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Abstract: Remote sensing data can be utilized to help developing countries monitor the use of land.
However, the problem of constant cloud coverage prevents us from taking full advantage of satellite
optical images. Therefore, we instead opt to use data from synthetic-aperture radar (SAR), which can
capture images of the Earth’s surface regardless of the weather conditions. In this study, we use SAR
data to identify newly built constructions. Most studies on change detection tend to detect all of the
changes that have a similar temporal change characteristic occurring on two occasions, while we
want to identify only the constructions and avoid detecting other changes such as the seasonal change
of vegetation. To do so, we study various deep learning network techniques and have decided to
propose the fully convolutional network with a skip connection. We train this network with pairs
of SAR data acquired on two different occasions from Bangkok and the ground truth, which we
manually create from optical images available from Google Earth for all of the SAR pairs. Experiments
to assign the most suitable patch size, loss weighting, and epoch number to the network are discussed
in this paper. The trained model can be used to generate a binary map that indicates the position of
these newly built constructions precisely with the Bangkok dataset, as well as with the Hanoi and
Xiamen datasets with acceptable results. The proposed model can even be used with SAR images of
the same specific satellite from another orbit direction and still give promising results.

Keywords: satellite imagery; SAR; deep learning; U-net; urban change

1. Introduction

In developing countries, the high demand for the construction of new residential and business
areas is common. Monitoring new construction is necessary in order to predict the expansion of cities
in both political and economic terms. A commonly used approach for this type of observation is the
use of remote sensing data from optical sensors, because such data allow the easy creation of maps.
Despite the excellence of optical data, some developing countries are located in tropical areas where
clouds cover parts of the area all year round. Unfortunately, optical sensors cannot capture Earth’s
surface below these clouds. Because synthetic-aperture radar (SAR) captures images using microwave
signals that can penetrate clouds, the use of SAR data is a secondary option to handle the problem.
However, the difficulty in the interpretation of SAR images makes it harder to identify locations
of new constructions. In the literature, many methods have been proposed for SAR image change
detection with threshold method and clustering methods [1–5]. Many of these publications have to
generate a difference image from the pixel information of two SAR images, from which it is difficult to
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identify one specific change, such as the appearance of new buildings, as any kind of change similar to
the target change would be involved in the results. For instance, Y. Ban and O. Yousif [6] used the
threshold-based method on a difference image in detecting urban change. Despite the good detection
result, there is a possibility to detect falsely when the urban or non-urban area has unordinary intensity
change behavior. In this research, our target is to monitor the increase in new construction in urban and
suburban areas. To complete this objective, we used a deep learning technique to identify these newly
built constructions from two SAR images directly without generating a difference image. The goal
of deep learning is to simulate the experience-based learning mechanism of the human brain using
training data and ground truth data in the same way that humans learn [7]. To date, deep learning
has been highly effective, especially in the image processing field. One of the most successful deep
learning networks that we considered using in this work is the U-net [8]. The U-net, proposed in 2016
for the purpose of medical image segmentation, was built on the basis of adding a skip connection to
the fully convolutional network (FCN) [9] between the encoder part and decoder part. With the skip
connection, the decoders can receive a low-level feature from the encoder and form the output without
losing boundary information in the process. Because of its precisely predicted output at the boundary
part of an image, it is now one of the most cited papers in the deep learning field. In our case, it is
extremely important to preserve the boundary information because SAR data do not provide very
clear information; this is because the observation mechanism of SAR is completely different from those
of other sensors.

