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Abstract: Coastal areas harbor the most threatened ecosystems on Earth, and cost-effective ways to
monitor and protect them are urgently needed, but they represent a challenge for habitat mapping and
multi-temporal observations. The availability of open access, remotely sensed data with increasing
spatial and spectral resolution is promising in this context. Thus, in a sector of the Mediterranean
coast (Lazio region, Italy), we tested the strength of a phenology-based vegetation mapping approach
and statistically compared results with previous studies, making use of open source products across
all the processing chain. We identified five accurate land cover classes in three hierarchical levels,
with good values of agreement with previous studies for the first and the second hierarchical level.
The implemented procedure resulted as being effective for mapping a highly fragmented coastal
dune system. This is encouraging to take advantage of the earth observation through remote
sensing technology in an open source perspective, even at the fine scale of highly fragmented sand
dunes landscapes.

Keywords: dune vegetation classification; coastal monitoring; multispectral satellite images;
multi-temporal NDVI; pixels based supervised classification; Random Forest; harmonization

1. Introduction

Environmental monitoring is essential to identify and understand the structure, integrity and
conservation status of different habitats forming landscape mosaics [1]. Next to traditional field-based
techniques [2], Remote Sensing (RS) methods are useful tools for ecosystems monitoring, as they are
able to capture a wide range of properties of vegetation in a standard and replicable way [3].

During the last few decades, satellite images have supported vegetation mapping and monitoring of
wide landscapes [4], with a continuous improvement in spatial resolution and use of multi/hyperspectral
sensors consistently boosting the performance of remotely sensed data for mapping highly fragmented
areas [5–7]. In particular, for the interpretation of particularly complex or very fine-grained vegetation
mosaics such as those commonly encountered on sand dunes, high-resolution data are an essential
requirement [8,9]. Indeed, complex landscapes have long represented a challenge for vegetation
mapping and multi-temporal monitoring applications, which still need further development [10,11].
In this context, several space agencies (e.g., ESA, NASA/USGS, CBERS, ISRO) deliver free remotely
sensed products with several resolutions that represent a reliable support for different applications
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of ecosystem monitoring and management. Among these, the free access Sentinel-2 mission of
ESA (European Space Agency), with a 10 m spatial resolution for bands in the spectral range of
the blue (B2-490 nm), green (B3-560 nm), red (B4-665 nm) and infra-red (B8-842 nm) and a revisit
rate of approximately five days, represents an important support for environmental mapping in the
Mediterranean area [12,13]. The relatively recent release of Sentinel-2 mission (Sentinel-2A launched on
23 June 2016 and Sentinel-2B launched on 7 March 2017) still has several potentialities to be explored [14].

In order to achieve their full potential for accurate mapping of complex vegetation mosaics,
RS techniques must be coupled with proper approaches able to capture spatial and temporal vegetation
patterns [1]. For instance, the analysis of vegetation phenological properties, describing recurring
biological events (e.g., seasonality) [15], is very effective for mapping intense seasonal biomass
variations [16] as those characterizing Mediterranean landscapes. Among the remotely sensed data,
vegetation indices, depicting ecosystem spectral properties, are very efficient tools to map vegetation
and its temporal pattern [17,18]. Among these, Normalized Difference Vegetation Index (NDVI) [19,20]
is a good proxy of canopy biomass [21], and its application for environmental monitoring is highly
appreciated [22,23]. Furthermore, the monthly variation of NDVI values across an entire year proved
to be a sound surrogate of ecosystem phenology [18,24,25], which allows for discriminating contiguous
vegetation cover types featuring different seasonality [26–28].

Coastal dune landscapes are complex mosaics that develop in the transition zones between
terrestrial and marine environments, occupying strips parallel to the seashore [29]. Along the sea-inland
gradient, coastal dunes are ruled by a large variety of constraining environmental conditions, such as
soil salinity, substrate instability, wind and marine aerosol [30–32]. By shaping the biomass levels,
this gradient determines the occurrence of a mosaic of highly specialized and diverse plant communities
coexisting in a relatively narrow area which represents a hotspot of exclusive biodiversity [32]. In spite
of their high biodiversity value and complex ecosystem functioning, coastal dunes are among the most
threatened ecosystems worldwide [33,34]. In the Mediterranean areas, the loss and degradation of
coastal dune ecosystems have been particularly severe in the last few decades [34–36], with the main
threats being urban expansion [10,37,38], coastal erosion [39] and invasion by alien species [40–43].
In order to prevent these and other endangered habitats from further degradation, all European
Member States adopted the Council Directive 92/43/EEC (hereafter Habitats Directive, HD). By signing
the HD, the States committed themselves to maintain, restore and monitor habitats and species of
European conservation concern (listed in dedicated annexes) and to report their conservation status
every six years. Each habitat type (mainly identified by plant communities) is characterized by
specific biotic and abiotic factors [44]. In this light, innovative and scientifically sound instruments are
needed for setting conservation priorities and providing management indications for the coastal dune
habitat types [45–48]. Until now, coastal dunes mapping procedures have mostly been based on the
integration of visual interpretation (e.g., photointerpretation of aerial imagery) and floristic data [10,49].
However, the use of these mapping procedures presents some shortcomings in linear and fragmented
ecosystems characterized by low biomass such as coastal dunes. For instance, photo-interpretation
is a time-consuming procedure and its results vary depending on the subjectivity of the interpreter,
his experience and personal knowledge of mapped landscapes [50,51]. Moreover, as small patches
(below the minimum mapping area) are neglected, the photo-interpreted maps can be limited for
characterizing the coastal fine scale mosaics and related landscape processes [52,53].

In consideration of the above, the present work sets out to explore the potential of Sentinel-2
in capturing coastal dune natural vegetation types using a phenology-based mapping approach.
In particular, by a multi-temporal analysis of NDVI images of coastal dunes in central Italy,
we focused on two main questions: (i) does NDVI phenological profiles allow for identifying
and correctly mapping different vegetation types distributed along a coastal zonation? (ii) does the
product of a phenology-based classification agree with existing coastal dunes classification systems
(i.e., photo interpreted land cover maps and 92/43/EEC habitat distribution)?
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2. Materials and Methods

2.1. Study Area

The study was carried out on a representative tract of the Mediterranean coast, placed in the
Tyrrhenian seashore of Central Italy (Lazio Region). The study area includes ca. 250 km of sandy
coast, mainly formed by recent (Holocenic) dunes (Figure 1) [45]. These dunes are relatively simple in
structure, with a single low dune ridge (lower than 10 m height) occupying a narrow strip (usually no
more than 500 m with) along the seashore [32]. In this area, coastal plant communities mostly range
from pioneer vegetation near the shoreline to Mediterranean shrubs on landward fixed dunes [33,45].
Previous studies discriminate eight different habitats occurring along this coastal zonation, of which
two have been listed as priority (Table 1) [38,53]. In the analyzed littoral zone, human activities in the
analyzed littoral zone have intensified in the course of the 20th century [10,54]. Specifically, during the
last 60 years, the Tyrrhenian coast faced consistent processes of fragmentation [55], simplification [45]
and biodiversity loss [56]. Nevertheless, the Tyrrhenian coast still hosts a good number of plant
communities of conservation concern in Europe (92/43/EEC Habitats Directive; EEC, 1992) for which
monitoring and conservation strategies must be improved.Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 17 
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Table 1. EC Habitat types (Habitat Directive 92/43/EEC) along with a brief description in terms of
vegetation types [53]. Asterisk (*) indicates habitats with high priority for conservation.

EC Habitat Name Vegetation Types

1210 Annual vegetation of drift line (upper beach). Pioneer annual vegetation characterizing the
strandline zone of the beach.

