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Abstract: In land cover mapping, an area with complex topography or heterogeneous land covers is
usually poorly classified and therefore defined as a low-accuracy area. The low-accuracy areas are
important because they restrict the overall accuracy (OA) of global land cover classification (LCC)
data generated. In this paper, low-accuracy areas in China (extracted from the MODIS global LCC
maps) were taken as examples, identified as the regions having lower accuracy than the average OA
of China. An integrated land cover mapping method targeting low-accuracy regions was developed
and tested in eight representative low-accuracy regions of China. The method optimized procedures
of image choosing and sample selection based on an existent visually-interpreted regional LCC
dataset with high accuracies. Five algorithms and 16 groups of classification features were compared
to achieve the highest OA. The support vector machine (SVM) achieved the highest mean OA (81.5%)
when only spectral bands were classified. Aspect tended to attenuate OA as a classification feature.
The optimal classification features for different regions largely depends on the topographic feature
of vegetation. The mean OA for eight low-accuracy regions was 84.4% by the proposed method in
this study, which exceeded the mean OA of most precedent global land cover datasets. The new
method can be applied worldwide to improve land cover mapping of low-accuracy areas in global
land cover maps.

Keywords: land cover classification; low-accuracy area; classification algorithms; support vector
machine; topographical data; classification accuracy

1. Introduction

Land cover data are indispensable for many studies and for practical applications such as
global change assessment, sustainable development, hydrological modeling and land resource
management [1–6]. Multiple global land cover datasets have been produced in the last two decades.
Most of these datasets were assessed with accuracies of less than 80% by users or producers [7–12].
An important reason is that some areas always have relatively low accuracy.

According to an accuracy assessment for global land cover datasets based on 38,664 test samples,
some regions located in highly heterogeneous areas have lower accuracies than others [13]. Areas with
complex topography or varied land cover types tend to be characterized by high heterogeneity and
low accuracy, so they can be included among the low-accuracy areas. In China, the agro-pastoral zone
that is located in the semi-humid and semi-arid area of China, for example, is rich in land cover types
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and the topography of the southern hilly area is complex. Ran et al. and Zeng et al. have shown that
the accuracies for these two areas are less than the average accuracy of the whole of China [14,15].
How to improve the accuracy of low-accuracy areas is essential for improving the overall accuracy of
land cover mapping at large scale.

Land cover classification (LCC) is a comprehensive process. Every step in the classification process
will affect the LCC accuracy including selection of image, training samples, classification algorithm
and classification features. In terms of availability and data characteristics, Landsat and Sentinel-2
Imagery are more suitable for LCC of low-accuracy areas because of their fine spatial resolution and
free availability [16–18]. Landsat is the only sensor that can go back to a historical period [19–21].
Sentinel-2 has higher spatial resolution as well as a higher revisit cycle after 2015 [22]. The accuracy of
the Moderate Resolution Imaging Spectroradiometer Land Cover Type (MODIS LCT) product has
been low. The limiting factor has been mixed land-cover type pixels that were caused by its coarse
spatial resolution [15]. However, remote sensing data with high spatial resolution are usually very
expensive and are more suitable for studies of small regions.

The classification algorithm is one of the most often studied factors in improving classification
accuracy. Classification algorithms perform differently under the different conditions found in different
regions. Some popular algorithms like support vector machine (SVM) and random forest (RF) have
performed better than many other algorithms [9,23–25]. Logistic regression (LR) and logistic model
tree (LMT) also produced good results in a comparison with 15 algorithms used to classify regions
in southern China [26]. In the past, several different fusion methods have been developed that
could combine a number of land-cover classifications. These methods produced a hybrid land-cover
map which could not be achieved by any of the individual sources on their own [27–29]. The
fusion methods are helpful when some of the individual classification data are of relatively better
results. In low-accuracy areas where almost all the individual classification data are apt to be of weak
performances, fusion of different LCC data is not enough to improve classification accuracy.

