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Abstract: This study improved on previous efforts to map longleaf pine (Pinus palustris) over large
areas in the southeastern United States of America by developing new methods that integrate
forest inventory data, aerial photography and Landsat 8 imagery to model forest characteristics.
Spatial, statistical and machine learning algorithms were used to relate United States Forest Service
Forest Inventory and Analysis (FIA) field plot data to relatively normalized Landsat 8 imagery based
texture. Modeling algorithms employed include softmax neural networks and multiple hurdle models
that combine softmax neural network predictions with linear regression models to estimate key forest
characteristics across 2.3 million ha in Georgia, USA. Forest metrics include forest type, basal area
and stand density. Results show strong relationships between Landsat 8 imagery based texture and
field data (map accuracy > 0.80; square root basal area per ha residual standard errors < 1; natural log
transformed trees per ha < 1.081). Model estimates depicting spatially explicit, fine resolution raster
surfaces of forest characteristics for multiple coniferous and deciduous species across the study area
were created and made available to the public in an online raster database. These products can be
integrated with existing tabular, vector and raster databases already being used to guide longleaf
pine conservation and restoration in the region.
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1. Introduction

Longleaf pine (Pinus palustris) ecosystems are some of the most critically endangered ecosystems
in the world [1]. What remains of these once dominant forests supports many plants and animals and
provides refuge for threatened and endangered species [2]. Though the negative ecological impacts of
longleaf pine losses are still being studied across the southeastern United States of America (USA), it is
clear that these systems provide critical habitat for many species. Widespread concern among public
agencies, non-governmental organizations (NGO) and private companies have stimulated restoration
efforts and the development of the Range-Wide Conservation Plan for Longleaf Pine, which called
for doubling the area of longleaf ecosystems and improving the condition of established longleaf
forests by 2024 [3]. By 2014, at least 558,000 ha of longleaf pine had been restored, 445,000 ha had been
improved through prescribed burning, 63,000 ha had been established through planting and 30,428 ha
had been improved through the removal of invasive species and the opening of the forest canopy [4].
While impressive, early success heavily leveraged expert opinion related to the condition and location
of longleaf ecosystems and capitalized on programs previously established to restore longleaf pine.
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Well-known sites under ownership amenable to investments in conservation and restoration were
targeted early. However, information characterizing the location and condition of all forests in addition
to longleaf pine forests, across all ownerships, including those unfamiliar to experts, is needed to
maintain the pace of restoration and meet the goals of the Range-Wide Conservation Plan.

In 2015, the authors, together with government and NGO partners, began a series of studies
aimed at improving the resolution, extent, accuracy and utility of spatial analysis and mapping
products available for longleaf pine projects. This work leveraged new statistical methods and novel
data structures and algorithms that were initially developed for mapping forest characteristics in the
western USA [5–8]. Image texture metrics and principle components derived from National Agriculture
Imagery Program (NAIP) aerial photographic imagery [9] were used with a softmax neural network
model to produce probabilistic classification surfaces at 1 m resolution across 11.6 million ha in the
southeast USA [10]. Species composition, basal area and stand tree density for pine and hardwood
tree species, including longleaf pine, were then estimated at coarser resolution (78 m by 70 m) for
the study area using random forest methods, Forest Inventory and Analysis (FIA) inventory plot
data [11] and image spectral and texture metrics [12]. Strong relationships between forest characteristics
measured in field plots and metrics derived from imagery were found in this investigation and this
estimation approach significantly reduced error and improved spatial detail over classical aggregation
techniques [12]. Despite clear benefits over traditional techniques of classifying forests and estimating
forest characteristics using plot data alone, both studies [10,12] encountered problems with using NAIP
imagery. Due to the variation in image acquisition dates and the color balancing technique used to
mosaic NAIP images together, resulting raster surfaces had increased estimation error and displayed
visual striping along flight paths. Hogland et al. [12] suggested relating plot data and finer resolution
NAIP imagery to spatially coarser but temporally finer Landsat 8 imagery to alleviate these negative
effects and also highlighted several other potential advantages of using Landsat 8. However, no study
to date has used FIA field plots, multi-temporal Landsat imagery and image texture in this manner to
spatially quantify key forest characters for longleaf restoration.

The study described here developed and implemented a variety of improvements to previous
approaches for a study area that had not been previously mapped using these techniques. The goal
of the study was to provide new information and facilitate the expansion of quality longleaf pine
habitat across its historic range. In addition to knowing the location and condition of existing longleaf
pine habitat, the condition and locations of forested habitat that currently occupies potential longleaf
habitat were also mapped to aid in prioritizing restoration efforts. The objectives of this study were
to: (1) develop new analytical techniques to map longleaf pine, other forest types and associated
forest characteristics efficiently across large landscapes using commonly available imagery and data,
(2) demonstrate these methods for a study area with complex land cover and high potential for
longleaf pine restoration and (3) disseminate methods and tools to facilitate similar analyses and
resulting datasets to inform longleaf restoration efforts. An important outcome was to solve problems
encountered in previous studies including model extrapolation and the striping phenomenon associated
with using NAIP imagery as a predictor variable.

2. Materials and Methods

2.1. Study Area

The Fort Stewart/Altamaha River Longleaf Pine Significant Geographic Area (referred to hereafter
as the “Fort Stewart SGA,” Figure 1) is an area of particular conservation interest designated through
America’s Longleaf Restoration Initiative [13]. This SGA covers a large portion of Georgia, is located
within the heart of the historic distribution of longleaf pine and includes both publicly and privately
owned lands. The area is about 2 million ha (5 million ac) and includes the Fort Stewart Military
Reservation in the northeast corner and conservation lands along the Altamaha River and Altamaha
Conservation Corridor [14]. Unique features include diverse longleaf pine sandhills and flatwoods with
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associated wetlands that are typically maintained by frequent fire, which is an important restoration tool
in this habitat [14]. The area is home to several animal species of high conservation concern, including
the red-cockaded woodpecker (Leuconotopicus borealis), Bachman’s sparrow (Peucaea aestivalis), frosted
flatwoods salamander (Ambystoma cingulatum), gopher tortoise (Gopherus polyphemus) and indigo snake
(Drymarchon spp.).
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Figure 1. Location, dates, path/row and mosaicking order of Landsat 8 imagery used in the study.
Path/row 17/38 was used as the reference scene to relatively normalize scenes within a given phenology.
The order in which images for a given phenology were mosaicked together is displayed in parentheses
after path/row within the left most image.

2.2. Data

Primary datasets used in this study were FIA field plot data, NAIP imagery and multi-temporal
Landsat 8 imagery with level 1 terrain precision (L1TP) correction. FIA data were downloaded from
FIA’s DataMart website [15]. The exact spatial locations of FIA plots are kept confidential but were
obtained for this study directly from FIA following the procedures described on FIA’s spatial data
request webpage [16]. NAIP images were downloaded from the United States Geological Survey
(USGS) FTP site [17]. Landsat images were downloaded from the USGS Earth Explorer website
(Figure 1) [18]. In total 1033 FIA plots, 972 NAIP images and 12 Landsat images were downloaded for
the project.