2110 Embryonic shifting dunes (embryo dune). Pioneer, perennial community of the low
embryo-dunes dominated by Elymus farctus.

2120 Shifting dunes along the shoreline with
Ammophila arenaria (mobile dune).

Seaward and semi-permanent cordons of dune
systems dominated by Ammophila arenaria
subsp. australis.

2210 Crucianellion maritimae fixed beach dunes. Chamaephytic community of the inland side of
fixed dunes dominated by Crucianella maritima.

2230 Malcolmietalia dune grasslands
2250

Annual, species-rich community colonized by
small terophytes in dry, interdunal depressions of
the coast.

2250* Coastal dunes with Juniperus spp.
(juniper scrub)

Shrub formations dominated by juniper on the
fixed dunes.

2260 Cisto- Lavanduletalia
dune sclerophyllous scrubs

Shrub formations dominated by
sclerophyllous species

2270* Wooded dunes with Pinus pinea and/or
Pinus pinaster

Coastal dunes colonized by Mediterranean and
Atlantic termophilous pines.

2.2. Methodology

We performed a phenology-based classification of coastal dune ecosystem following a sequence of
steps (Figure 2): (1) multitemporal dataset collection and image preprocessing, (2) NDVI calculation and
data processing, (3) data classification, (4) accuracy assessment, and (5) comparison of phenology-based
classes vs. previous studies.Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 17 
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Figure 2. Workflow synthesizing the full mapping procedure of natural dune vegetation with Sentilnel-2
NDVI (Normalized Difference Vegetation Index) time series and Random Forest classification approach.

2.2.1. Sentinel-2 Imagery and Multitemporal Dataset

Sentinel-2 is a European wide-swath, multi-spectral imaging mission, constituted by a two-satellite
platform: Sentinel-2A and Sentinel-2B [57]. The Multi Spectral Instrument (MSI) on-board Sentinel-2
can provide images with a temporal resolution of five days at the equator, and a 12-bit radiometric
resolution from 492 nm to 1377 nm, which includes the Visible (VIS), Near Infra-Red (NIR), and Short
Wave Infra-Red (SWIR) spectra (13 bands). Sentinel-2 images are freely downloadable from the
Copernicus Open Access Hub [58]. In this study, we used the red band (R, around 665 nm in the
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VIS spectrum) and the NIR band (around 833 nm), at 10 meters of resolution [12]. The study area is
included in two Sentinel-2 dataset tiles (T33TTG, T33TUF).

We extracted monthly NDVI images recorded in the year 2017 for the two Sentinel-2 tiles describing
the analyzed coast and we built a multi-temporal dataset (stack) (Table S1). For the analysis, we selected
only those images with low cloud coverage (< 15%), excluding March, due to the excess in cloud coverage.
The clean stack for the phenology-based classification was composed of 22 images (one per tile and month,
excluding March). Only part of the downloaded data was already corrected from atmospheric noise,
while the other part was rough. We corrected these others using Sen2Cor version 2.5.5 [59,60].

2.2.2. NDVI Calculation and Masking

For the entire stack, we calculated NDVI (Equation (1)) as follows:

NDVI =
NIR−R
NIR + R

. (1)

NDVI ranges from – 1 to 1, with increasing values related with growing photosynthetic biomass [24].
The NDVI stack was masked using a fine scale land cover map (1:5000; SITR—Sistema Informativo
Territoriale Regionale Lazio) in order to exclude from the classification, at least partially, urban areas,
agriculture fields and water bodies.

2.2.3. Data Classification

We classified the resulting NDVI stack by implementing a Random Forest algorithm (RF) with
a hierarchical logic, using ESA’s Sentinel-2 toolbox—ESA Sentinel Application Platform 6.0 (SNAP).
RF is a machine learning classification method that operates by constructing a multitude of decision
trees [61,62]. RF algorithm is widely used for classification because of its speed, stability and ability to
discriminate differences [63–65].

We cyclically performed different RF analyses, defining for each cycle two parameters: the training
set of pixels (Mtry, see the next paragraph) and the number of trees (Ntree, in our case 100 runs per
cycle). In order to maximize the efficacy of RF, in the training set, we used a number of pixels that was
higher than the square root of the total of the pixels [61,62].

In each cycle, the identification of the training set was supported by a Principal Component
Analysis (PCA) of the monthly NDVI values (pixels x monthly NDVI values matrix). We projected
all the pixels in the PCA1 and PCA2 ordination space [66]. As objects that are close in the ordination
space (similar component values) describe similar cover types [67], we therefore selected as the
training set for classification the two furthest away clouds of pixels with maximum variance between
them [68]. For each tree (run), the training set was split through a bootstrapping procedure in two
groups: seed pixels (inbag), to build the classification tree, and validation pixels (out-of-bag), to estimate
the classification performance. Then, all pixels were compared with the inbag set using the Gini
inequality index [69] and assigned to a class based on the Lorenz Curve. The latter ranges from 0
(perfectly equality) to 1 (perfectly inequality) [69]. At the end of each run, RF conferred to each pixel
an ordinal vote (the minimum value of Lorenz Curve). After the entire cycle of 100 runs, each pixel
was definitively assigned to the more frequently attributed class [61]. In each cycle, the performance of
classification was assessed by repeating the classification procedure on the basis of the out-of-bag data
and comparing both classifications [61,70].

In each RF cycle, we classified the stack in two vegetation classes, and we carried on all the cycles
where the out-of-bag error was <50%.

2.2.4. Accuracy Assessment

The accuracy of the phenology classification map was assessed through an error matrix (Table S2)
calculating overall accuracy (Equation S1), producer’s accuracy (Equation S2) and user’s accuracy
(Equation S3) and Kappa statistic (0 ≤ Kappa ≤ 100; Equation S4) [71]. We based this assessment on
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250 random checkpoints visually inspected on Google Earth images [72–74]. The positional errors
of objects in Google Earth images are much lower compared to of the minimum spatial resolution
of Sentinel-2 images [73] and their spatial resolution (~1m) is high enough to allow clear visual
interpretation of the land cover [75]. In our case, the random checkpoints were inspected in Google
Earth images for a 5 m radius buffer area (comparable scale of the 10 m pixel of Sentinel-2 images) to
limit the scale mismatch errors. We built the error matrix, reporting the assigned phenology-based
class in rows, and the Google Earth visual attribution in columns.

2.2.5. Phenology-Based Map vs. Previous Vegetation Studies

The error matrix was further used to compare the phenology-based map with two previous studies
conducted in the same area. The first study reports an actual vegetation map produced at 1:5000 scale by
visual interpretation of aerial orthophotos [76] and the second one refers to the natural dune vegetation
types classified according to the Habitats directive (92/43/EEC; Table 1) and identified by floristic field
data (Figure S1). To compare the phenology-based classes with the photointerpreted map, we used
250 random checkpoints, while the congruence with habitat types was tested using 135 floristic plots
extracted from “RanVegDunes”, a database of randomly distributed floristic surveys [77]. For testing
the congruence of the phenology-based classification with the existing documents, we aggregated and
homogenized the classes of the vegetation map (Table S4) and the habitat types (Table S5) on the basis
of similarities in physiognomies and ecological conditions [78]. Then, we tested the correspondence
among maps and defined their respective levels of agreement through the Kappa statistic (Table S3).

3. Results

3.1. Sentinel-2 NDVI Classification

The phenology-based classification allowed for identifying five vegetation classes organized in
three hierarchical levels, each one characterized by a specific phenological pattern (Figure 3) referable
to different mosaics of plant communities. The first level of classification distinguishes a class of Open
Sand from the Vegetated class, the second level divides the Vegetation class in Herbaceous and Woody
Vegetation, and the third level divides Herbaceous and Woody Vegetation classes into two further classes
(the first in Sparse Herbaceous Vegetation (SHV) and Dense Herbaceous Vegetation and Ruderals (DHVR);
the second in Sparse Woody Vegetation (SWV), and Dense Woody Vegetation (DWV)).