Spatial variability is an inherent trait of any terrestrial element, including land cover. The
manifestation of spatial variability is that the same land cover type shows different spectral
characteristics and topographical features in different regions because of differences of climate,
human activity and physical conditions [30]. The high heterogeneity is one of the most important
factors that are responsible for the low classification accuracy of low-accuracy area. However, most
existing global land cover datasets could not gather large amounts of representative training samples
due to lack of sufficient understanding on low-accuracy regions. [7–12]. The selection of training
samples and features in different regions of low-accuracy areas can correctly identify phenomena such
as the same object with different spectra (SODS) and different objects with the same spectrum (DOSS).

The existence of low-accuracy areas is one of the most important limitations in improving global
land cover mapping. Few researches have focused on the low-accuracy area and the classification
method that aims at this area has not been discussed technically as well. The primary objective
of this study is therefore to design an LCC method to improve the land cover mapping accuracy
of low-accuracy areas. The method developed in this study is an integrated LCC method as it
optimizes the whole classification process including image choosing, training sample selection as
well as classification algorithm and features. It improves the images choosing and sample selection
based on an existent visually-interpreted LCC dataset. Five algorithms and 16 groups of classification
features were compared to decide the optimal classification algorithm and features regionally. The
Landsat OLI imagery is the image data source.

Section 2 describes the low-accuracy areas of China, the study sites and datasets that were the
focus of this study. Section 3 explains the method. Section 4 provides a detailed description of the
results, including the optimal algorithm, the impacts of classification features on accuracy, optimal
classification on a region-by-region basis and comparisons of the classifications with existing datasets.
Section 5 includes discussions and conclusions. Our goal is to prove that the proposed method is valid
in improving classifications of low-accuracy areas.
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2. Study Sites and Datasets

2.1. Low-Accuracy Area and Study Sites

China was chosen as our study area to test the integrated method. Low-accuracy areas of China
were defined by the accuracy assessment of MODIS LCT data. We choose MODIS LCT data as the
classification data to calculate accuracy because mix pixels that are caused by spatial heterogeneity are
the main error sources of MODIS LCT product [15]. Reference data used for accuracy assessment were
the 1:10,000 National Land Use Data of China (NLUD-C) [30]. NLUD-C is a dataset totally acquired
by visual interpretation of professors in land cover classification. The validation of NLUD-C has
been completed by field investigations and the OA of NLUD-C is 96.67%. Because the OA of MODIS
LCT over the whole of China is 64.62%, counties with overall accuracies <64.62% were assigned to
the low-accuracy category (Figure 1). The low-accuracy areas of China are mainly located in the
second-grade area where the terrain is complex and land cover types are various. The low accuracy
areas in western parts of Xinjiang province and Tibetan province were excluded from the study
(Figure 1) where the difference between MODIS LCT and NLUD-C is mainly caused by seasonal
changes of grasslands [15]. The areal proportion of the low-accuracy area in China is 41% without the
excluded area.
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Figure 1. Distribution of nine study sites in China. The OA (overall accuracy) is the overall accuracy of
every county in the accuracy assessment of MODIS LCT data. The OA of China averaged 64.62%. All
counties in China were divided into two categories depending on whether their accuracies exceeded or
were less than 64.62%. The counties with OAs <64.62% were classified as low-accuracy areas. The
accuracies of study sites were listed in the brackets. TK was located in a high-accuracy area, whereas
the other eight study sites (BLZ, DQ, DZ, JR, ML, SB, YA and ZW) were located in low-accuracy areas.
The nine study sites were located in different eco-regions of China (Table 1).

Nine counties were chosen as study sites for the land cover mapping of low-accuracy areas as
follows: Ba Lin Zuo (BLZ), Da Qing (DQ), Da Zhu (DZ), Ju Rong (JR), Mi Lin (ML), Shuang Bai (SB), Tai
Kang (TK), Yong An (YA) and Zhong Wei (ZW) (Figure 1). Of these nine counties, one (TK) was located
in a plain, high-accuracy area and was used as a control to enable more comprehensive comparisons
between algorithms. The other eight counties were located in low-accuracy areas, which were defined
as counties with OAs less than the OA for the whole of China (Figure 1). All the study sites were
located in different ecological regions of mainland China (Table 1) and three were in agro-pastoral
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zones (BLZ, DQ and ZW), four were in southern mountainous or hilly regions (DZ, ML, SB and YA)
and two were in agricultural areas (TK and JR).