While many other datasets were initially evaluated as potential predictors of forest characteristics
(including soils, digital elevation models (DEM) and ecoregions), these datasets did not provide the
coverage, detail and consistency needed to produce SGA-wide estimates of key forest characteristics.
Of the datasets that did have the necessary characteristics, NAIP color infrared (CIR) and Landsat 8
imagery were chosen as the primary predictor datasets [9,19]. NAIP is preprocessed to a balanced
radiometric scale for each state, is readily available for free, has a fine spatial resolution (1 m),
is reacquired every two years and has complete coverage within conterminous USA. Similarly, Landsat 8
imagery has complete coverage across the USA and is also available for free. Landsat 8 imagery,



Remote Sens. 2019, 11, 1803 4 of 26

though, has a coarser spatial resolution (30 m) than NAIP but finer temporal resolution (16 days).
In addition, Landsat 8 also has a broader spectral range than NAIP.

Due to the fine spatial resolution and associated large storage size of the NAIP imagery, we built an
automated download tool called “Download Data” that systematically selected and downloaded each
NAIP image tile for a defined area of interest using a file transfer protocol (FTP) website, tiled feature
class and an area of extent [9,17,20] (Table A1). In total, 972 NAIP images were downloaded and stored
locally. Once downloaded, these images were assembled into a mosaic raster dataset [21] for the Fort
Stewart SGA and prepared for analysis.

To acquire flight line data associated with the NAIP imagery, we built a set of routines encapsulated
within a graphical user interface called “Map Services Download” that opens map services, queries records
from those services and builds new locally stored vector datasets depicting the information within
those services [22]. Using the “Map Services Download” tool we recreated NAIP flight line datasets
found on Aerial Photography Field Office (APFO) map service (https://gis.apfo.usda.gov/arcgis/services).
NAIP imagery within SGAs was collected from July 2015 to November 2015 and varied by date and
time of collection. Though the NAIP program tries to visually minimize the effects of acquiring imagery
at various dates and times using a color balancing mosaicking processes [9], significant striping and
variation in atmospheric conditions were visible along flight lines in the mosaic raster dataset (Figure 2).
This was a substantial source of error identified in the previous longleaf based study [12] and in large part
the rationale for evaluating coarser grained imagery such as produced by the Landsat 8 program.
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Figure 2. Example (red arrow) of scene striping in National Agriculture Imagery Program (NAIP)
imagery caused by flight line scene boundaries displayed in color, color infrared (CIR) and individual
bands within the Fort Stewart significant geographic area (SGA). Striping in the Blue and near infrared
(NIR) bands is quite pronounced.
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To evaluate the use of Landsat 8 imagery, four adjacent L1TP images were manually selected for
each of three phenologies. Phenologies were selected to identify three different periods of growth
for overstory trees that vary spectrally and include a winter (Leaf Off), spring (Growing) and fall
(Dormant) season. Image acquisition dates were selected to closely coincide with the year of NAIP
acquisition and FIA field plot data (Figure 1) while minimizing cloud coverage. Landsat 8 bands
one through seven were used for our evaluations. Similar to NAIP image boundaries, Landsat scene
boundaries can have substantially different cell values given time and date of acquisition even within
a given phenological period. However, different from NAIP, Landsat images are freely available in
their native digital number (DN) format and have overlapping regions which can be used to bring
images to a common radiometric scale.

Using these primary datasets, we performed a series of data preprocessing steps (Section 2.3) to
summarize, normalize and build response and predictor variables from FIA plot data and NAIP and
Landsat 8 imagery. Response and predictor variables were then used to calibrate a suite of predictive
models (Section 2.4) which in turn were used to create multiple raster surfaces with estimates of
key forest characteristics for longleaf restoration (Section 2.5). Key forest characteristics needed to
inform longleaf restoration included: dominant forest cover, needle and broadleaf tree species presence,
longleaf pine tree species presence, regeneration areas and basal area (basal area per hectare, BAH)
and stand density (trees per hectare, TPH) for broad and needle-leaf tree species. Figure 3 provides a
visual overview of the steps used to acquire, transform, make predictions and evaluate estimates of the
raster surfaces depicting key forest characteristics.
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2.3. Preprocessing

To facilitate the tabular, spatial, statistical, machine learning and geographic information system
(GIS) analyses performed in this study, we developed many new tools that take advantage of Function
Modeling [22] and parallel processing (Table A1). The underlying concept behind Function Modeling
is delayed reading, which postpones processing data until absolutely necessary and can significantly
decrease processing time and the storage of raster based analyses [22]. These newly developed tools
build on our previous work [5,20,22,23], integrate seamlessly within ESRI’s GIS as a toolbar add-in
(RMRS Raster Utility toolbar), are available for free download [20] and provide a wide range of
analytical functionality that is not otherwise available within the research or practitioner communities.

Using the “Summarize FIA Data” tool within the RMRS Raster Utility toolbar (Table A1),
we summarized FIA tabular tree data by species group (Table A2), FIA Status Code and tree size [24]
and appended those summaries to the corresponding plot locations. Tree size groupings of FIA data
were made according to tree diameter at breast height (DBH, diameter 1.37 m above the ground) in
three groups: less than 2.54 cm, 2.54 cm to 12.7 cm and equal to or greater than 12.7 cm. BAH and
TPH were then further split into needle-leaf and broadleaf tree species groups (Table A2). In the FIA
protocol, seedlings and trees less than 12.7 cm DBH are sampled less intensively than larger trees.
Plots for trees greater than or equal to 12.7 cm have a subplot radius of 7.32 m while trees less than 12.7
have a subplot radius of only 2.07 m. To account for measuring different subplot areas the “Summarize
FIA Data” tool uses expansion factors to bring all plot measurements to appropriate area estimates
(e.g., trees per hectare) [24].

Confidential exact plot locations were acquired from the FIA using established protocols [16]. Of the
1033 FIA plots downloaded and summarized, 271 plots were removed because they had a measurement
year before 2011. In addition, for quality assurance a visual inspection of FIA plots was performed in a
GIS by comparing summarized TPH estimates to NAIP imagery. For locations where plot summaries
clearly differed from what was visible in the imagery (e.g., a field plot indicating TPH where the
imagery showed an open field with no trees present) a dominant forest type (i.e., needle-leaf, broadleaf
or non-forested) was determined and that record was flagged for removal from presence/absence and
BAH and TPH components of the analyses (Table 1). Discrepancies between plot summaries and
what is visibly present in the imagery can occur for multiple reasons but most commonly was due to
some management action, such as a timber harvest, occurring between the dates of plot measurement
and imagery acquisition. In total, 762 FIA plots were available for modeling dominant forest cover,
682 plots were available for modeling presence and absence, 530 plots were available for modeling
needle-leaf BAH and TPH and 569 plots were available for modeling broadleaf BAH and TPH.