The Open Sand class (Figure 3a) is characterized by very low biomass. Monthly values are close
to 0, except in summer, when NDVI is negative. The Open Sand class is extensively present along the
whole coast as thin stripes even on quite urbanized coastal tracts.

The Sparse Herbaceous Vegetation class is characterized by low monthly NDVI values (Figure 3b1)
that decrease towards 0 in summer. Sparse Herbaceous Vegetation is in contact with Open Sand and
covers a narrow discontinuous strip of land between Open Sand and the inner vegetation classes.
Sparse Herbaceous Vegetation preferentially occurs on well-preserved coastal tracts characterized by
all phenology-based vegetation classes.

The Dense Herbaceous Vegetation and Ruderals class (Figure 3b2) is characterized by NDVI
values slightly over 0.5 from November to April that decrease during summer. Dense Herbaceous
Vegetation and Ruderals include a highly seasonal herbaceous vegetation. This class occurs close to
the seashore in sectors exposed to environmental stress and on inner dune sectors characterized by
high anthropic pressure.

The Sparse Woody class is composed by sparse evergreen vegetation (Figure 3c1) with high
monthly NDVI values (> 0.5) that slightly decrease in summer. This class tends to occur at intermediate
distances from the seashore and in the inner sectors of the dune in contact with densely wooded dunes.

Lastly, the Dense Woody Vegetation class presents high monthly NDVI values (> 0.7; Figure 3c2)
throughout the year. It occurs in the back-dune zones corresponding to dense shrublands and forests.
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Figure 3. Cartesian diagrams (on the left) of NDVI values with average ± standard deviation (y-axis)
for each month of the year except March (x-axis) of the five phenology-based classes identified by
multitemporal classification of Sentinel-2 images, along with mapping examples (on the right) projected
on Google Earth View.
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3.2. Classification Accuracy Assessment

The classification of multi-temporal NDVI data (phenology-based classification) showed a good
level of accuracy when compared with the visual interpretation of Google Earth images. The first level
of classification (two classes: Vegetation and Open Sand) exhibited very high values of overall accuracy
(96%) with both producer’s and user’s accuracy over 88% and Kappa statistic of 86% (Figure 4a).

Similarly, the overall accuracy of the second hierarchical level (Herbaceous and Woody Vegetation)
was high (88%) with a moderate agreement among classes and reference data given by a Kappa statistic
of 79% (Figure 4b).

All land cover classes identified at the third level of detail evidenced values of accuracy with
producer’s accuracy ranging between 69% (Herbaceous Vegetation) and 99% (Woody Vegetation).
Similarly, the user’s accuracy ranged between 86% (Woody Vegetation) and 90% (Open Sand and
Herbaceous Vegetation) (Figure 4c).

The correspondence between the third hierarchical level of classification and the set of Google
images resulted as moderate as underlined by both overall accuracy (79%) and Kappa statistic (71%)
(Figure 4c). The producer’s accuracy was adequate for all classes. In particular, Open Sand and
Dense Woody Vegetation had the highest values of producer’s accuracy (88% and 96%, respectively).
This result defined an elevated precision of the map in these two classes. Moreover, both herbaceous
classes showed moderate agreement (75% Sparse Herbaceous Vegetation, 65% Dense Herbaceous
Vegetation). Finally, Sparse Woody Vegetation class featured the lowest value of producer’s accuracy
detected, even though the value showed moderate agreement (56%). The user’s accuracy showed the
higher values in Open Sand and Dense Herbaceous Vegetation classes (90% and 98%, respectively).
Sparse Herbaceous Vegetation and Sparse Woody Vegetation had the lowest values (respectively 63%
and 64%). Finally, Dense Woody Vegetation presented user’s accuracy (75%).
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Figure 4. Error matrix, Accuracy (ACC) values, in particular Overall ACC, Producer’s ACC, User’s ACC,
and Kappa statistic of all hierarchical levels of classification–phenology-based classes: Open Sand (OS),
Vegetation (V), Herbaceous Vegetation (HV), Woody Vegetation (WV), Sparse Herbaceous Vegetation
(SHV), Dense Herbaceous Vegetation (DHV-R), Sparse Woody Vegetation (SWV), and Dense Woody
Vegetation (DWV).
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3.3. Harmonization and Agreement Test with Existing Documents

The NDVI classification showed significant values of agreement with the photointerpreted
map [76], and floristic field data with the habitat types [53] at both the first and the second hierarchical
levels (Figure 5).

The first hierarchical level showed strong agreement values with the photointerpreted classification
map, with 95% of overall accuracy and 83% of Kappa statistic (Table S6), and also the producer’s and
user’s accuracy showed high agreement values (~100%). The agreement of the second classification
level resulted in being quite significant for all of the classes, with high overall accuracy (80%) and
Kappa statistic (66 %) depicting a moderate congruence between them. The user’s accuracy for the
three classes was over 77%. The producer’s accuracy ranges between 58 % and 95% (Table S7).

Finally, at the third level of classification, the agreement test resulted in being moderate, with overall
accuracy and Kappa statistic values being approximately 66% and 55%, respectively. However, values of
user’s accuracy were high only for Open Sand (94%) and Dense Woody Vegetation (85%), while the
other classes showed values under 50%. The producer’s accuracy ranged between 26% and 81%
(Table S8).
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Figure 5. Cross sectional diagram indicating a typical coastal dune zonation along with their
corresponding phenology-based classes, habitat types (92/43/EEC; for full habitat names see Table 1)
and vegetation classes mapped in a previous study [76].

On the other hand, the agreement values of NDVI phenology-based classification and habitat
types assigned by floristic data (Habitats directive 92/43/EEC) showed great differences among the
hierarchical levels. At the first two levels, agreement values indicated moderate congruence between
the classification systems. At the first hierarchical level, the overall accuracy was ~79% and the Kappa
statistic denoted moderate agreement value. User’s accuracy was relatively high for both classes,
Open Sand (81%) and Vegetation (78%). Producer’s accuracy ranged between 53% to 93% (Table S9).

The agreement test of the second hierarchical level indicated similar consistency, with overall
accuracy ~71% and moderate value for the Kappa statistic (58%). The user’s accuracy was relatively
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high for Open Sand and Woody Vegetation (81% and 90% respectively), and the Herbaceous Vegetation
manifested moderate values (62%). Similarly, producer’s accuracy ranged between 53% and 84%
(Table S10). Finally, the third level of classification exhibited the lowest agreement values. The overall
accuracy and Kappa statistic were approximately 53% and 43%, respectively. Moreover, user’s accuracy
was relatively high only for Open Sand (81%), and moderate agreement for Dense Herbaceous
Vegetation and Ruderals (61%) and Dense Woody Vegetation (67%), with the other classes featuring
values under 50%. Producer’s accuracy ranged between 11% and 73% (Table S11).

4. Discussion

Our results suggest the analysis of remote sensed data (Sentinel-2 images) by a phenology-based
classification as an effective approach for monitoring natural landscapes. Sentinel-2 images confirmed
their high potential for vegetation mapping [12], while the multitemporal analysis of NDVI provided
complementary and useful information, proving its convenience even in complex vegetation mosaics,
that is to say, beyond their traditional field of application [18,26,28].