Table 1. Characteristics of the selected study sites in low-accuracy areas of China.

Study Site Location Area (km2) Image (Path/Row) Image Time

BLZ Agro-pastoral zone 6418 122/29 20140727
DQ Northeast Plain 5065 119/28 20140722
DZ Sichuan Basin 2083 127/39 20131202
JR Middle and Lower Yangtze Valley Plain 1390 120/38 20130811

ML Southeast of Tibetan Plateau 9045 136/40 20140119
SB Yunnan and Guizhou Plateau 4114 130/43 20130614
TK North Plain 1766 123/36 20130901
YA Southeast Hilly Area 2944 120/42 20131201
ZW Inner Mongolia Plateau 4529 130/34 20140601

2.2. Datasets

Table 2 lists the datasets used in this study. The data used for classification included Landsat 8
operational land imager (OLI) image data (from Band 1 to Band 7) and topographical data (digital
elevation model [DEM], slope and orientation of slope [aspect]). Nine OLI images for the nine study
sites used for classification were selected from images that were acquired in 2013 and 2014. The DEM
data came from the ASTER Global Digital Elevation Map version 2 (GDEM v2). The slope and aspect
data were derived from the DEM data.

The 2013 MODIS 250-m, 16-day enhanced vegetation index (EVI) data (MOD13Q1) were used to
decide the time (i.e., day) associated with the images that were finally used in classifications (Table 1).
The method is presented in Section 2.2 (Figure S1).

Two existing land-cover datasets were compared with our data to verify the advantage of
the provided method. The two datasets are FROM-GLC (Finer Resolution Observation and
Monitoring-Global Land cover) and MODIS LCT (MCD12Q1). FROM-GLC is a global land cover
dataset produced using Landsat images acquired around 2010 [9] and version 2017 was available for
this study. Its self-evaluated accuracy is 64.9%. MCD12Q1 is an annually updated global land cover
dataset [8] and version 6.0 was available for this study.

Table 2. Datasets used in this study.

Dataset Use for Spatial Resolution
(m) Data Source

Landsat OLI classification 30 www.glovis.usgs.gov/
GDEM v2 classification 30 www.reverb.echo.nasa.gov/
MOD13Q1 Image selection 250 https://ladsweb.modaps.eosdis.nasa.gov/search/

FROM-GLC Accuracy
comparison 30 http://data.ess.tsinghua.edu.cn/

MODIS LCT Accuracy
comparison 500 https://ladsweb.modaps.eosdis.nasa.gov/search/

3. Method

The integrated land cover mapping method is improving the accuracy by optimizing four
procedures including choosing images that could better separating vegetation types, selecting training
samples with representativeness, as well as producing the optimal classification by using the suitable
algorithm and features on a regional basis (Figure 2). The optimization processes of the four procedures
are elaborated below.

www.glovis.usgs.gov/
www.reverb.echo.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/search/
http://data.ess.tsinghua.edu.cn/
https://ladsweb.modaps.eosdis.nasa.gov/search/
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Figure 2. Flowchart of the optimization processes.

3.1. Image Selection

Image selection is essential to find the image that can best discriminate between different land
cover types, especially vegetation types. The image selection method that we used was based on
vegetation phenology and image quality [31] and was carried out in two steps.

First, an optimal timeframe was determined based on time-series of 16-day EVI and Ed (EVI
difference, see Equation (1) of the major land cover types (Figure 3). Time-series of 16-day EVI came
from the 2013 MOD13Q1. The Ed quantifies the difference of EVI among all major land cover types.
The EVI and Ed for each land cover type were derived by averaging the EVI data for all pixels of
that land cover type derived from existing land-cover data (NLUD-C) [30]. The optimal timeframe
included two-week periods with peak EVI values of major land cover types or the maximum Ed value.
Images in the optimal timeframe facilitated distinguishing between different vegetation types.

Ed =
∑n−1

i=1

∑n

j=i+1

∣∣∣Ei − Ej
∣∣∣, (1)

where Ei and Ej. are the EVI values of land cover types i and j, respectively, and n is the number of
major land cover types.