Table 1. The name, description, code, logical rules used to label each class (Query) and proportion of
observations that makeup each class within each categorical response variable.

Name Description Code Query 1 Proportion

DomType *

Broadleaf 1 (B_BAH > N_BAH)
AND NOT (TPHG < 20 AND TPHL < 556) 0.38

Needle-leaf 2 (N_BAH >= B_BAH)
AND NOT (TPHG < 20 AND TPHL < 556) 0.47

Non-forest 3 (TPHG < 20) AND (TPHL < 556) 0.15

Regen Regen 1
(DomType < 3)

AND (TPHG < 49)
AND (TPHL >741)

0.07

N_Leaf Needle-leaf Presence 1 Needle-leaf BAH > 0 0.78

B_Leaf Broadleaf Presence 1 Broadleaf BAH > 0 0.83

L_Leaf Longleaf Presence 1 Longleaf BAH > 0 0.11

* 80 DomType observations were labeled from visual inspection of the NAIP imagery due to discrepancies between
plot summaries and NAIP imagery.1 B_BAH = broadleaf basal area per hectare; N_BAH = needle-leaf basal area per
hectare; TPHG = trees per hectare greater than or equal to 12.7 cm; and TPHL = trees per hectare less than 12.7 cm.
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In addition to continuous BAH and TPH response variables for needle-leaf (N_BAH and N_TPH)
and broadleaf (B_BAH and B_TPH) species groupings, categorical response variables depicting various
aspects of the forest were created from FIA plot summaries. Dominant forest type (DomType), areas
composed of primarily regeneration plots (Regen), longleaf pine presence and absence (L_Leaf),
needle-leaf tree species presence and absence (N_Leaf) and broadleaf tree species presence and absence
(B_Leaf) were identified and labeled using various queries of species, BAH and TPH (Table 1). Due
to plots falling in agricultural, urban or harvested areas within the Fort Stewart SGA, there were
numerous instances where no trees larger than 12.7 cm in DBH were tallied. While those instances and
locations can be identified visually within the imagery and quantitatively within the data (i.e., B_Leaf
and L_Leaf variables), without taking into consideration non-forested areas when calibrating BAH and
TPH models, estimates could potentially be conflated by an excess number of zeros (Figure 4).
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Figure 4. Histograms and summary statistics of Forest Inventory and Analysis (FIA) plots for basal
area per hectare (BAH) and trees per hectare (TPH) of needle-leaf (orange) and broadleaf (blue) species
groups with and without zeros.

NAIP imagery was not additionally preprocessed after download. In its publicly available form,
NAIP imagery comes as a preprocessed mosaic that uses seamlines and a color balancing routine to
visually smooth image boundaries [9]. Unfortunately, the unprocessed source images to which the
color balancing and mosaicking routines are applied are not readily available, thereby limiting the
preprocessing techniques that could be used to bring adjacent NAIP images to a common relative
radiometric scale. While useful in its publicly available form, NAIP image mosaics are not normalized
and image boundaries are visually apparent within the mosaic (Figure 2).

Landsat 8 imagery was preprocessed. In contrast to NAIP, source data with overlapping boundaries
for Landsat 8 imagery are readily available and a variety of methods have been developed and used to
normalize Landsat imagery [25–27]. While significant improvements have been made with regards
to bringing images to a common surface reflectance [28], scene boundaries are often visible among
adjacent images acquired during the same phenology but at different dates and times (Figure A1).
To address discrepancies in spectral values among scenes we employed a relative normalization
technique called aggregate no-change regression (ANR). In previous work, Hogland [29] developed
and evaluated ANR using Landsat Enhanced Thematic Mapper Plus imagery. His findings indicate
that ANR significantly improved bringing images to a common radiometric scale over other common
absolute and relative normalization routines including procedures used to convert DN values to
surface reflectance. Based on that work, we operationalized ANR and integrated it into the RMRS
Raster Utility toolbar [20] (Table A1).
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At its core, ANR extends the concepts of automatic scattergram-controlled regression [30] by
applying an area slicing algorithm to identify no-change pixels and then spatially aggregating pixel
values to minimize the effect of geo-rectification errors. Aggregated values of defined no change
pixels for the overlapping areas of a reference image and a subject image are then regressed against
one another on a band basis. Regression coefficients are then applied to the subject image to bring
reference and subject images to a common radiometric scale. For Landsat 8 images representing Leaf
off, Growing and Dormant phenologies, we were able to use ANR to bring images within a given
phenology to a common relative radiometric scale (Figures 5 and A2). Reference images for each
Landsat 8 phenology came from path/row 17/38. In instances when substantial land use or land cover
change had occurred due to differences in image acquisition dates (e.g., changes in agricultural fields),
manually defined spatial masks were used to remove changed pixels from the ANR procedure. Slicing
algorithm change percentages used in the ANR process ranged from 20 to 40%.
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Preprocessing also included analysis of image texture. After ANR image normalization was 
completed for the Landsat 8 images, we generated first and second order texture raster surfaces [31]. 
Texture metrics for NAIP and normalized Landsat 8 imagery included mean, first order standard 
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Figure 5. Before aggregate no-change regression (ANR) normalization (left) and after ANR normalization
(right) of Landsat 8 scenes for Leaf off, Growing and Dormant phylogenies. Bands 6, 5 and 4 are displayed
here for the extent of the Fort Stewart study area (orange outline) as red, green and blue, color composites
with a 2.5 standard deviation color stretch for each four scene mosaic. Pixel values for overlapping region
within Landsat 8 images were calculated using the first image value given the order of the mosaicking
process (Figure 1).

Preprocessing also included analysis of image texture. After ANR image normalization was
completed for the Landsat 8 images, we generated first and second order texture raster surfaces [31].
Texture metrics for NAIP and normalized Landsat 8 imagery included mean, first order standard
deviation and a second order horizontal contrast gray level co-occurrence matrix (GLCM) of each
NAIP and Landsat 8 band [22,31]. Using “Focal Analysis” and “GLCM Analysis” tools in the RMRS
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Raster Utility toolbar, we transformed NAIP imagery into 12 new raster surfaces depicting image
texture at the spatial extent of an FIA plot (i.e., a 78 m by 70 m focal window). Similarly, for normalized
Landsat 8 images we created 63 texture surfaces (3 texture metrics for each of 7 bands and for each
of 3 different phenologies) at the spatial extent covering the area of an FIA plot, which in the case
of Landsat 8 is a 3 cell by 3 cell (90 m × 90 m) moving window. These raster surfaces were used as
potential predictor variables in our predictive modeling.

