder and decoder networks to minimize at-sensor
radiance reconstruction error, following by training a small sampling network to correctly predict
latent components. This training methodology did not allow updates to the decoder network after
training of the sampling network. The SAE RT Tuned model result shown in Figure 10, has the same
configuration as the SAE RT model, but the decoder weights were also updated after the sampling
network training converged. This final training step used the same physics-based loss function used
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for the initial SAE training, improving reconstruction performance for reflective emissivity values.
Since the previous training steps had already created weight matrices resulting in high performance,
only small changes were needed to further reduce reconstruction error.

Additionally, the 15 component PCA model results are shown. In this case, even higher RMSE
error is observed since correctly sampling the 15 components is a more complex task. While the
15 component PCA model has the lowest reconstruction error during the TUD reconstruction training
phase, the added complexity in latent space fitting limits the utility of this model. In all cases the
highest errors are observed for reflective materials since errors in transmittance and downwelling
radiance are multiplicative in this region.

Considering only the SAE RT Tuned model, the at-sensor radiance RMSE as a function of
wavenumber and emissivity is shown in Figure 11. These results are the average RMSE for the
176 test TIGR samples at each emissivity level. For emissive materials, RT model errors are below
0.5 K for most bands. The ozone absorption bands between 1050 and 1100 cm−1 lead to larger errors
because of limited transmittance in this domain of the spectrum resulting in large deviations in the
at-sensor radiance. The challenge of correctly identifying a TUD vector for reflective materials is seen
by the high RMSE for ε = 0.01 in Figure 11. While these errors appear large on the scale shown in
Figure 11, these errors are significantly larger using other models based on the results for ε = 0 in
Figure 10.
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Figure 11. The at-sensor radiance RMSE RT model errors for 176 test TIGR samples as a function of
surface emissivity expressed in spectral brightness temperature. Model errors decrease with increasing
emissivity, consistent with the findings in Figure 10.

Based on the results shown in Figure 11, the SAE-based RT model can estimate TUD vectors with
errors below 0.5 K for most spectral bands and a range of emissivity values. These generated TUD
vectors are useful for estimating surface leaving radiance described in Equation (3) if estimates of
atmospheric conditions can be provided.

Also, the RT model can be used to quickly estimate TUD vectors. The RT model developed
here is approximately 15 times faster than the correlated-k method. On average, a single TUD vector
can be predicted in 0.1 s; however, this increase in performance is amplified when considering batch
processing as multiple TUD predictions can be performed in parallel. By reducing TUD prediction
time, this method is useful for quickly generating augmented representations of emissivity profiles
based on multiple atmospheric state vectors. The data was constructed such that this method could be
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used for the Mako LWIR hyperspectral sensor; however, resampling of the high-resolution LBLRTM
data can be performed for other sensors.

3.5. Atmospheric Measurement Estimation

Finally, we consider estimation of the most likely atmospheric measurements for a given TUD
vector using the formulated RT model. Instead of propagating inputs forward through the RT model,
this section considers estimation of the model’s inputs for a given output. Since the RT model is
composed of a sampling network (atmospheric measurements to latent components) and a decoder
network (latent components to TUD vectors) the estimation problem can be partitioned into two steps.

First, the latent space components are identified that correspond to the TUD vector. Since the
latent space only consists of 4 components, finding these 4 components using an optimizer takes little
time and results in predicted TUD vectors closely matching the given TUD vector. This optimization is
performed with respect to the decoder network of the RT model. As an example of this process, we
select a TUD vector with a 50th percentile reconstruction error from the test data set. Figure 12
shows the LBLRTM generated TUD components and the predicted TUD from optimizing the
4 latent components.
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Figure 12. The top 3 panels are the predicted TUD components plotted against the LBLRTM
generated TUD components. The predicted TUD components were generated by optimizing the
4 latent components. The bottom 3 panels are the TUD component residual curves, showing low error
across most spectral channels.

After identifying the latent components, inputs to the sampling network (atmospheric
measurements to latent components) must be optimized to identify measurements that will produce
the estimated latent components. Unfortunately, the input measurement vector contains 198 values
(temperature, water content and ozone at 66 pressure levels) and optimizing this large number of
values for 4 components is a time-consuming and difficult task.