There are numerous publications involving high-precision remote sensing and deep
learning [10–14], but they mostly involve optical imagery, whose data are clear and contain information
that is similar to that in ordinary RGB images. Despite the frequent use of the RGB image and the good
quality of its data resolution, other methods were explored for our study. The U-net has performed well
in the extraction of buildings using very high resolution satellite imagery [15], which produces a very
accurate result even at the building boundary area. Publications of studies that used deep learning
with SAR images [16–19] also report excellent change detection results and prove that deep learning
can be used with SAR images. S. Iino et al. [20] successfully used a convolutional neural network with
an SAR image for land cover classification to find an urban distribution map for short-term change
detection. However, their results included all of the changes that occurred on two occasions, regardless
of the source of the changes, because they used only the information of the difference in intensities
or the digital surface model. In a real-life application of change detection, we usually want to see
only the changes of interest while ignoring all others; thus, instead of detecting all of the changes that
occurred, we should only detect changes in a specific target, for example, detect changes in buildings
while ignoring paddy field seasonal changes, as we are doing in this work. As most of the existing
methods use only the differences in SAR intensities and the ground truth of all changes detected, they
are not able to satisfy the objective of detecting only the changes related to buildings, even with the
use of deep learning. To do so, a different approach to training a deep learning network to detect
newly built constructions needs to be created. To this end, we aim to employ the U-net architecture to
identify the location of newly built constructions in SAR images; this was implemented by training the
network with SAR images from two different occasions and then guiding the network to determine
which changes are from construction through the corresponding ground truth of building changes.
While the results of difference image-based methods can contain such unwanted objects when similar
intensity change behavior appears, our network can learn the change of the constructions and other
areas by not just using the change of intensity, but also including visual features of constructions and
non-constructions objects as well, which makes it able to tell the difference between the change from
newly built construction and other kind of changes.



Remote Sens. 2019, 11, 1444 3 of 24

2. Dataset

2.1. SAR Data Description

The SAR data we used in this research are from ALOS-PALSAR in HH polarization with a
resolution of 15 m/pixel. The images in the dataset were captured in ascending orbit mode at different
times between 2008 and 2010. All SAR images were acquired in the right-looking direction with an
off-nadir angle of 34.3◦. The dataset includes three study areas: Bangkok, Thailand; Hanoi, Vietnam;
and Xiamen, China. The images of the Bangkok area were taken at five different times: 1 January 2008,
27 November 2008, 12 January 2009, 21 November 2009, and 15 January 2010. The images of Hanoi
and Xiamen were taken at two different times; the Hanoi images were taken on 2 February 2007
and 13 February 2011 and the Xiamen images were taken on 22 February 2007 and 2 November 2010.
Although a variety of polarizations can be chosen, we selected HH polarization, as it is the most
suitable for building detection because the double bounce effect of the building is clearest in HH
polarization images. The unit of the backscatter (intensity) of the dataset is dB.

2.2. Ground Truth Preparation

We created ground truth data that correspond to our SAR data. The process of creating the ground
truth was entirely manual and done by the authors. All of the ground truths were created by drawing
polygons (red objects in Figure 1) directly onto the optical images (examples shown in Figure 1c,d)
available in Google Earth software after comparing the images of the same location from two different
times. The criteria used for selecting the date of the optical images corresponding to Time 1 and Time 2
of the SAR data is that the date must be as close as possible to the SAR data, while Time 1 of optical
data must not exceed Time 1 of SAR data, and the Time 2 of optical data must not be before Time 2 of
SAR data. Because the boundaries of our ground truths are large, the dates of the optical images we
picked from Google Earth vary depending on the area within the ground truth boundary, the lack of
optical information, and the cloud cover problem; for example, the dates for the optical data selected
for Time 1 of the SAR pair 1 January 2008/12 January 2009 are 18 December 2004 and 10 February 2005;
for Time 2, the dates 18 December 2009, 11 April 2010, and 15 April 2010 were selected. Please note
that we only selected buildings with a size of more than 45 × 45 m (approximately 2025 m2) in the
optical image. The number of polygons for each created ground truth is shown in Table 1.

Table 1. Acquisition information of dataset. SAR—synthetic-aperture radar.

Purpose Location Acquisition Date of SAR Images
(Time 1–Time 2)

Number of Polygons in
Ground Truth

Training Bangkok, Thailand 1 January 2008–15 January 2010 164

12 January 2009–15 January 2010 68

1 January 2008–12 January 2009 38

Testing Bangkok, Thailand 27 November 2008–15 January 2010 12

12 January 2009–21 November 2009 16

Hanoi, Vietnam 2 February 2007–13 February 2011 108

Xiamen, China 22 January 2007–2 November 2010 68
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Figure 1. Examples of synthetic-aperture radar (SAR) dataset and ground truth data (red polygons) 
overlaid on an optical image from Google Earth of a temple construction in Bangkok: (a) SAR image 
from 12 January 2009, (b) SAR image from 21 November 2009, (c) optical image from 10 February 
2005, (d) optical image from 18 December 2009, (e) created ground truth. 