To relate FIA field data response variables (e.g., BAH and TPH) to NAIP and normalized Landsat
8 potential texture variables, we used the “Sample Values” tool within the RMRS Raster Utility
toolbar (Table A1). Using this tool, we extracted the mean, standard deviation and horizontal contrast
GLCM texture values derived from NAIP and normalized Landsat 8 imagery (75 potential predictor
variables) for the location of each FIA plot and appended those values to the FIA point feature class
attribute table. Five categorical (Table 1) and four continuous (Figure 4) response variables and the
75 image-based texture metrics as predictor variables for 762 plot locations constitute our working
dataset for model development.

2.4. Modeling

To estimate various forest characteristics, we employed a two-level hurdle modeling approach. Level
1 (L1) creates probabilistic classifications (Table 1) that quantify class probabilities for: (1) DomType, the
probability of being one of three cover types (broadleaf forest, needle-leaf forest and non-forest); (2) Regen,
whether trees less than 12.7 cm DBH predominantly make up the information captured within the FIA
plot; (3) N_Leaf, the presence of needle-leaf trees, including longleaf pine; (4) B_Leaf, the presence of
broadleaf trees; and (5) L_Leaf, the presence of longleaf pine. Level 2 (L2) then generates a suite of
models that estimate transformed BAH and TPH for broad and needle-leaf tree species groups at the
spatial resolution of the FIA plot, given the presence of broad (B_Leaf) or needle-leaf (N_Leaf) trees. In L2
models, the presence of broad or needle-leaf trees acts as a “hurdle” to account for zero inflation associated
with plots that do not have trees present (Figure 4). For L2 estimation, B_Leaf and N_Leaf probabilistic
classification model estimates (L1) are converted to presence or absence and used to constrain BAH and
TPH estimates to the instances when needle or broadleaf species are present.

Transformations of predictor and response variables were used to account for non-normal
distributions and linearization of the relationships between response and predictor variables. Given
the skewed distributions of broad and needle-leaf continuous response variables (Figure 4), a square
root and natural log transformation was applied to BAH and TPH, respectively. Transformations of
predictor variable values were determined based on visual analysis of the relationship between response
and predictor variables. L1 probabilistic classifications were built using multinomial (DomType) and
logistic models (present\absent) while L2

√
BAH and ln(TPH) models were built using ordinary least

squares multiple regression.
All analyses were performed using ESRI’s GIS [32], the RMRS Raster Utility toolbar [20,22] and

the R programming language [33]. To facilitate Function Modeling within a batch processing and
scripting context, we developed the “Batch Processing” tool within the RMRS Raster Utility toolbar.
Using batch processing, multiple transformations to NAIP and Landsat 8 imagery were stored as small
text files and occurred without writing intermediate outputs to disk, which saved processing time and
storage space [5,22].

One of our study objectives was to compare finer grained NAIP based predictor variables to
coarser grained Landsat 8 based predictor variables in estimating various forest characteristics. To carry
out this comparison, we developed three candidate models for each response variable that were
composed of NAIP only, Landsat 8 only and combined NAIP/Landsat 8 based predictor variables
(27 total models). Models were then compared using Akaike information criterion (AIC) [34,35].
Due to the number of predictor variables (75), the potentially complex relationships between response
and predictor variables and the degree of collinearity among predictor variables, we developed two
variable selection procedures within R to help guide predictor variable selection.
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The first procedure uses general additive modeling (GAM) [36] to identify predictor variables
that improve model fit for binary and continuous responses (Script S1). This procedure works in a
sequential fashion to add and assess potential predictor variables until all predictor variables have
been exhaustively evaluated and the best fitting GAM model and predictor variables are determined,
selected and returned. Unlike common stepwise procedures for variable selection, which assume a
predefined relationship between response and predictor variables, this GAM routine discovers the
relationship between response and predictor variables for a user defined distribution family using
thin plate splines and evaluates the strength of those fitted relationships. At each iteration of our
GAM variable selection procedure a potential predictor variable is added to a model (model 1) to
create a candidate model (model 2). The added predictor variable within model 2 is then evaluated to
determine if that variable is statistically significant at a defined alpha significance level. If the variable
is not significant at the defined alpha threshold, the added predictor variable for model 2 is added to a
list of removed variables and the selection procedure selects model 1 and moves to the next potential
predictor variable. Otherwise, percent deviance explained for model 2 is compared against the percent
deviance explained for model 1.

If the difference in percent deviance explained does not meet a defined percent increase threshold,
the added predictor variable for model 2 is added to the list of removed variables and the selection
procedure selects model 1 and moves to the next potential predictor variable. Otherwise, a second
evaluation is performed that iteratively checks variables that have been previously removed from
the selection processes to determine if any of the previously removed predictor variables are now
statistically significant and the increase in percent deviance explained is greater than the set threshold
given the form of model 2. If none of the previous variables are significant and the increase in percent
deviance explained is less than the set thresholds, the selection procedure selects model 2 and moves to
the next potential predictor variable. Otherwise, previously removed variables that meet significance
and increases in percent deviance thresholds are removed from the removed variables list, added to
model 2 and the selection procedure selects model 2 and moves to the next potential predictor variable.

We used this GAM selection procedure with a Binomial family and logit link distribution, alpha and
increases in percent deviance thresholds of 0.1 and 0, respectively, to select potential predictor variables
for L1 Regen, L_Leaf, B_Leaf and N_Leaf models. For L2,

√
BAH and ln(TPH) models, this selection

procedure was performed using a Gaussian family and identity link and the same alpha and percent
deviance thresholds. Because GAM models can potentially over fit data, we used the results from our
GAM variable selection procedure in a conservative manner to reduce the number of potential predictor
variables and help identify nonlinear patterns between response and predictor variables. To select final
candidate NAIP, Landsat 8 and combined NAIP/Landsat 8 based models for comparisons, we visually
evaluated the subset of selected variables from the GAM procedure for variable transformations
and chose predictor variables using AIC, deviance (for present\absent), residual standard errors
(RSE; for continuous variables) and predictor variable p-values.

The second variable selection procedure uses the nnet package [37] to identify predictor variables
that produce improved multinomial models based solely on AIC. This procedure iteratively adds
predictor variables to candidate multinomial models and compares AIC statistics to previous models
to determine whether an added variable not only improves a model but if the added cost of model
complexity warrants the use of that variable in the model (Script S2). For DomType models we used
this selection procedure and an improvement of 2 units of change in AIC statistic to select predictor
variables for NAIP, Landsat 8 and combined NAIP/Landsat 8 based models.