The phenology-based classification using a Random Forest algorithm on a Mediterranean
wide coastal area allowed for identifying and mapping five vegetation classes organized in three
hierarchical levels. Such classes, each one characterized by specific phenological and ecological features,
exhibited high levels of accuracy and clearly depicted the coastal ecosystem zonation ranging from Open
Sand, occurring near the seashore line, to Dense Woody Vegetation on the inner dunal sectors [45,79,80].
Sparse Herbaceous Vegetation and Sparse Woody Vegetation occurred discontinuously, while Open
Sand and Dense Herbaceous Vegetation and Ruderals formed a continuous strip close to the seashore
running along all the analyzed coast. Finally, Dense Woody Vegetation formed regular shaped patches,
and, as previously observed [32,38], occurred in the back-dune zone.

The classification of multi temporal NDVI images, which was successfully used for land cover
mapping [26,80], is extended here for vegetation mapping on Mediterranean coasts. The phenological
analysis that allows for depicting vegetation seasonality [26,81,82] enabled to discriminate woody
evergreen from herbaceous annual vegetation [26]. Furthermore, by exploring phenological spatial
variations occurring in correspondence with biomass transitions, it was possible to distinguish between
densely and sparsely vegetation formations and to identify edges [83,84] between vegetation classes
occurring in the analyzed complex mosaic.

Our results respond to the scope of Sentinel mission [12,57] and give new evidence of its
potential for monitoring and mapping coastal dunes with reduced costs and time efforts. The high
temporal resolution that assures a continuous release of new clean and fine resolution images
(~each 10 days) postulates Sentinel-2 as one of the most effective supports for phenology-based coastal
dunes monitoring [18].

The good agreement between phenology-based classification and the photo-interpreted vegetation
map [76] suggests the adequacy of Sentinel 2 multi-temporal NDVI classification for producing new
vegetation maps of the coastal dune landscapes. Indeed, the phenology based map is quite consistent
with the photo-interpreted vegetation map (scale 1:5000) produced using panchromatic digital aerial
ortho-photographs with about one meter of resolution of the year 2008. Furthermore, the hierarchical
nature of RF classification offers a good basis for comparing the new remotely sensed classification
with existing documents produced with different methodological procedures, data sources and spatial
resolution. Linking the new remotely sensed classes with previous maps and mapping supports
(as aerial photos) is essential for building a long-term ecological series and for monitoring coastal dune
landscapes across time [78,85].

The agreement test of NDVI classes and floristic data referable to EC habitats (92/43/EEC) was
significant at the first and second hierarchical level for all classes. At the third level, only Open Sand,
Dense Herbaceous Vegetation and Ruderals, and Dense Woody Vegetation showed a relative high
congruence with vegetation plots, consequently showing the possibility to discriminate the habitats
included in these classes. The lower agreement of NDVI classification and vegetation plots classified
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in habitat types is probably related with differences in the spatial resolution between the remotely
sensed instrument (10x10 m) and the field floristic plots (2x2 m). Furthermore, the Mediterranean
coastal dunes, naturally conformed by fine scale ecosystem mosaics [33,45], are often disturbed by
fragmentation processes that alter their biodiversity [56]. This probably reduces the possibility of
a match between conventional small floristic plots and the 10 m resolution of Sentinel-2 images.
This scale mismatch is the principal restriction in this study, and the impossibility to discriminate the
single habitat type through this phenology-based approach using 10 m resolution images limits its use
to coarse vegetation classes (general physiognomies) [86,87]. In coastal dunes, both subtle variations
of environmental factors and human pressure promote the formation of fine scale mosaics of habitats,
some of them featuring similar physiognomies but differing in their floristic composition [88–93].

To deal with such shortcomings, the integration of sentinel data with finer resolution data and
tools are advisable. For instance, the use of multispectral satellite images with higher spatial resolution,
or the implementation of other classification methodologies as spectral unmixing algorithms able to
quantify the percentage of different cover classes inside the single pixels [94,95] should improve the
performance of the proposed classification procedure. In any case, the classification performance of
each cycle, elaborated by out-of-bag pixels, estimated the uncertainty of the Random Forest result
giving an idea of the presence of mixed pixels.

Overall, the potential of Sentinel-2 data in a phenology-based mapping was accomplished
with a relative high degree of accuracy assessment and significant congruence with existing previous
classifications. It is very promising in the discrimination of annual, deciduous and evergreen vegetation.
Moreover, the integration of remotely sensed maps with field data could contribute to continuous
update of coastal dune habitats maps, reducing costs and risks of delaying the periodical reporting
requested by the Habitat Directive (92/43/EEC).

5. Conclusions

The performed phenology-based classification emphasizes the potential of Sentinel-2 images for
mapping natural vegetation and extends its field of application to low biomass and highly fragmented
systems as coastal dunes. The combined use of NDVI multi-temporal data, machine learning
(Random Forest) algorithms, and a pixel-oriented approach allowed for adequately describing with
high values of accuracy the complex mosaic of coastal dune vegetation.

The phenology-based classification approach with Sentinel-2 data proposed here is a time saving
and more objective approach, complemented with open source earth observation data and implemented
through free ESA software, effective and inexpensive instruments for coastal monitoring. Furthermore,
the good levels of agreement of phenology-based with previous vegetation maps should allow for
building long-term ecological series necessary for exploring and monitoring coastal ecosystems
dynamics over time.

Nevertheless, there are several possibilities to improve this phenology-based classification and
enhance its potential. For instance, the integration of phenological classification with LiDAR and
other remotely sensed data or the implementation of spectral unmixing algorithms could improve the
agreement with floristic filed data and should represent new research frontiers to explore.

From an applied perspective, the phenology-based vegetation classification provides relevant
knowledge for coastal monitoring and management; therefore, we hope new studies exploring
increasingly larger areas will be analyzed to further test the proposed classification and, at the same
time, to provide homogeneous information for coasts in the Mediterranean.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/12/1506/s1,
Table S1: The total Sentinel-2 imagery dataset. It shows for each Sentinel-2 image the month, day, platform
(Sentinel-2A or Sentinel-2B), the hour of acquisition, the cloud percentage, the processing level (top of the
atmosphere—1C or bottom of the atmosphere—2A), and the tiles (T33TTG for Lazio north, T33TUF for Lazio
south). Table S2: Example of error matrix. It is a contingency table (k x k array, where k is the number of classes in
the classification). Equation S1: Overall accuracy, defined as the total of the correctly classified checkpoints on the
total number of the checkpoints where nii indicates the number of checkpoints classified in the same category

http://www.mdpi.com/2072-4292/11/12/1506/s1
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both in the satellite mapped classes and the Google Earth reference data; in other words, the elements of the
major diagonal. Equation S2: Producer’s accuracy: fraction of correctly classified checkpoints in all checkpoints
of the produced classification. Equation S3: User’s accuracy: fraction of correctly classified checkpoints in all
checkpoints of the reference data. Equation S4: Kappa statistic (K̂) computed as follows where n_ij is the number
of observation in row i and column j, n_(i+) and n_(+j) are respectively the total number of observation of rows,
and the second total number of observation of columns. Table S3: Classes of Kappa statistic interpretation.
The Kappa statistic is a measure of the difference between the actual agreement of real objects observable on
Google Maps with resulted classes, and an agreement due to chance (where real objects are compared with
a random classification). Kappa varies between 0 and 100, where values close to 0 represent a poor agreement,
and values close to 100 are indicated as excellent level of agreement. Figure S1: A subset of the photointerpreted
vegetation map produced at 1:5000 scale by visual interpretation of aerial ortophotos, and a subset of the floristic
field data classified according with the Habitats directive (92/43/EEC). Table S4: Nomenclature homogenization
between the produced phenology-based map and the vegetation map. Table S5: Nomenclature homogenization
of the EC habitats (92/43/EEC) types: 1210 (Annual vegetation of drift lines), 2110 (Embryonic shifting dunes),
2120 (Shifting dunes along the shoreline with Ammophila arenaria), 2210 (Crucianellion maritimae fixed beach dunes),
2230 (Malcolmietalia dune grasslands), 2250 (Coastal dunes with Juniperus spp.), 2260 (Cisto-Lavanduletalia
dune sclerophyllous scrubs), 2270 (Wooded dunes with Pinus pinea and/or P. pinaster). Table S6: Results of the
harmonization test (error matrix and Kappa statistic) between phenology-based classes in the first hierarchical
level of classification and the photo–interpreted classification map. Table S7: Results of the harmonization test
(error matrix and Kappa statistic) between phenology-based classes and the photo–interpreted classification
map in the second hierarchical level of classification. Table S8: Results of the harmonization test (error matrix
and Kappa statistic) between phenology-based classes in the third hierarchical level of classification and the
photo–interpreted classification map. Table S9: Results of the harmonization test (error matrix and Kappa statistic)
between phenology-based classes in the first hierarchical level of classification and habitats of conservation
concern (Habitats Directive; 92/43/EEC; Table 1) assigned on 2 m floristic plots collected in the field. Table S10:
Results of the harmonization test (error matrix and Kappa statistic) of between phenology-based classes in the
second hierarchical level of classification and habitats of conservation concern (Habitats Directive; 92/43/EEC;
Table 1) assigned on 2 m floristic plots collected in the field. Table S11: Results of the harmonization test (error
matrix and Kappa statistic) between phenology-based classes in the second hierarchical level of classification and
habitats of conservation concern (Habitats Directive; 92/43/EEC; Table 1) assigned on 2 m floristic plots collected in
the field.