Before any further action, we first reduced the speckle noise in the entire dataset using the Lee 
filter [21] with a filter size of 3 × 3 to prevent potential errors due to noisy values from occurring 
during the training process. We then normalized the intensity value of the data to a range of [−1, 1] 
to facilitate network training by avoiding inconsistent SAR intensities. To enable identification of the 
positions of new constructions that were built between two different times, we selected data from the 
dataset acquired on different dates with the same data acquisition conditions and geolocations. We 
then matched the selected data to form a pair of Time 1 and Time 2 SAR images. The images from 
Time 1 and Time 2 and their corresponding ground truth were then stacked and prepared for cutting 
into small patches for training the network. To cut the SAR images taken at two different times and 
the corresponding ground truth to use in network training (as Time 1, Time 2, and the ground truth) 
for loss calculation, we used a sliding window with a sliding step of 50 pixels along the images to cut 
them into patches. Fifty was deemed the most suitable number of pixels for the sliding step because 
it results in a patch that is cut without skipping buildings, but is also not too repetitive. Only the 
patches containing at least one polygon according to the corresponding ground truth were selected 
for use in the training process. As a result, we had 2028 pairs after discarding patches that contained 
only negative pixels (please note that 10 percent of the patches from 2028 pairs were randomly 
selected for the validation of the model at the end of each training epoch). The patches with only 
negative pixels were removed because we want the network to learn from positive samples so that it 
can locate the construction of a building; also, we are likely to maintain a balance between positive 
and negative data during training as patches containing positive pixels also contain negative pixels. 
The patches cut for training the network were 256 × 256 pixels, which is a size that is suitable for 
detecting a building, as shown in Figure 2, as it has the appropriate proportion of positive and 

Figure 1. Examples of synthetic-aperture radar (SAR) dataset and ground truth data (red polygons)
overlaid on an optical image from Google Earth of a temple construction in Bangkok: (a) SAR image
from 12 January 2009, (b) SAR image from 21 November 2009, (c) optical image from 10 February 2005,
(d) optical image from 18 December 2009, (e) created ground truth.

2.3. Training Data Preparation

Before any further action, we first reduced the speckle noise in the entire dataset using the Lee
filter [21] with a filter size of 3 × 3 to prevent potential errors due to noisy values from occurring
during the training process. We then normalized the intensity value of the data to a range of [−1, 1] to
facilitate network training by avoiding inconsistent SAR intensities. To enable identification of the
positions of new constructions that were built between two different times, we selected data from the
dataset acquired on different dates with the same data acquisition conditions and geolocations. We
then matched the selected data to form a pair of Time 1 and Time 2 SAR images. The images from
Time 1 and Time 2 and their corresponding ground truth were then stacked and prepared for cutting
into small patches for training the network. To cut the SAR images taken at two different times and the
corresponding ground truth to use in network training (as Time 1, Time 2, and the ground truth) for
loss calculation, we used a sliding window with a sliding step of 50 pixels along the images to cut
them into patches. Fifty was deemed the most suitable number of pixels for the sliding step because it
results in a patch that is cut without skipping buildings, but is also not too repetitive. Only the patches
containing at least one polygon according to the corresponding ground truth were selected for use
in the training process. As a result, we had 2028 pairs after discarding patches that contained only
negative pixels (please note that 10 percent of the patches from 2028 pairs were randomly selected for
the validation of the model at the end of each training epoch). The patches with only negative pixels
were removed because we want the network to learn from positive samples so that it can locate the
construction of a building; also, we are likely to maintain a balance between positive and negative
data during training as patches containing positive pixels also contain negative pixels. The patches
cut for training the network were 256 × 256 pixels, which is a size that is suitable for detecting a
building, as shown in Figure 2, as it has the appropriate proportion of positive and negative pixels.
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The details are discussed in Section 4.2, in which we compare the accuracies resulting from using a
patch size of 128 × 128 and 256 × 256. Time 1 and Time 2 of each paired dataset are shown in Table 1.
Another thing to note is that the areas used for testing purposes in Bangkok, Hanoi, and Xiamen were
manually selected at 400 × 400 pixels, which differs from the training data and was chosen for the ease
of inspection.
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Figure 2. The histogram of change area in training data.

3. Network Description

Because the U-net is an FCN model, in order to express the reasons for its selection among all
other models, the background of some other FCNs needs to be explained first.