After selecting candidate NAIP only, Landsat 8 only and combined NAIP/Landsat 8 models for
each response variable, we compared model AIC statistics. In our comparisons, models with the lowest
AIC values represent our best fitting models given model complexity [34]. Additionally, models with a
difference in AIC value (∆AIC) less than or equal to 2 were considered to be equivalent while ∆AIC
values less than 10 suggested that models were quit similar [35]. Final model selection was based on
∆AIC values, the number of different predictor variables sources, spatial resolution and processing



Remote Sens. 2019, 11, 1803 11 of 26

time associated with creating raster surfaces. To take advantage of the processing benefits of Function
Modeling [22], the predictor variables selected for our final models within R were used to create
equivalent models within the RMRS Raster Utility environment.

In L1, class probabilities and a most likely class (MLC) rule were used to create hard classifications [38].
To calculate hard classification accuracies and estimate classification error, we developed a bootstrapping
procedure within R (Script S3). This procedure performed 5000 random selections of our data with
replacement, recalibrated each of the classification models using those data, produced hard classifications
and finally performed an accuracy assessment for each hard classification. Accuracy assessment cell
counts were stored for each iteration and used to estimate mean cell counts and lower and upper 95%
confidence limits. For final L2 models,

√
BAH and ln(TPH) models were combined with L1 B_Leaf

and N_Leaf hard classifications and back transformed to produce BAH and TPH estimates. Using a
similar bootstrapping procedure (Script S4) as described for hard classifications, we then estimated a 95%
confidence interval for the root mean squared error (RMSE) of our BAH and TPH models.

2.5. Predictions

Using the “Soft Max Nnet” tool within the RMRS Raster Utility toolbar we built five probabilistic
classification models for various predictor variable combinations. The “Soft Max Nnet” tool takes user
supplied tabular data with specified response and predictor variables to make a machine learning,
artificial neural network classification. These neural networks are composed of linear outputs,
no hidden networks and a final softmax normalization layer and produce probabilistic predictions
equivalent to logistic or multinomial logistic regression [37].

These models were then used along with corresponding spectral and texture raster surfaces as
inputs to the “Build Raster From Model” tool to create new raster surfaces for the full extent of the Fort
Stewart SGA that provide cell estimates of class probabilities for each categorical response variable
identified in Table 1. Using the “Local Stats Analysis” tool within the RMRS Raster Utility Toolbar,
L1 raster surface classification probabilities and the “MAXBAND” specification, which selects the
band within a multilayer raster dataset that has the largest value, we produced MLC functional raster
surfaces that defined the hurdle component for the L2 models as described in Section 2.4.

Where needle or broadleaf trees were present as defined by the MLC function raster surfaces,
raster surfaces depicting

√
BAH and ln(TPA) were created using the “Build Raster From Model” tool,

L2 RMRS Raster Utility based models derived from the “Linear Regression” tool (Table A1) and the
corresponding predictor raster surfaces.

√
BAH and ln(TPA) raster surface cell values were then

squared and exponentiated, respectively, to produce function raster surfaces of BAH and TPH using
the “Arithmetic Analysis” tool (Table A1). Cells classified as not having broad or needle-leaf trees
present were given BAH and TPH values of zero. Finally, to limit cell prediction for L1 and L2 raster
surfaces to the range of values used to calibrate models (i.e., no model extrapolation), we developed
the “Extract Domain” tool (Table A1). This tool reads RMRS Raster Utility based models, extracts the
minimum and maximums of each predictor variable based on the sample used to calibrate the model
and uses those minimums and maximums to select cell values within the predictor raster surface that
fall within those ranges. Cell values that have predictor variable values falling outside those ranges
are populated with NULL values which can be used to identify areas where estimation would have
required extrapolation outside of the values used to calibrate the models.

To take advantage of multiple central processing units (CPUs) and cores, additional tools were
created and added to the RMRS Raster Utility toolbar that allow for tiling of a raster surface and saving
small subsets of an otherwise large output in a parallel fashion (Table A1). Once saved, tiled outputs
were mosaicked into a mosaic raster dataset and used as one large continuous dataset [21]. To aid in
handling, distribution and using function raster surfaces, all L1 and L2 outputs were converted into a
series of Tagged Image File Format files [39].
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3. Results

3.1. Preprocessing

The ANR procedure brought each Landsat mosaic to a common radiometric scale with only a
few bands in scene 18/37 of the leaf off phenology indicating a weak fit (Figure A2). Weak fits in the
normalized images, shown as relatively low R2 values for scene 18/37 in Figure A2, were caused in
large part by substantial change in land cover between Landsat acquisition dates. Once normalized,
mean, standard deviation and GLCM contrast texture values for NAIP and each Landsat mosaic took
seconds to create using the Function Modeling framework. Moreover, extracting those texture values
and relating them to the summarized plot BAH and TPH values was also extremely quick. In total,
these processes took less than two minutes to perform.

3.2. Modeling

Our findings indicate that strong relationships exist between readily available imagery and field
data and that those relationships can be used to spatially characterize various aspects of a forest.
Using the GAM and multinomial variable selection procedures developed in R, we were able to select
three L1 and L2 candidate models based on only NAIP, only Landsat 8 and combined NAIP/Landsat 8
predictor variables (Table A3). For every response predictor variable, models that only used Landsat
8 predictor variables significantly outperformed models that only used NAIP predictor variables
(Table A3). Using a ∆AIC selection threshold of 6, selected L1 models were composed of only Landsat
8 texture metrics (Tables A3 and A4). For some of our L2 models combined NAIP/Landsat 8 predictor
variables produced the best fitting models. Though a few NAIP texture bands were generally selected
as statistically significant (at the α = 0.1 significance level) and improved L2 model fit when added to
Landsat 8 based predictors, the amount of variation explained by NAIP predictors was relatively minor
(maximum increases in R2 ~ 0.03) and did not warrant inclusion into final models given the striping
phenomenon and added processing time associated with including NAIP predictors. Therefore, final L2
models only use Landsat based predictor variables to estimate BAH and TPH (Table A3).

L1 models used various predictors depending on the model (Table A4) and explained a statistically
significant portion of the information within the data, with model deviance ranging from 258 for the
Regen model to 794 for the DomType model (Table 2). Applying an MLC rule to L1 class probabilities
we created five hard classification accuracy assessments which had high overall map accuracies (>80%;
Figure 6). Estimated 95% confidence intervals for each cell within each accuracy assessment are reported
in Figure 6 and provide a lower and upper frequency estimate that can be used to determine with 95%
confidence the total area associated with each hard classification category in the Fort Stewart SGA.

Table 2. Model name, type, sample size and fit statistics for each model in the study.