The second step is to pick out the optimal image from the images in 2013 and 2014. Images with
cloud cover higher than 30% were removed. Next, the one within the optimal timeframe was picked as
the optimal image. When more than two images were available in the optimal timeframe, the one with
the larger Ed was chosen. If there was no available image in the optimal timeframe, then the image at
the nearest time was selected. Figure A1 presents the results of the selection process.
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Figure 3. Time-series of 16-day enhanced vegetation index (EVI) and Ed for the major land cover types
in BLZ during 2013. Ed indicates the difference of EVIs between the main land cover classes (Equation
(1)). The four dotted lines indicate the optimal times for image classification. Line “a” and line “b”
indicate the peak values of the EVI for cropland, which was the dominant land cover type in BLZ. Line
“c” is the EVI value that exceeded the peak EVI value minus 0.02. Line “d” indicates the peak value
of Ed.

3.2. Land-Cover Classification System

The land cover classification system used in this study was composed of 10 basic land cover
types (Table 3) and was consistent with the classification system used in the FROM-GLC [9]. The
classes in the classification system served as the basis for subtly thematic classification, such as a
second-level LCC. The conversion from the International Geosphere–Biosphere Program classification
system applied to the MODIS LCT dataset to our classification system was completed by aggregating
classes at the second level into classes at the first level, as presented by Zeng et al. [15].

Table 3. Land cover classification system used in this study.

Code Name Definition

1 Cropland Land with cultivated crops growing on it in growing season
2 Forest Natural or planted forests
3 Grassland Natural or planted Grassland

4 Shrubland Shrub cover identifiable in the image, having a texture finer than tree
canopies but coarser than Grassland.

5 Wetland Perennial or seasonal inundated land with hygrophytes growing on it.
6 Water bodies All inland water bodies.

7 Tundra Located at high mountains above tree line and high latitude regions with
low height vegetation.

8 Impervious land Primarily based on artificial cover such as asphalts, concrete, sand and
stone, bricks, glasses and other cover materials.

9 Barren land Vegetation is hardly observable, while dominated by exposed soil, sand,
gravel and rock backgrounds.

10 Snow and ice Distributed in the polar areas and high mountains.

3.3. Training and Testing

Training samples were obtained by a sorted selection process. A sub-region for each land-cover
type was extracted from the existing land-cover data (NLUD-C) and the same amount of samples was
randomly selected for each type. The suggested number of training pixels for each class was required
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to be 10–30 times the number of feature bands [32,33]. Two hundred fifty pixels were chosen as training
samples for each land-cover type in each study site. To verify the classification results, a total of
500 pixels were initially selected randomly as test samples in each study site. Because of this random
selection, dominant cover types occupied a majority of the initial samples, whereas some minority or
fragmented cover types occupied a small proportion. To circumvent this problem, additional pixels
were selected to ensure that at least 30 samples were selected for each of the minority types. The total
number of testing pixels for each study region was therefore larger than 500. Training and testing
samples were compared and adjusted to avoid using the same sample class as training and testing
samples. The numbers of samples are listed in Table 4. The attributes of both training and testing
samples were decided by experts who had produced NLUD-C and the attributes were affirmed by
using high-resolution images on Google Earth. The interpretation marks were listed in Figure A2
(Figure S2).

Table 4. Numbers of testing samples for each land cover class.

Study Site BLZ DQ DZ JR ML SB TK YA ZW

The number of classes 7 7 6 4 8 6 4 6 7
Cropland 141 173 311 282 40 91 340 69 82

Forest 90 30 135 105 205 296 30 339 30
Grassland 189 102 30 0 53 78 0 30 212
Shrubland 37 0 30 0 36 30 0 30 30
Wetland 0 30 0 0 0 0 0 0 0

Water bodies 30 48 30 30 56 30 30 30 30
Impervious 30 49 30 85 48 30 124 30 30
Barren land 30 82 0 0 33 0 0 0 106