Author Contributions: All authors contributed substantially to the work: F.M. and M.L.C. conceived and designed
the study; all authors collected the data; F.M., S.G., M.L.C. analyzed the data; F.M. led the writing of the manuscript.
All authors contributed critically to the drafts and gave final approval for publication.

Funding: This research received no external funding.

Acknowledgments: The authors acknowledge the Principal Investigator(s) of the Sentinel-2 mission for providing
datasets in the archive and the developers of SNAP software used for data analysis. Sentinel-2 images are freely
downloadable from the Copernicus Open Access Hub (https://scihub.copernicus.eu/).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Díaz-Delgado, R.; Lucas, R.; Hurford, C. The Roles of Remote Sensing in Nature Conservation. A Pratical Guide
and Case Studies, 1st ed.; Springer: Cham, Switzerland, 2017; pp. 1–318.

2. Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and
mapping of wetland vegetation: A review. Wetl. Ecol. Manag. 2010, 18, 281–296. [CrossRef]

3. Lawley, V.; Lewis, M.; Clarke, K.; Ostendorf, B. Site-based and remote sensing methods for monitoring
indicators of vegetation condition: An Australian review. Ecol. Indic. 2016, 60, 1273–1283. [CrossRef]

4. Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23.
[CrossRef]

5. Adamo, M.; Tarantino, C.; Tomaselli, V.; Veronico, G.; Nagendra, H.; Blonda, P. Habitat mapping of coastal
wetlands using expert knowledge and Earth observation data. J. Appl. Ecol. 2016, 53, 1521–1532. [CrossRef]

6. Wu, W.; Zhou, Y.; Tian, B. Coastal wetlands facing climate change and anthropogenic activities: A remote
sensing analysis and modelling application. Ocean Coast. Manage. 2017, 138, 1–10. [CrossRef]

7. Betbeder, J.; Rapinel, S.; Corgne, S.; Pottier, E.; Huber-Moy, L. TerraSar-X dual-pol time-series for mapping of
wetland vegetation. ISPRS J. Photogramm. Remote Sens. 2015, 107, 90–98. [CrossRef]

8. Rapinel, S.; Clément, B.; Magnanon, S.; Sellin, V.; Hubert-Moy, L. Identification and mapping of natural
vegetation on a coastal site using a Worldview-2 satellite image. J. Environ. Manage. 2014, 144, 236–246.
[CrossRef] [PubMed]

https://scihub.copernicus.eu/
http://dx.doi.org/10.1007/s11273-009-9169-z
http://dx.doi.org/10.1016/j.ecolind.2015.03.021
http://dx.doi.org/10.1093/jpe/rtm005
http://dx.doi.org/10.1111/1365-2664.12695
http://dx.doi.org/10.1016/j.ocecoaman.2017.01.005
http://dx.doi.org/10.1016/j.isprsjprs.2015.05.001
http://dx.doi.org/10.1016/j.jenvman.2014.05.027
http://www.ncbi.nlm.nih.gov/pubmed/24973612


Remote Sens. 2019, 11, 1506 13 of 17

9. Zhang, L.; Baas, A.C.W. Mapping functional vegetation abundance in a coastal dune environment using
a combination of LSM and MLC: A case study at Kenfig NNR, Wales. Int. J. Remote Sens. 2012, 33, 5043–5071.
[CrossRef]

10. Malavasi, M.; Santoro, R.; Cutini, M.; Acosta, A.T.R.; Carranza, M.L. What has happened to coastal dunes in
the last half century? A multitemporal coastal landscape analysis in Central Italy. Landscape Urban Plan.
2013, 119, 54–63. [CrossRef]

11. Valentini, E.; Taramelli, A.; Filipponi, F.; Giulio, S. An effective procedure for EUNIS and Natura 2000
habitat type mapping in estuarine ecosystems integrating ecological knowledge and remote sensing analysis.
Ocean Coast. Manage. 2015, 108, 52–64. [CrossRef]

12. Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Labertini, P.;
Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services.
Remote Sens. Environ. 2012, 120, 25–36. [CrossRef]

13. Chatziantoniou, A.; Petropoulos, G.P.; Psomiadis, E. Co-Orbital Sentinel 1 and 2 for LULC mapping with
emphasis on wetlands in a mediterranean setting based on machine learning. Remote Sens. 2017, 9, 1259.
[CrossRef]

14. Recanatesi, F.; Giuliani, C.; Ripa, M.N. Monitoring Mediterranean Oak decline in a peri-urban protected area
using the NDVI and Sentinel-2 images: The case study of Castelporziano State Natural Reserve. Sustainability
2018, 10, 3308. [CrossRef]

15. Lloyd, D. A phenological classification of terrestrial vegetation cover using shortwave vegetation index
imagery. Int. J. Remote Sens. 1990, 11, 2269–2279. [CrossRef]

16. Dudley, K.L.; Dennison, P.E.; Roth, K.L.; Roberts, D.A.; Coates, A.R. A multi-temporal spectral library approach
for mapping vegetation species across spatial and temporal phenological gradients. Remote Sens. Environ.
2015, 167, 121–134. [CrossRef]

17. Huete, A.R. Vegetation indices, remote sensing and forest monitoring. Geogr. Compass 2012, 6, 513–532.
[CrossRef]

18. Vrieling, A.; Meroni, M.; Darvishzadeh, R.; Skidmore, A.K.; Wang, T.; Zurita-Milla, R.; Oosterbeek, K.;
O’Connor, K.; Paganini, M. Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier
island. Remote Sens. Environ. 2018, 215, 517–529. [CrossRef]

19. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with
ERTS. In Proceedings of the Third ERTS Symposium, NASA, Washington, DC, USA, 10–14 December 1973;
NASA SP-351. pp. 309–317.

20. Tucker, C.J. Red and photographic infrared linear combinations of monitoring vegetation.
Remote Sens. Environ. 1979, 8, 127–150. [CrossRef]

21. Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing, 5th ed.; the Guilford Press: New York, NY, USA,
2011; pp. 1–622.