Model Name Type Sample Size AIC 1/R 2 Deviance 1/RSE P-Value 2

DomType SoftMax 762 878.644 794.644 <0.001
N_Leaf SoftMax 682 460.150 446.150 <0.001
B_Leaf SoftMax 682 418.850 408.850 <0.001
L_Leaf SoftMax 682 408.600 396.600 <0.001
Regen SoftMax 682 273.940 257.940 <0.001

N_BAH Linear 530 0.521 0.949 <0.001
N_TPH Linear 530 0.467 0.981 <0.001
B_BAH Linear 569 0.574 1.081 <0.001
B_TPH Linear 569 0.266 1.075 <0.001

1 AIC and Deviance fit statistics apply to SoftMax models, while coefficient of determination (R2) and residual
standard error (RSE) of transformed values apply to linear models. 2 P-values were calculated for chi-squared and F
distributions for SoftMax and linear modeling techniques, respectively.
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L2
√

BAH and ln(TPH) models were also statistically significant and had R2 values varying from
0.266 to 0.574 (Table 2). In all, two

√
BAH and two ln(TPH) models were created conditioned on the

presence of needle and broadleaf trees (Table 2). To evaluate L2 hurdle models of BAH and TPH,
we compared the combination of B_Leaf and L_Leaf hard classifications and back transformed

√
BAH

and ln(TPH) estimates with plot based measures of BAH and TPH estimates, respectively. RMSE for
needle and broadleaf BAH hurdle models were 6.40 and 7.14, respectively. For needle and broadleaf
TPH hurdle models, RMSE statistics were 541.07 and 1018.53, respectively. Observed versus fitted
values and bootstrapped estimates of 95% RMSE confidence intervals are reported in Figure 7.
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and A4).  

Unexpectedly, FIA plot locations did not capture the entire range of values of the imagery-
derived predictor variables across the study area. In these instances, L1 and L2 cell predictions 
represent extrapolations of the modeled results and are unreliable. In the final L1 and L2 raster 
surfaces, extrapolated cells were populated with NULL values using the “Extract Model Domain” 

Figure 7. Scatter plot of predicted (y-axis) vs observed (x-axis) values for basal area per ha (BAH) and
trees per ha (TPH) hurdle models. Root mean squared error (RMSE) and bootstrapped estimates of
lower and upper 95% RMSE confidence limits (within parentheses) are reported beneath each graphic’s
title. The black dashed line and gray region surrounding that line depict the linear relationship and
corresponding 95% confidence band between predicted and observed values. The solid red line is a
one-to-one line and provides a benchmark for comparison.

3.3. Prediction

Using the “Build Raster From Model” tool, Landsat 8 predictor surfaces and the “Save Raster”
tool, we built one multilayer, 3-band raster dataset (DomType; with bands for broadleaf, needle-leaf
and non-forest) and four single band raster datasets (Regen, B_Leaf, N_leaf and L_Leaf) that estimate
the probability of each L1 class occurring for every raster cell across the SGA at the spatial resolution of
30 m (Figures 8, A3 and A4, Table 2). Applying an MLC rule to N_Leaf and B_Leaf class probabilities,
we created two different hard classification function raster surfaces (Figures 8 and A3). These surfaces
were used as a spatial masks (hurdle) for the creation of L2 raster surfaces (Figures 8 and A4).

Unexpectedly, FIA plot locations did not capture the entire range of values of the imagery-derived
predictor variables across the study area. In these instances, L1 and L2 cell predictions represent
extrapolations of the modeled results and are unreliable. In the final L1 and L2 raster surfaces,
extrapolated cells were populated with NULL values using the “Extract Model Domain” tool (Table A3,
Figures A3 and A4). While modeled relationships were a significant improvement over classical spatial
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aggregation techniques such as FIA plot summaries (i.e., Figure 4 standard deviation verses Figure 7
RMSE) and are an improvement over previous longleaf mapping projects that include striping [10,12],
there was more variability in the relationships than we anticipated. Sources of variation are discussed
in Section 4.
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Figure 8. Graphic display of L1 and L2 outputs for the extent of the Fort Stewart SGA. Probability of
dominant forest type (DomType) is displayed as a red, green and blue color composite. This rendering
highlights dominant forest cover type probabilities as being either broadleaf (red), needle-leaf (green)
or non-forested (blue). Presence of broadleaf (B_Leaf) and needle-leaf (N_Leaf) probability raster
surfaces queried with a most likely class (MLC) rule were used to create the hurdle component of the
basal area per ha (BAH) and trees per ha (TPH) raster surfaces. The probability of areas composed of
predominantly young trees without a significant overstory component (Regen) and the presence of
longleaf pine trees (L_Leaf) are displayed as black and white gradients. Combined within a geographical
information system, these surfaces can be used to inform longleaf restoration.

4. Discussion

One of the primary outputs of this project was a series of fine grain raster surfaces depicting
various forest characteristics stored in a common digital format [39]. While the grain size of L1 and
L2 raster surfaces is 30 m (900 m2), L1 and L2 surfaces have a nominal spatial resolution equal to the
extent of an FIA plot (78 m by 70 m). Additionally, to meet project objectives, facilitate the replication
of these study methods and prioritize restoration efforts, multiple tutorials and many new raster and
vector processing tools were developed and made available online to stakeholders, practitioners and
the public [20,40].

These datasets can be integrated with existing tabular, vector and raster data using spatial
analyses found within most widely used GIS. In addition, many of the tools within the RMRS Raster
Utility toolbar [20] can perform spatial analyses and tabular summaries of spatial data with enhanced
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functionality, such as manipulating large multi-band raster datasets. Several tutorials have been
developed and are available to provide examples and guide the use of these tools, techniques and data
for restoration efforts [40]. Moreover, tutorials demonstrate how to use modeling error to accurately
account for variation within the modeled outputs. Datasets, tutorials and the RMRS Raster Utility
can all be accessed online through the RMRS Raster Utility Website [20] and associated data hosting
services [39].

We were able to significantly improve estimates of the amount, location and condition of longleaf
pine and other forest ecosystems across the Fort Stewart SGA using Landsat 8 imagery and FIA field
data. Similar to other studies that relate field data with remotely sensed information to estimate
aspects of the forested condition, BAH tended to be more strongly correlated with spectral metrics
than TPH [12,41–43]. Additionally, our study also supports the idea that multi-temporal imagery and
finer resolution imagery such as NAIP provides additional information over using only single season
imagery when predicting forest characteristics [41,44]. However, due to the NAIP image mosaicking
process, NAIP based predictor variables provided less information than we anticipated in many of
our models and also contained added spatial variability, making raster surfaces derived from those
predictor variables less desirable from an applied perspective. For these reasons, the final model used
only Landsat 8 based predictor variables.