Snow and ice 0 0 0 0 123 0 0 0 0
Total 547 514 566 502 590 555 524 528 520

3.4. Classification Algorithms and Features

Five algorithms were used in the classification to choose the optimal algorithm, including SVM
(Support Vector Machine), LR (Logistic Regression), LMT (Logistic Model Tree), RF (Random Forest)
and MLC (Maximum Likelihood Classification). Most of them are chosen because of good performance
and popularity. Among the five classification algorithms used for comparison, the MLC, a parametric
algorithm, is the most often used statistics-based algorithm and is often taken as a standard for
comparison [24,25,34]. Details about the explanation and use of the five algorithms have been
explained previously [35–39]. Table 5 lists the values of the parameters for different algorithms. The
parameters with multiple values are listed in Table 5 and the parameters need to be adjusted during use
to get the best performance in an algorithm. The prior probability value for MLC was set to the same
value for all land cover types. Classification features used in the comparison included spectral bands
of OLI images (from Band 1 to Band 7), NDVI (Normalized Difference Vegetation Index), elevation,
aspect and slope.

3.5. Comparison Analysis

In the comparison, the confusion matrix and OA were the main evaluation indexes. When the
algorithms were compared, the first seven bands of OLI images were classification inputs and the
algorithm with the highest OA was chosen as the optimal algorithm. Spectral bands plus a single
non-spectral band feature (NDVI, elevation, slope or aspect) were classified using the optimal algorithm
and the result was compared with the results from only spectral bands as input to assess the impact
of non-spectral band features on accuracy. The OAs for the 16 groups of classification features were
then compared to determine the optimal combination of classification features on a region-by-region
basis. The classification from the optimal algorithm and classification features is the classification
result of the integrated land cover mapping method in the study. Finally, our classification data and
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the FROM-GLC and MODIS LCT data were evaluated with the same testing samples. The overall
accuracy and classification results were presented.

Table 5. Algorithm parameter values and source of codes.

Algorithm Abbreviation Parameter Type Values of Parameter SOURCE

Maximum-likelihood
classification MLC prior probability The same for all classes. ENVI

Logistic regression LR Log likelihood
edge value 0, 10-10, . . . ,10-1, 1 Weka

Logistic model tree LMT Minimal instances
for splitting 5, 10, 15, 20, 25, 30 Weka

Weight trimming β 0, 0.01, . . . , 0.34, 0.35
Support vector

machine
SVM Penalty factor C 1, 10, 20, . . . , 300 Libsvm

Kernel function
Parameter γ 0.1, 0.2, . . . ,0.9, 1, 2, 3, . . . , 39, 40

Random forest RF numFeature From 1 to the number of features Weka
numTrees 20, 40, 60, 80, 100

4. Results

4.1. Optimal Algorithm

Comparative analysis of overall accuracies identified the SVM as the best algorithm for most study
sites when the classification inputs were the spectral bands of OLI images (Figure 4). The accuracy
comparison identified LR as the optimal algorithm for YA County. The mean accuracy of study sites in
the low-accuracy areas was also the highest for SVM (81.5%) among the five algorithms. The lowest
mean accuracies for low-accuracy areas were achieved by RF. The difference between the highest
and lowest mean accuracies was 7.5%. The best and worst accuracies achieved in TK County, the
high-accuracy region, were also obtained by SVM and RF, respectively and the difference between the
high and low accuracy was 3.4%. The superiority of SVM over the other algorithms was therefore
more obvious in low-accuracy areas.
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Figure 4. Comparison among OAs of the five algorithms across the nine study sites with spectral bands
as the only class features. “Mean” stands for the mean accuracy of all study sites in low-accuracy areas,
with the exclusion of TK.

The superiority of the SVM over the other algorithms could be attributed to the fact that it gave
more weight to the training samples that lay at the edge of the class distributions in feature space [40].
This advantage was especially valuable when training samples were hard to obtain. It was likely to
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lead to over-fitting, however, when the area accounted for by the dominant class greatly exceeded the
area accounted for by the minority classes and the number of training samples for the different classes
was the same. The reason is that the representativeness of training samples among minority class pixels
is better than the representativeness of training samples among dominant class pixels (Figure 5a).