22. Stoms, D.M.; Hargrove, W.W. Potential NDVI as a baseline for monitoring ecosystem functioning. Int. J.
Remote Sens. 2000, 21, 401–407. [CrossRef]

23. Honeck, E.; Castello, R.; Chatenoux, B.; Richard, J.P.; Lehmann, A.; Giuliani, G. From a vegetation index to
a sustainable development goal indicator: Forest trend monitoring using three decades of earth observations
across Switzerland. Int. J. Geo-Inf. 2018, 7, 455. [CrossRef]

24. Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived
NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [CrossRef]
[PubMed]

25. Tomaselli, V.; Adamo, M.; Veronico, G.; Sciandrello, S.; Tarantino, C.; Dimopoulos, P.; Medagli, P.;
Nagendra, H.; Blonda, P. Definition and application of expert knowledge on vegetation pattern, phenology,
and seasonality for habitat mapping, as exemplified in a Mediterranean coastal site. Plant Biosyst. 2017, 151,
887–899. [CrossRef]

26. Helman, D.; Lensky, I.M.; Tessler, N.; Osem, Y. A phenology-based method for monitoring woody and
herbaceous vegetation in Mediterranean forests from NDVI time series. Remote Sens. 2015, 7, 12314–12335.
[CrossRef]

27. Sun, C.; Fagherazzi, S.; Liu, Y. Classification mapping of salt marsh vegetation by flexible monthly NDVI
time-series using Landsat imagery. Estuar. Coast. Shelf. Sci. 2018, 213, 61–80. [CrossRef]

http://dx.doi.org/10.1080/01431161.2012.657369
http://dx.doi.org/10.1016/j.landurbplan.2013.06.012
http://dx.doi.org/10.1016/j.ocecoaman.2014.07.015
http://dx.doi.org/10.1016/j.rse.2011.11.026
http://dx.doi.org/10.3390/rs9121259
http://dx.doi.org/10.3390/su10093308
http://dx.doi.org/10.1080/01431169008955174
http://dx.doi.org/10.1016/j.rse.2015.05.004
http://dx.doi.org/10.1111/j.1749-8198.2012.00507.x
http://dx.doi.org/10.1016/j.rse.2018.03.014
http://dx.doi.org/10.1016/0034-4257(79)90013-0
http://dx.doi.org/10.1080/014311600210920
http://dx.doi.org/10.3390/ijgi7120455
http://dx.doi.org/10.1016/j.tree.2005.05.011
http://www.ncbi.nlm.nih.gov/pubmed/16701427
http://dx.doi.org/10.1080/11263504.2016.1231143
http://dx.doi.org/10.3390/rs70912314
http://dx.doi.org/10.1016/j.ecss.2018.08.007


Remote Sens. 2019, 11, 1506 14 of 17

28. Bajocco, S.; Ferrara, C.; Alivernini, A.; Bascietto, M.; Ricotta, C. Remotely-sensed phenology of Italian forest:
Going beyond the species. Int. J. Appl. Earth Obs. 2019, 74, 314–321. [CrossRef]

29. van der Maarel, E. Some remarks on the functions of European coastal ecosystems. Phytocoenologia 2003, 33,
187–202. [CrossRef]

30. Jones, L.; Sowerby, A.; Williams, D.L.; Jones, R.E. Factors controlling soil development in sand dunes:
Evidence from a coastal dune soil chronosequence. Plant Soil 2008, 307, 219–234. [CrossRef]

31. Santoro, R.; Jucker, T.; Carranza, M.L.; Acosta, A.T.R. Assessing the effects of Carpobrotus invasion on coastal
dune soils. Does the nature of the invaded habitat matter? Community Ecol. 2011, 12, 234–240. [CrossRef]

32. Bazzichetto, M.; Malavasi, M.; Acosta, A.T.R.; Carranza, M.L. How does dune morphology shape coastal
EC habitats occurrence? A remote sensing approach using airborne LiDAR on the Mediterranean coast.
Ecol. Indic. 2016, 71, 618–626. [CrossRef]

33. Acosta, A.T.R.; Carranza, M.L.; Izzi, C.F. Are there habitats that contribute best to plant species diversity in
coastal dunes? Biodivers. Conserv. 2009, 18, 1087–1098. [CrossRef]

34. Schlacher, T.; Dugan, J.; Schoeman, D.S.; Lastra, M.; Jones, A.; Scapini, F.; McLachlan, A.; Defeo, O.
Sandy beaches at the brink. Divers. Distrib. 2007, 13, 556–560. [CrossRef]

35. Cori, B. Spatial dynamics of Mediterranean coastal regions. J. Coast. Conserv. 1999, 5, 105–112. [CrossRef]
36. Sperandii, M.G.; Bazzichetto, M.; Gatti, F.; Acosta, A.T.R. Back into the past: Resurveying random plots to

track community changes in Italian coastal dunes. Ecol. Indic. 2019, 96, 572–578. [CrossRef]
37. Couch, C.; Leontidou, L.; Petschel-Held, G. Urban Sprawl in Europe: Landscapes, Land-use Change and Policy,

1st ed.; Wiley-Blackwell: Oxford, UK, 2007; pp. 1–294.
38. Carranza, M.L.; Acosta, A.T.R.; Stanisci, A.; Pirone, G.; Ciaschetti, G. Ecosystem classification for EU habitat

distribution assessment in sandy coastal environments: An application in central Italy. Environ. Monit. Assess.
2008, 140, 99–107. [CrossRef] [PubMed]

39. Jolicoeur, S.; O’Carroll, S. Sandy barriers, climate change and long-term planning of strategic coastal
infrastructures, Îles-de-la-Madeleine, Gulf of St. Lawrence (Québec, Canada). Landsc. Urban Plan. 2007, 81,
287–298. [CrossRef]

40. Malavasi, M.; Acosta, A.T.R.; Carranza, M.L.; Bartolozzi, L.; Basset, A.; Bassignana, M.; Campanaro, A.;
Canullo, R.; Carruggio, F.; Cavallaro, V.; et al. Plant invasions in Italy. An integrative approach using
LifeWatch infrastructure database. Ecol. Indic. 2018, 91, 182–188. [CrossRef]

41. Sun, C.; Liu, Y.; Zhao, S.; Li, H.; Sun, J. Saltmarshes response to human activities on prograding coast revealed
by a dual-scale time-series strategy. Estuar. Coast. 2017, 40, 522–539. [CrossRef]

42. Marzialetti, F.; Bazzichetto, M.; Giulio, S.; Acosta, A.T.R.; Stanisci, A.; Malavasi, M.; Carranza, M.L.
Modelling Acacia saligna invasion on the Adriatic coastal landscape: An integrative approach using LTER
data. Nat. Conserv. 2019, 34, 127–144. [CrossRef]

43. Janssen, J.A.M.; Rodwell, J.S.; García Criado, M.; Gubbay, S.; Haynes, T.; Nieto, A.; Sanders, N.; Landucci, F.;
Loidi, J.; Ssymank, A.; et al. European red list of habitats. Part 2. Terrestrial and freshwater habitats, 1st ed.;
European Commision: Luxembourg, 2016; pp. 1–40.

44. Evans, D. The habitats of the European Union Habitats directive. Biol. Environ. Proc. R. Ir. Acad. 2006, 106B,
167–173. [CrossRef]

45. Acosta, A.T.R.; Blasi, C.; Carranza, M.L.; Ricotta, C.; Stanisci, A. Quantifying ecological mosaic connectivity
and hemeroby with a new topoecological index. Phytocoenologia 2003, 33, 623–631. [CrossRef]

46. Carboni, M.; Carranza, M.L.; Acosta, A.T.R. Assessing conservation status on coastal dunes: A multiscale
approach. Landsc. Urban Plan. 2009, 91, 17–25. [CrossRef]

47. Doody, J.P. Sand dune conservation, management and restoration, 1st ed.; Springer: Dordrecht, The Netherlands,
2013; pp. 201–235.