Compared to our previous studies [10,12], which used only NAIP based texture to estimate
similar forest characteristics as in this study, the models and outputs of this study are an improvement.
For similar classifications and models of BAH and TPH, overall map accuracy was improved and
RMSEs normalized by mean values of BAH and TPH were smaller. Moreover, in this study neither
striping nor scene boundaries were present in the resulting raster datasets. Though there was error
associated with our estimates of presence and absence, basal area and stand density, the associated
raster outputs can be used in multiple ways to quantify and locate high quality longleaf and potential
longleaf habitat sites efficiently and effectively (e.g., [40]). While our current models and outputs are a
significant improvement over classical aggregation techniques (especially simple FIA plot summaries)
and previous mapping efforts [10,12], there are potentially many ways to further improve our estimates
and reduce the amount of error in the outputs.

To better understand how we can accomplish those improvements, it helps to look at two primary
sources of variability within the data: (1) differences in Landsat acquisition dates and corresponding
land use change and (2) the FIA field sampling protocol as it relates to remotely sensed imagery.
First, differences in spectral reflectance for Landsat scenes were minimized in large part by using
ANR. However, some bands in path/row 18/37 acquired during a leaf off phenology had coefficients
of determination lower than 0.8, suggesting that those bands were not completely normalized to a
common radiometric scale. This was most likely due to the amount of land use change that occurred
between reference and subject images. Fortunately, that path/row when mosaicked in the order
described accounted for only a small portion of the area examined in this study.

The second source of variation relates to the spatial accuracy of Landsat 8 imagery, the grain
size of the imagery, FIA plot locations and the FIA field sampling protocol. Landsat 8 imagery is
orthorectified with an image to image RMSE that is generally less than one pixel [45]. While this is
exceptional, each Landsat pixel has a grain size of 900 m2, potentially adding significant spatial error
to the alignment with forest inventory plots. Additionally, a FIA plot covers approximately half a ha
(78 m by 70 m) and is composed of four subplots with radii of 7.32 m for trees greater than or equal to
12.7 cm in DBH and four subplots with radii of 2.07 m for trees less than 12.7 cm in DBH. Within the
extent of an FIA plot footprint, this means that approximately 12% of the area of the plot is measured
for trees greater than or equal to 12.7 cm in DBH and less than 1% of the area is measured for trees less
than 12.7 cm in DBH. This suggests that for the extent of a FIA plot there can be substantial variation in
summarized estimates and that estimated mean values can vary significantly from true mean values,
especially for trees less than 12.7 cm in DBH occurring on heterogeneous plots. To draw stronger
relationships between plot measurements and Landsat 8 metrics, plots should be sampled using a
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design that covers more of the extent of the plot [46] than what is currently specified within the FIA
plot protocol [24]. Furthermore, field plot layouts, such as described in Reference [46], should also help
to improve the accuracy and precision of models that link field plot data to imagery.

In our study NAIP based predictors were not used to produce final predictive models and L1
and L2 raster surfaces. Despite its high spatial resolution, NAIP was not as good of a predictor
source as Landsat 8 imagery. This is most likely due to the varying times of image acquisition and
the cosmetic color balancing process used to blur the image seamlines. Combined with Landsat 8
imagery, NAIP texture (standard deviation and horizontal contrast) showed some improvement in
model fit. However, it was relatively minor and did not warrant the additional complexity associated
with generating and including NAIP predictors in the final models. Interestingly, NAIP and Landsat 8
mean texture values at the spatial resolution of a FIA plot were strongly correlated with one another.
This suggests that if raw, unprocessed NAIP imagery can be acquired, a modified ANR procedure that
uses coarser grained Landsat 8 imagery could be used to bring NAIP images to a common radiometric
scale and those normalized images could be used to produce predictor variables free from the color
balancing issues associated with the current NAIP mosaicking process. The authors are currently
conducting such an analysis for the Apalachicola region of Florida using NAIP imagery that has not
been rectified, compressed, mosaicked or color balanced and expect better results using raw NAIP data.

Finally, because L1 and L2 outputs have modeling error, care should be taken when using the
outputs. For small areas of the landscape (i.e., less than 40 ha), aggregated mean cell values can vary
substantially. However, for larger areas (i.e., greater than 400 ha), aggregated cell values should closely
approximate the true mean condition of that area. Use of these surfaces for longleaf restoration should
consider this in developing restoration strategies.

5. Conclusions

Our Landsat 8 based models linked FIA plot data to image based texture and explained a substantial
amount of variation in the field data. Additionally, they are an improvement over aggregating FIA
plot information to produce area estimates of longleaf pine cover. Furthermore, they offer some
improvement over previous mapping attempts that used only NAIP imagery [10,12]. Most important,
the models and outputs created from this study can be used to identify where longleaf pine trees are
present within the Fort Stewart SGA and quantify the condition and characteristics of various forest
types for much smaller spatial extents than was previously possible. These outputs can be combined,
transformed and summarized to address a wide range of restoration questions and are available online
for free [39].
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Appendix A. Tables and Figures

Table A1. List of newly developed tools integrated into the RMRS Raster Utility toolbar and used to
faciliate raster and vector based processing.

Name Icon Description
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Batch 
Processing  
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raster datasets. 

Soft Max Nnet  

The “Soft Max Nnet” tool takes user supplied tabular data 
with specified response and predictor variables and makes a 

machine learning, artificial neural network classification 
model. 

Build Raster 
From Model  

The “Build Raster From Model” tool takes a user selected 
predictive model and corresponding raster based predictor 

surfaces to create new function raster surfaces [22] depicting 
class probabilities. 

The “Build Raster From Model” tool takes a user selected
predictive model and corresponding raster based predictor

surfaces to create new function raster surfaces [22]
depicting class probabilities.
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The “Local Stats Analysis” tool performs band based
statistics for each cell given a user specified multilayer
raster and statistic. Outputs from the tool are stored as

function raster surfaces.
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Regen 
Landsat 8 7 273.94 5.29 257.94 

NAIP 5 313.22 44.57 301.22 
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Landsat 8 6 460.15 - 446.15 

NAIP 5 651.37 191.22 639.37 
NAIP/Landsat 8 8 464.20 4.05 444.20 
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Landsat 8 4 418.85 4.12 408.85 

NAIP 4 558.25 143.52 548.25 
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B_BAH Landsat 8 11 1717.67 18.09 0.57 
NAIP 5 2118.65 419.07 0.12 

The “Linear Regression” tool takes user supplied tabular
data with specified response and predictor variables and

makes an ordinary least squares regression model.
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Table A1. Cont.

Name Icon Description

Arithmetic Analysis
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The “Arithmetic Analysis” tool performs arithmetic at the
raster cell level defined by the user for specified

raster datasets.

Extract Domain Batch Proccessing
command

The “Extract Domain” tool populates raster cell values
with a NULL value for instances that a predictive model is
extrapolating. Users specify a RMRS Raster Utility based
model and the raster predictor variable surfaces used to

create the model.
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The “Save Parallel” tool reads a raster dataset including
batch files and saves those datasets as smaller subsets

defined by the user in a parallel fashion.

Table A2. Groups of trees species used in this study based on FIA tree species codes [24].