The exception that SVM performed worse than other algorithms in YA County could be attributed
to over-fitting by SVM. The land-cover types (minority class) other than forest (dominant class)
occupied a small proportion of study sites but the fact that the training samples for all cover types
included 250 pixels increased the probability of edge pixels for the minority class in training samples.
The boundary determined by edge pixels could therefore be trained to include dominant type pixels
into minority-type pixels more easily. Many dominant types (forest) pixels were classified incorrectly
as minority types (grassland, shrubland and bodies of water) pixels (Figure 5b).
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Figure 5. Over-fitting caused by SVM (Support Vector Machine) at YA (Yong An City). Over-fitting that
was caused by using SVM (a) and misclassification of forest at YA with spectral bands as classification
features and SVM as classification algorithm (b). In panel (b), the first bar represents forest in the
validation data. Different colors (other than green) in one bar indicate the percent of forest pixels that
were misclassified as another land-cover type.

4.2. Impact of Class Features on Accuracy

In addition to classification algorithms, input data are among the factors that can be controlled by
analysts to improve accuracy. We chose four classification features as added input data to determine
the impact of the added single feature on accuracy, including NDVI, elevation, aspect and slope. The
SVM was used in feature-added classifications of eight of the nine sites. LR was used in YA County
where LR was the optimal algorithm in the algorithm comparison (Figure 5).

A comparison of the OA with spectral bands as classification input versus spectral bands
augmented with NDVI as input (Figure 6) revealed that NDVI caused small differences in accuracy.
The slightly positive effect of NDVI can be explained by the fact that NDVI is derived from spectral
bands and part of its information has been included in the spectral bands. However, the utility of
NDVI in classification is unequivocal, because the impact of NDVI on accuracy is positive under
most conditions.

In the case of topographical information, we assessed the impact on OA induced by every terrain
feature (elevation, slope and aspect). Figure 6 shows the results of that analysis. We discovered that
aspect decreased accuracy at all study sites, whereas the impacts of elevation on accuracy were opposite
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in mountainous areas and in areas that were combinations of hilly and flat regions, which is the same
with slope. These differences were related to the distribution and types of cropland. The amplitudes of
the variations were larger when they were induced by elevation than by slope.Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 22 
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Figure 6. Accuracy variations caused by adding new features to classification input on the basis of
spectral bands. Variation is equal to classification accuracy of spectral bands and new features minus
the accuracy of only spectral bands.

The negative effect of aspect reflected the fact that there was an overlap in the distributions of the
aspect values of different land cover types. The elevation effect was usually positive in areas where
plain regions and hilly regions were both present (such as BLZ, DZ and JR) because either trees or
shrubs may grow in hilly regions but croplands are located in plain regions. The negative effects of
elevation and slope were caused by the distribution of terraced fields (i.e., cropland) on hills in regions
like the Southeast Hilly Area (YA) and Yunnan and Guizhou Plateau (SB). The fact that elevation had a
greater effect on accuracy than slope was due to the fact that natural vegetation is affected more by
elevation than by slope.

4.3. Optimal Combination of Class Features and Classification Results

To determine the optimal combination of class features for each region, 16 groups of class features
were classified using SVM. Table 6 lists the OAs. The combination of class features corresponding
to the highest accuracy still indicated that NDVI was necessary and aspect was not needed in most
regions. This conclusion affirms the results of the impact analysis of single features.

Figures 7 and 8 compare the accuracy and results, respectively, of the optimal classifications with
the existing land datasets, including FROM-GLC and MODIS LCT. Figure 7 shows that the newly
produced data were more accurate than the FROM-GLC and MODIS LCT datasets in all regions. The
mean accuracy for the area of our study, 84.4%, exceeded the accuracies of FROM-GLC and MODIS
LCT, 64.0% and 42.5%, respectively. The error of FROM-GLC data was partly because the data were
produced using images from around 2010 while the testing samples were based on images acquired in
2013. However, the difference of 20% was caused mainly by the different methods by comparing the
Landsat OLI images from the two years.

On the whole, our data were similar to FROM-GLC data. The difference between FROM data and
our data was its misclassification between natural vegetation and cropland in typical agro-pastoral
regions like BLZ County and in southern hilly regions like SB County, where there were terraced
fields. The MODIS LCT lost many land cover details because of its coarse spatial resolution compared
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with the classification data from our study (Figure 8). Misclassification between grass and forest was
obvious in southern hilly areas such as parts of SB County and YA County in the MODIS LCT dataset.