48. Drius, M.; Jones, L.; Marzialetti, F.; De Francesco, M.C.; Stanisci, A.; Carranza, M.L. Not just a sandy beach.
The multi-service value of Mediterranean coastal dunes. Sci. Total Environ. 2019, 668, 1139–1155. [CrossRef]
[PubMed]

49. Acosta, A.T.R.; Carranza, M.L.; Izzi, C.F. Combining land cover mapping of coastal dunes with vegetation
analysis. Appl. Veg. Sci. 2005, 8, 133–138. [CrossRef]

50. Drake, S. Visual interpretation of vegetation classes from airborne videography: An evaluation of observer
proficiency with minimal training. Photogramm. Eng. Remote Sens. 1996, 62, 969–978.

http://dx.doi.org/10.1016/j.jag.2018.10.003
http://dx.doi.org/10.1127/0340-269X/2003/0033-0187
http://dx.doi.org/10.1007/s11104-008-9601-9
http://dx.doi.org/10.1556/ComEc.12.2011.2.12
http://dx.doi.org/10.1016/j.ecolind.2016.07.044
http://dx.doi.org/10.1007/s10531-008-9454-9
http://dx.doi.org/10.1111/j.1472-4642.2007.00363.x
http://dx.doi.org/10.1007/BF02802747
http://dx.doi.org/10.1016/j.ecolind.2018.09.039
http://dx.doi.org/10.1007/s10661-007-9851-7
http://www.ncbi.nlm.nih.gov/pubmed/17624597
http://dx.doi.org/10.1016/j.landurbplan.2007.01.011
http://dx.doi.org/10.1016/j.ecolind.2018.03.038
http://dx.doi.org/10.1007/s12237-016-0157-2
http://dx.doi.org/10.3897/natureconservation.34.29575
http://dx.doi.org/10.3318/BIOE.2006.106.3.167
http://dx.doi.org/10.1127/0340-269X/2003/0033-0623
http://dx.doi.org/10.1016/j.landurbplan.2008.11.004
http://dx.doi.org/10.1016/j.scitotenv.2019.02.364
http://www.ncbi.nlm.nih.gov/pubmed/31018454
http://dx.doi.org/10.1111/j.1654-109X.2005.tb00638.x


Remote Sens. 2019, 11, 1506 15 of 17

51. Green, E.P.; Clark, C.D.; Edwards, A.J. Image classification and habitat mapping. In Remote sensing
handbook for tropical coastal management, 1st ed.; Green, E.P., Mumby, P.J., Edwards, A.J., Clark, C.D., Eds.;
Coastal Management Sourcebooks: Paris, France, 2000; pp. 141–154.

52. Drius, M.; Malavasi, M.; Acosta, A.T.R.; Ricotta, C.; Carranza, M.L. Boundary-based analysis for the
assessment of coastal dune landscape integrity over time. Appl. Geogr. 2013, 45, 41–48. [CrossRef]

53. Sperandii, M.G.; Prisco, I.; Acosta, A.T.R. Hard times for Italian coastal dunes: Insights from a diachronic
analysis base on random plots. Biodivers. Conserv. 2018, 27, 633–646. [CrossRef]

54. Carranza, M.L.; Drius, M.; Malavasi, M.; Frate, L.; Stanisci, A.; Acosta, A.T.R. Assessing land take and its
effects on dune carbon pools. An insight into the Mediterranean coastline. Ecol. Indic. 2018, 85, 951–955.
[CrossRef]

55. Malavasi, M.; Carboni, M.; Cutini, M.; Carranza, M.L.; Acosta, A.T.R. Land use legacy,
landscape fragmentation and propagule pressure promote plant invasion on coastal dunes. A patch
based approach. Landsc. Ecol. 2014, 29, 1541–1550. [CrossRef]

56. Malavasi, M.; Bartak, V.; Carranza, M.L.; Simova, P.; Acosta, A.T.R. Landscape pattern and plant biodiversity
in Mediterranean coastal dune ecosystems: Do habitat loss and fragmentation really matter? J. Biogeogr.
2018, 45, 1367–1377. [CrossRef]

57. Bertini, F.; Brand, O.; Carlier, S.; Del Bello, U.; Drusch, M.; Duca, R.; Fernandez, V.; Ferrario, C.;
Ferreira, M.H.; Isola, C.; et al. Sentinel-2 ESA’s Optical High-Resolution Mission for GMES Operational
Services; ESA Communications: Noordwjik, The Netherlands, 2012; pp. 1–70.

58. Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/ (accessed on 24 April 2018).
59. Luis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F.

Sentinel-2 Sen2cor: L2A processor for users. In Proceedings of the Living Planet Symposium 2016,
Prague, Czech Republic, 9–13 May 2016.

60. European Space Agency. Sen2cor–version 2.5.5. 2018. Available online: http://step.esa.int/main/third-party-
plugins-2/sen2cor/ (accessed on 24 April 2018).

61. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
62. Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random forests for land cover classification.

Pattern Recognit. Lett. 2006, 27, 294–300. [CrossRef]
63. Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the

effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens.
2012, 67, 93–104. [CrossRef]

64. Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222.
[CrossRef]

65. Hakkenberg, C.R.; Peet, R.K.; Urban, D.L.; Song, C. Modeling plant composition as community continua in
a forest landscape with LiDAR and hyperspectral remote sensing. Ecol. Appl. 2018, 28, 177–190. [CrossRef]
[PubMed]

66. European Space Agency. SNAP–version 6.0. 2018. Available online: https://step.esa.int/main/ (accessed on
24 April 2018).

67. Lasaponara, R. On the use of principal component analysis (PCA) for evaluating interannaual vegetation
anomalies from SPOT/VEGETATION NDVI temporal series. Ecol. Model. 2006, 194, 429–434. [CrossRef]

68. Brown, S.C.; Lester, R.E.; Versace, V.L.; Fawcett, J.; Laurenson, L. Hydrologic landscape regionalization using
deductive classification and random forests. PLoS ONE 2014, 9, 1–20. [CrossRef] [PubMed]

69. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and regression trees, 3rd ed.; Chapman &
Hall: Boca Ration, FL, USA, 1984; pp. 1–358.

70. Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for
classification in ecology. Ecology 2007, 88, 2783–2792. [CrossRef]

71. Congalton, R.G.; Green, K. Assessing the accuracy of remotely sensed data. Principles and practices, 2nd ed;
CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2009; pp. 1–183.

72. Tilahun, A.; Teferie, B. Accuracy assessment of land use land cover classification using Google Earth. AJEP
2015, 4, 193–198. [CrossRef]

73. Mohammed, N.Z.; Landry, R., Jr. Assessing horizontal positional accuracy of Google Earth imagery in the
city of Montreal, Canada. Geod. Cartogr. 2016, 43, 55–65.

http://dx.doi.org/10.1016/j.apgeog.2013.08.003
http://dx.doi.org/10.1007/s10531-017-1454-1
http://dx.doi.org/10.1016/j.ecolind.2017.10.052
http://dx.doi.org/10.1007/s10980-014-0074-3
http://dx.doi.org/10.1111/jbi.13215
https://scihub.copernicus.eu/
http://step.esa.int/main/third-party-plugins-2/sen2cor/
http://step.esa.int/main/third-party-plugins-2/sen2cor/
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.patrec.2005.08.011
http://dx.doi.org/10.1016/j.isprsjprs.2011.11.002
http://dx.doi.org/10.1080/01431160412331269698
http://dx.doi.org/10.1002/eap.1638
http://www.ncbi.nlm.nih.gov/pubmed/29024180
https://step.esa.int/main/
http://dx.doi.org/10.1016/j.ecolmodel.2005.10.035
http://dx.doi.org/10.1371/journal.pone.0112856
http://www.ncbi.nlm.nih.gov/pubmed/25396410
http://dx.doi.org/10.1890/07-0539.1
http://dx.doi.org/10.11648/j.ajep.20150404.14