Group Name FIA Species Codes

Needle-leaf 115, 128, 131, 107, 110, 111, 121(Longleaf pine)

Broadleaf

819, 835, 838, 842, 806, 824, 840, 841, 68, 221, 222, 802, 812, 813, 820, 825, 827, 831, 837, 822,
833, 834, 461, 462, 491, 521, 531, 544, 555, 591, 611, 621, 652, 653, 682, 691, 692, 693, 694, 711,
721, 762, 858, 922, 931, 972, 975, 993, 999, 316, 373, 391, 311, 317, 323, 345, 356, 367, 381, 421,
471, 500, 502, 541, 548, 551, 552, 581, 660, 662, 681, 701, 722, 731, 760, 764, 766, 901, 912, 953,

971, 994, 402, 403, 404, 409, 401, 410

Table A3. Model, data source for predictors, number of predictors, AIC, delta AIC and deviance and
coefficient of determination (R2) of candidate NAIP only, Landsat 8 only and combined NAIP/ Landsat
8 based models.

Model Source Predictors AIC ∆AIC Deviance\R2

DomType
Landsat 8 20 878.64 - 794.64

NAIP 10 1039.03 160.39 995.03
NAIP/Landsat 8 60 967.33 88.69 723.33

Regen
Landsat 8 7 273.94 5.29 257.94

NAIP 5 313.22 44.57 301.22
NAIP/Landsat 8 8 268.65 - 250.65

N_Leaf
Landsat 8 6 460.15 - 446.15

NAIP 5 651.37 191.22 639.37
NAIP/Landsat 8 8 464.20 4.05 444.20

B_Leaf
Landsat 8 4 418.85 4.12 408.85

NAIP 4 558.25 143.52 548.25
NAIP/Landsat 8 6 414.73 - 400.73

L_Leaf
Landsat 8 5 408.60 - 396.60

NAIP 3 464.92 56.32 456.92
NAIP/Landsat 8 5 408.60 0.00 396.60

N_BAH
Landsat 8 9 1460.17 40.15 0.52

NAIP 5 1723.14 303.12 0.20
NAIP/Landsat 8 10 1420.02 - 0.55

B_BAH
Landsat 8 11 1717.67 18.09 0.57

NAIP 5 2118.65 419.07 0.12
NAIP/Landsat 8 10 1699.58 - 0.58
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Table A3. Cont.

Model Source Predictors AIC ∆AIC Deviance\R2

N_TPH
Landsat 8 10 1496.56 35.80 0.46

NAIP 4 1673.15 212.39 0.23
NAIP/Landsat 8 11 1460.76 - 0.49

B_TPH
Landsat 8 6 1706.39 - 0.27

NAIP 4 1835.78 129.39 0.07
NAIP/Landsat 8 6 1706.39 0.00 0.27

Table A4. Response and predictor variables selected in final L1 and L2 forest characteristics models.

Model Response Image Phenology Texture Bands &
Transformations

DomType Broadleaf, Needle-leaf, Non-forest

Dormant
Mean 2, 3, 6

Contrast 1, 3, 4, 7

Grow
Mean 2, 3, 4, 5, 7

SD 5

Contrast 5

Off
Mean 6,7

Contrast 1, 2, 5, 7

N_Leaf Present/Absent

Dormant Mean 5, 6

Grow SD 5

Off
Mean 5, 6

SD 6

B_Leaf Present/Absent
Grow

Mean 5, ln(4)

SD 1

Off Mean 5

L_Leaf Present/Absent

Dormant Mean 2, 3, 5

Grow Mean 5

Off Mean 5

Regen Present/Absent

Dormant Mean 2, 3, 6

Grow Mean 5

Off Mean 1, 3, 5

N_BAH √
BAH

Dormant Mean ln(4), ln(6)

Grow
Mean ln(3), ln(6)

Contrast 6, ln(2)

Off
Mean 5, ln(4)

SD ln(3)

N_TPH Ln(TPH)

Dormant
Mean 3, ln(6)

SD ln(4)

Contrast 6

Grow
Mean ln(3), ln(6)

Contrast ln(4)

Off
Mean 5, ln(4)

SD 4
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Table A4. Cont.

Model Response Image Phenology Texture Bands &
Transformations

B_BAH
√

BAH

Dormant
Mean ln(3), ln(6)

SD 1

Grow
Mean ln(3), ln(4)

SD 7

Off
Mean 1, ln(3), ln(5)

Contrast 4, 5

B_TPH Ln(TPH)

Dormant Contrast ln(1)

Grow
Mean ln(4), ln(5)

SD 1, 5

Off Mean ln(5)
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Figure A1. Example of visible scene boundary between two Landsat 8 images for the Growing 
phenology after converting DN values to surface reflectance [28]. Images have been mosaicked 
together with no blending of pixels values like in Figure 5 and are displayed in red, green and blue 
(RGB), color composites for specified band combinations. 

Figure A1. Example of visible scene boundary between two Landsat 8 images for the Growing
phenology after converting DN values to surface reflectance [28]. Images have been mosaicked together
with no blending of pixels values like in Figure 5 and are displayed in red, green and blue (RGB),
color composites for specified band combinations.
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values for each Landsat path/row (x-axis) and phenology (x-axis title) using the ANR relative 
normalization process. 

Figure A2. Minimum (blue), average (orange) and maximum (gray) coefficient of determination
(R2) values for each Landsat path/row (x-axis) and phenology (x-axis title) using the ANR relative
normalization process.
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Figure A3. L1 Dominant forest type (DomType) and presence/absence hard classification raster 
surfaces for areas containing longleaf pine trees (L_Leaf), areas composed of mostly regeneration 
(Regen), areas containing needle-leaf trees (N-Leaf) and areas contain broadleaf trees within the Fort 
Stewart SGA. L1 probability surfaces and a most likely class (MLC) rule were used to create each hard 
classification. Hard classification map accuracies can be found in Figure 6. 

Figure A3. L1 Dominant forest type (DomType) and presence/absence hard classification raster surfaces
for areas containing longleaf pine trees (L_Leaf), areas composed of mostly regeneration (Regen),
areas containing needle-leaf trees (N-Leaf) and areas contain broadleaf trees within the Fort Stewart SGA.
L1 probability surfaces and a most likely class (MLC) rule were used to create each hard classification.
Hard classification map accuracies can be found in Figure 6.
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Figure A4. L2 Broad and needle-leaf TPH and BAH raster surfaces for the Fort Stewart SGA. Red 
areas within each graphic identify locations for which L2 models extrapolate estimates. Cell values 
for these areas are coded as NULL. 
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Figure A4. L2 Broad and needle-leaf TPH and BAH raster surfaces for the Fort Stewart SGA. Red areas
within each graphic identify locations for which L2 models extrapolate estimates. Cell values for these
areas are coded as NULL.
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