Table 6. Accuracy comparison among classifications from different combinations of class features.
Spectral bands were used in every classification. Below the second row, the capital letter stands for a
newly added class feature as input: N is NDVI, E is elevation, S is slope and A is aspect. The underlined
values are the highest accuracies for all study sites.

Classification Input Classification Accuracy (%)
BLZ DQ DZ JR ML SB TK YA ZW

Spectral bands 78.8 80.5 78.1 87.7 81.5 88.1 95.6 85.0 84.0
N 79.0 80.9 78.3 88.1 80.2 88.5 95.8 84.5 83.9
E 80.1 80.0 89.2 81.7 87.0 83.3 81.0
S 79.5 78.8 87.9 82.7 87.6 85.2 82.9
A 78.1 77.6 85.7 80.2 86.1 84.1 81.5

NE 79.2 82.7 89.4 83.2 87.8 82.8 81.2
NS 79.0 78.8 87.7 82.4 84.5
NA 78.1 77.0 85.5 82.7 85.2 83.7 81.5
ES 79.5 80.2 89.4 81.7 86.0 82.2 80.4
EA 78.8 79.2 89.2 81.5 85.2 82.6 79.8
SA 78.1 77.9 87.1 82.0 85.8 84.5 81.7

NES 79.3 82.7 89.2 82.9 86.7 81.6 80.6
NEA 78.8 79.2 89.0 82.7 85.2 81.3 79.6
NSA 78.2 78.1 86.1 83.4 85.6 81.8 81.5
ESA 78.8 79.3 88.7 83.4 84.5 81.8 79.8

NESA 79.2 80.4 89.2 84.1 84.3 81.1 80.2
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Figure 7. Accuracy comparison between the classification of this study (OLI) and existing datasets
(FROM-GLC and MODIS LCT). AVE is the mean accuracy of study sites in low-accuracy areas.
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5. Discussion

5.1. The Trait and Identification of Low-Accuracy Areas

The existence of low-accuracy areas is due to complex topography and/or heterogeneous land covers,
so the locations of low-accuracy areas are relatively fixed. The low-accuracy areas are also similar for the
LCC datasets derived from satellite images in different spatial resolutions. The spatial heterogeneity has
caused many mixed pixels, which are the main error source for low spatial resolution classification data.
Spatial heterogeneity is also the main reason for the SODS (the same object with different spectra) and
DOSS (different objects with the same spectrum), which are two of the most important causes for low
accuracy when the mid- and high-spatial resolution images are classified. Therefore, the low-accuracy
areas extracted by this research can be used in other studies and land cover classifications.

In this paper, low-accuracy areas of China was extracted based on the accuracy assessment of 2010
MODIS LCT data. The reference data is a visually-interpreted regional land cover datasets with high
accuracy. The MODIS global LCT data is one of the most popular LCC datasets and updated annually.
The date of MODIS LCT data can match well with the date of the reference data. The reference
data should have high accuracy, so visually-interpreted LCC maps are preferable, for example, the
NLUD of China, the CORINE land cover of the Europe [30,41]. Datasets that are recognized by visual
interpreting are also acceptable, such as the MRLC (now NLCD) of the USA [42]. Other high-accuracy
datasets are also acceptable as long as its date is the same with the MODIS LCT data.

5.2. The Contribution of Existent Visually-Interpreted LCC Data in Classification Process

In the study, the MODIS 16-day EVI time series were used to decide the date of the applied image
since it can find the optimal image that makes it easy to discriminate different vegetation types. In the
process, the existent high-accuracy LCC data derived by visual interpretation (NLUD-C) provided a
distribution of different vegetation types. This provides a basis for computing the regional average
EVI of each vegetation type. The time range for the optimal image derived by the above method can
be commonly used, as in a specific region the phenology for vegetation types is relatively stable.

The representativeness of training samples is the most important factor that affects the LCC
accuracy as the classifier is trained based on the selected training samples. Simply random selection
cannot assure the representativeness of the training samples as the distribution of the land cover
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types is not even in a region. A divisional selection of training samples is extremely necessary in
low-accuracy areas, since the spectral and topographical features for the same land cover type at
different low-accuracy regions are very different (Figure A2). The existent high-accuracy land cover
data (reference data) provided the divisions of different land cover types. The random selection
of samples based on the divisions of different land cover types applied in the study improved the
representativeness of training samples. The attributes (land cover type) of the training samples can be
decided by visual interpretation and Google Earth.