To make this problem more tractable, a PCA transform was applied to the training data
atmospheric measurements. Using 10 components to represent the atmospheric measurements captures
90% of data variance and simplifies the optimization problem as only 10 values must be optimized
to predict the 4 latent components. For the same TUD vector used in Figure 12, the result of the
atmospheric measurement estimation process is shown in Figure 13. Interestingly, the largest errors



Remote Sens. 2019, 11, 1866 18 of 20

occur at high altitudes, where deviations in these measurements have less impact due to lower
air density.
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Figure 13. Predicted atmospheric measurements compared to the TIGR atmospheric measurements.
The predicted atmospheric measurements will produce a close match to a given TUD vector but do show
some deviations from the original TIGR measurement, specifically at high altitudes. Fortunately, high
altitude error has less impact on the at-sensor radiance error because of lower air density.

The results shown in Figures 12 and 13 are for a single TUD vector. This process was repeated
for all TUD vectors in the test data set to determine overall performance metrics. Errors between
predicted temperature and water content measurements and the corresponding TIGR atmospheric
measurements are weighted by the density at the discrete pressure levels as errors at high altitudes
will have a lower impact on the TUD vector prediction. For all 176 test set TUD vectors, we observe an
average error of 2.61 K for predicted temperature profiles and 0.45 cumulative H2O % for predicted
water content profiles. For ozone measurements, an atmospheric density weighting was not applied.
The observed average error for ozone measurement estimation was 0.79 ppmv.

Overall, the goal of the RT model is to predict TUD vectors, based on known or estimated
atmospheric measurements. By showing the model’s ability to estimate atmospheric measurements
from a given TUD vector (inverse problem), we have demonstrated the utility of low-dimension
representations of the TUD vectors. Additionally, since the latent space clusters similar atmospheric
conditions together (latent-space-similarity), an ensemble of likely atmospheric measurements can be
generated for a given TUD by applying small deviations to latent components.

4. Conclusions

This study has leveraged SAEs with a novel physics-based loss function to reduce TUD vector
dimensionality such that fast and effective LWIR RT models could be constructed by sampling
the low-dimensional TUD representation. By using an AE pre-training step, the low-dimensional
TUD representation clustered similar atmospheric conditions together reducing sampling errors.
Additionally, the pre-training step verified that small deviations in the low-dimensional TUD
representation corresponded to small deviations in the high-dimensional TUD vector. These
approaches were shown to reconstruct at-sensor radiance with errors below 0.5 K for most
emissivity values.
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The dimension-reduction results used real atmospheric measurements from the TIGR database
and augmented data derived from this same database. Using augmented atmospheric measurements
improved both PCA and SAE performance for a range of material emissivities. PCA was shown
to reconstruct data with lower error than the SAE when using beyond 8 components. The SAE
performance did not improve significantly when using more than 4 components, demonstrating
adequate capacity for the augmented TIGR data.

Sampling the low-dimensional representations created by these methods highlighted significant
differences in TUD reconstruction. This study found the SAE latent space easier to sample, resulting
in lower RT model errors. Additionally, training the entire RT model after pre-training the sampling
network and decoder networks improved RT performance. The RT model was further explored to
identify the most likely atmospheric measurements for a given TUD vector. This analysis revealed that
RT model inputs could easily be optimized resulting in predicted atmospheric measurements with
some agreement to the TIGR measurements. While this was not the goal of this work, we will explore
the utility and limitations of SAEs in the inverse problem of estimating atmospheric conditions from
spectral measurements.

Optimizing the latent components for a particular TUD vector is a straightforward process;
however, no known physical quantities are directly correlated with these components. No constraints
were placed on the formulation of this latent space other than the overall network loss function.
This unconstrained representation creates a disentanglement problem limiting the utility of the SAE as
a generative model when limited atmospheric information is available. Future work in this area will
consider additional constraints on the latent space to improve upon this disentanglement problem,
offering a means for creating TUD vectors with properties representative of specific atmospheric
conditions. Specifically, if complete atmospheric measurements are not available, this analysis will
determine what information is required to predict the most likely TUD vector using a small number
of components. Methods such as Variational AEs, multi-modal AEs and Generative Adversarial
Networks coupled with physical constraints will be investigated toward this goal.
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