Remote Sens. 2019, 11, 1506 16 of 17

74. Qin, Y.; Xiao, X.; Dong, J.; Zhang, G.; Roy, P.S.; Joshi, P.K.; Gilani, H.; Murthy, M.S.R.; Jin, C.; Wang, J.; et al.
Mapping forests in monsoon Asia with ALOS PALSAR 50-m mosaic images and MODIS imagery in 2010.
Sci. Rep. 2016, 6, 1–10. [CrossRef]

75. Dorais, A.; Cardille, J. Strategies for incorporating high-resolution Google Earth databases to guide and
validate classifications: Understanding deforestation in Borneo. Remote Sens. 2011, 3, 1157–1176. [CrossRef]

76. Malavasi, M.; Santoro, R.; Cutini, M.; Acosta, A.T.R.; Carranza, M.L. The impact of human pressure on
landscape patterns and plant species richness in Mediterranaean coastal dunes. Plant Biosyst. 2016, 150,
73–82. [CrossRef]

77. Sperandii, M.G.; Prisco, I.; Stanisci, I.; Acosta, A.T.R. RanVegDunes – A random plot database of Italian
coastal dunes. Phytocoenologia 2017, 47, 231–232. [CrossRef]

78. Kosmidou, V.; Petrou, Z.; Bunce, R.G.H.; Mücher, C.A.; Jongman, R.H.G.; Bogers, M.M.B.; Lucas, R.M.;
Tomaselli, V.; Blonda, P.; Padoa-Schioppa, E.; et al. Harmonization of the Land Cover Classification System
(LCCS) with the General Habitat Categories (GHC) classification systems. Ecol. Indic. 2014, 36, 290–300.
[CrossRef]

79. Forey, E.; Lortie, C.J.; Michalet, R. Spatial patterns of association at local and regional scales in coastal sand
dune communities. J. Veg. Sci. 2009, 20, 916–925. [CrossRef]

80. Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted
dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [CrossRef]

81. Mannel, S.; Price, M. Comparing classification results of multi-seasonal TM against AVIRIS imagery –
seasonality more important than number of bands. PFG 2012, 5, 603–612. [CrossRef]

82. Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species
classififcation in central europe. Remote Sens. 2016, 8, 166. [CrossRef]

83. Jones, G.; Bunting, P.; Hurford, C. Mapping Coastal Habitats in Wales. In The Roles of Remote Sensing in
Nature. A practical guide and case studies, 1st ed.; Díaz-Delgado, R., Lucas, R., Hurford, C., Eds.; Springer:
Gewerbestrasse, Switerland, 2017; pp. 91–120.

84. Nagendra, H.; Lucas, R.; Honrado, J.P.; Jongman, R.H.G.; Tarantino, C.; Adamo, M.; Mairota, P. Remote sensing
for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, and threats.
Ecol. Indic. 2013, 33, 45–49. [CrossRef]

85. Herold, M.; Woodcock, C.E.; di Gregorio, A.; Mayaux, P.; Belward, A.S.; Latham, J.; Schmullius, C.C. A joint
initiative for harmonization and validation of land cover datasets. IEEE Trans. Geosci. Remote Sens. 2006, 44,
1719–1727. [CrossRef]

86. Ghimire, B.; Rogan, J.; Miller, J. Contextual land-cover classification: Incorporating spatial dependence in
land-cover classification models using random forests and the Getis statistic. Remote Sens. Lett. 2010, 1,
45–54. [CrossRef]

87. Xu, Y.; Dickson, B.G.; Hampton, H.M.; Sisk, T.D.; Palumbo, J.A.; Prather, J.W. Effects of mismatches of
scale and location between predictor and response variables on forest structure mapping. Photgramm. Eng.
Remote Sens. 2009, 75, 313–322. [CrossRef]

88. Thompson, S.D.; Gergerl, S. Conservation implications of mapping rare ecosystems using high spatial
resolution imagery: Recommendations for heterogeneous and fragmented landscapes. Landsc. Ecol. 2008, 23,
1023–1037. [CrossRef]

89. Santoro, R.; Jucker, T.; Prisco, I.; Carboni, M.; Battisti, C.; Acosta, A.T.R. Effects of trampling limitation on
coastal dune plant communities. Environ. Manag. 2012, 49, 534–542. [CrossRef] [PubMed]

90. Feagin, R.A.; Sherman, D.J.; Grant, W.E. Coastal erosion, global sea-level rise, and the loss of sand dune
plant habitats. Front. Ecol. Environ. 2005, 3, 359–364. [CrossRef]

91. Battisti, C.; Poeta, G.; Pietrelli, L.; Acosta, A.T.R. An unexpected consequence of plastic litter clean-up on
beaches: Too much sand might be removed. Environ. Pract. 2016, 18, 242–246. [CrossRef]

92. Adam, E.; Mutanga, O.; Odindi, J.; Abdel-Rahman, E.M. Land-use/cover classification in a heterogeneous
coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector
machines classifiers. Int. J. Remote Sens. 2014, 35, 3440–3458. [CrossRef]

93. Wu, J. Effects of changing scale on landscape pattern analysis: Scaling relations. Landsc. Ecol. 2004, 19,
125–138. [CrossRef]

http://dx.doi.org/10.1038/srep20880
http://dx.doi.org/10.3390/rs3061157
http://dx.doi.org/10.1080/11263504.2014.913730
http://dx.doi.org/10.1127/phyto/2017/0198
http://dx.doi.org/10.1016/j.ecolind.2013.07.025
http://dx.doi.org/10.1111/j.1654-1103.2009.01095.x
http://dx.doi.org/10.1016/j.rse.2017.10.005
http://dx.doi.org/10.1127/1432-8364/2012/0142
http://dx.doi.org/10.3390/rs8030166
http://dx.doi.org/10.1016/j.ecolind.2012.09.014
http://dx.doi.org/10.1109/TGRS.2006.871219
http://dx.doi.org/10.1080/01431160903252327
http://dx.doi.org/10.14358/PERS.75.3.313
http://dx.doi.org/10.1007/s10980-008-9263-2
http://dx.doi.org/10.1007/s00267-012-9809-6
http://www.ncbi.nlm.nih.gov/pubmed/22302225
http://dx.doi.org/10.1890/1540-9295(2005)003[0359:CEGSRA]2.0.CO;2
http://dx.doi.org/10.1017/S1466046616000417
http://dx.doi.org/10.1080/01431161.2014.903435
http://dx.doi.org/10.1023/B:LAND.0000021711.40074.ae


Remote Sens. 2019, 11, 1506 17 of 17

94. Machín, A.M.; Marcello, J.; Hernández-Cordero, A.I.; Abasolo, J.M.; Eugenio, F. Vegetation species mapping
in a coastal-dune ecosystem using high resolution satellite imagery. GISci. Remote Sens. 2018, 56, 210–232.
[CrossRef]

95. Lucas, N.S.; Shanmugam, S.; Barnsley, M. Sub-pixel habitat mapping of a costal dune ecosystem. Appl. Geogr.
2002, 22, 253–270. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/15481603.2018.1502910
http://dx.doi.org/10.1016/S0143-6228(02)00007-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Methodology 
	Sentinel-2 Imagery and Multitemporal Dataset 
	NDVI Calculation and Masking 
	Data Classification 
	Accuracy Assessment 
	Phenology-Based Map vs. Previous Vegetation Studies 


	Results 
	Sentinel-2 NDVI Classification 
	Classification Accuracy Assessment 
	Harmonization and Agreement Test with Existing Documents 

	Discussion 
	Conclusions 
	References