5.3. Classification Algorithm and Features for the Low-accuRacy Areas in China

The SVM was found to be the first choice among the five algorithms for land cover mapping of
low-accuracy areas, since it produced the highest accuracies in most regions. The good performance of
SVM in land cover classification has been frequently noted in the past [9,25,42] but the over-fitting of
SVM has rarely been discussed. We discovered that the dominant classes were easily misclassified as
minority classes when the areal proportions of dominant classes exceeded greatly over the minority
classes. For example, in YA where forest was the dominant class, the accuracy of SVM was decreased
by the misclassification of forest. Over-fitting can be avoided as long as the training samples selected
for dominant classes should include more pixels near the boundary.

In the study, it was implied that the impact of NDVI on accuracy was small and usually positive.
Based on a meta-analysis, Khatami et al. [43] have also concluded that index creation of spectral bands
like NDVI produces small improvements in accuracy. The three terrain features have usually been
combined when they have been used as input data, whereas we separated them into single added
features and discovered the negative effect of aspect on accuracy. Aspect should therefore not be used
in LCC of low-accuracy areas. We suggest, however, that elevation and slope be used for areas where
there are both plain regions and hilly regions. The reason is that crops are usually planted on plain
regions because the water resources are plentiful, and the soils are fertile. However, elevation and slope
tend to reduce accuracy in hilly areas where there are terraced fields, as the terraced fields are also
cultivated on hillsides by farmers to augment food supplies. The remarkable effect of topographical
information in classification makes it important to determine the terrain characteristics of different
land cover types and choose suitable features before classification.

5.4. The Applicability and Limitation of the Integrated LCC Method

Several global LCC maps have been produced hitherto. Some of them have suggested the
existence of low-accuracy regions in validation with testing samples, yet few of them has located the
low-accuracy areas and studied them. This study provides a way for locating low-accuracy areas
and an integrated method for the land cover mapping of low-accuracy areas. Different from most
of the methods used in the global LCC maps, the integrated method optimizes all four procedures
including image choosing, training sample selection as well as LCC algorithms and features, instead of
one or two of them. This method is supposed to be used for global or large area land cover mapping
when the low-accuracy areas are a significant factor leading to low-accuracy. The integrated method
has improved the accuracy of low-accuracy regions so that it has exceeded a lot over the global LCC
datasets derived from the same image source. Although the gaps between accuracies acquired by
our method and by the visually-interpreted method still exists, our method has provided a valuable
solution to narrow the gaps. The accurate visually-interpreted LCC data is necessary for locating
low-accuracy areas and for the optimization of image choosing and training sample selection. If there
was not any accurate LCC data are available, our method would not be suitable.

6. Conclusions

In the study, an integrated LCC method targeting low-accuracy regions in global LCC maps was
developed. The low-accuracy regions were identified by an accuracy assessment of the MODIS LCT
data. The integrated method ascertained the date of the optimal image, improved the representativeness
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of the training samples, by taking the advantage (high-accuracy) of visually-interpreted regional LCC
datasets. It also selected the optimal classification algorithm and features for different regions in the
low-accuracy areas by comparing the results from different algorithms and features.

We evaluated the integrated method in land-cover mapping of low-accuracy areas by using
Landsat OLI imagery and topographical information as data source. China was taken as the study area
and eight representative low-accuracy regions were examined. A classification result for each region
was produced by the provided mapping method and outperforms the two precedent global land cover
datasets (MODIS LCT and FROM-GLC). As the FROM-GLC also used the Landsat OLI imagery as
data source, it implies that our method can improve the land cover mapping of low-accuracy areas.

Because of the existence of low-accuracy areas, it is critical to improve the quality of global land
cover data. Much attention should be paid to the low-accuracy areas when mapping global land cover.
In future studies, the methodology proposed in this study can be applied to global land cover mapping
for improved accuracies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/15/1777/s1,
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