The FCN is an architecture built only upon locally connected layers, such as the convolution,
pooling, and upsampling layers. The network is usually divided into an encoder part and a decoder
part. The encoder is responsible for gathering the information or features of objects in an input
image, while the decoder is for recovering spatial information. One of the best examples of FCN
architecture is SegNet [22], which was proposed for the semantic segmentation of an RGB image.
The architecture consists of the same number of encoders and decoders, and each encoder applies
convolution, batch normalization, ReLU, and max pooling to downsample the result. The decoder
carries out almost the same procedure as the encoder, but without a ReLU step and with upsampling
instead of downsampling. The output of the last decoder is then subjected to the Softmax function to
generate the segmentation prediction result.

The architecture of the U-net is very similar to that of SegNet, but with an additional skip
connection between each corresponding encoder and decoder. The skip connection makes a huge
difference. Without a skip connection, the output prediction result lacks sharpness around the boundary
areas, which is especially crucial for the SAR images in our case. Although comparing our result from
the U-net with that from SegNet would be informative, it is impossible to generate the output using
SegNet because features are too blurry to be identified. The result of using SegNet indicates that the
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skip connection is very important when dealing with images without significant sharpness, as is the
case for our dataset.

Besides SegNet, any other FCN that involves a deconvolution layer [23] as an upsampling layer
cannot generate a suitable result, as the checkerboard phenomenon will occur [24]. Therefore, it would
be difficult to compare the results of these FCNs with those of the proposed network.

Our network is shown in Figure 3. Each encoder block consists of a convolution–BatchNorm–ReLU
layer. The values of the number of channels, spatial filter size, and stride size of the convolution filters in
each step are shown in Figure 4. As our modules are in the form of convolution–BatchNorm–ReLU [25],
it is noted that the first layer in the encoder does not apply BatchNorm. As we followed the method
applied by Isola et al. [26], in the encoder, all ReLU functions are leaky with a slope of 0.2, while the
ReLU functions in the decoder are not leaky. The dropout rate is 0.5. Our skip connections in the U-net
architecture were placed to concatenate activations between each layer i in the encoder and layer n
− i in the decoder, where n is the total number of layers. The concatenation leads to a change in the
number of channels in the decoder. At the last layer in the decoder, a convolution function is applied
to map the output, followed by a sigmoid function.
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Although we have datasets for three cities, we chose to train our network with the Bangkok
dataset. From the images at Time 1 and Time 2, each 256 × 256-pixel patch is concatenated and fed to
the network along with the ground truth. The U-net returns the change detection result, which is used
to calculate the loss for comparison with the corresponding ground truth. In the loss calculations, the
loss function L in our method is the cross-entropy, which normally can be calculated as

L = −
M∑

c=1

yo,c log(po,c), (1)

where M is the number of classes, y is the binary indicator (0 or 1) that represents whether class label c
is the correct classification for observation o, and p is the predicted probability that observation o is of
class c. However, in our case, M equals 2 because it is a binary classification (changed or unchanged).
Thus, L from (1) can be derived as

L = −(y log(p) + (1− y) log(1− p)). (2)

However, because there are far fewer positive pixels than there are negative pixels, we considered
applying class weight balancing to the loss function in order to prevent the network from excessive
activations for negative parts and never for positive parts. The weighted loss function has proven its
efficiency in handling imbalance class dataset [27], which is also applicable to our case. As a result, the
calculation of the loss function becomes

L = −
(
y log(p)

(
ωp

)
+ (1− y) log(1− p)

)
, (3)
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where

ωp =
percentage o f negative pixels in training set
percentage o f positive pixels in training set

. (4)

This weight ωp makes the network focus equally on how changes happened in positive areas and
in negative areas. Although the negative area should be given a higher priority in training because, in
most cases, the majority of the area is negative, we want the model to be applicable to any situation
regardless of the ratio of positive to negative area, so we decided to use weights that result in the
network learning both classes to an equal extent.

The value of ωp can vary depending on the dataset used to train the network. In our case, the
value is 181.5, which is the result of the rate of white pixels (new construction areas) = 0.548% and
the rate of black pixels (non-changed areas) = 99.452%. We did not use the ratio from ground truths
corresponding to the whole SAR image because it contains too many black pixels in patches that
were discarded (i.e., negative patches) and thus excluded from the network training process; thus, the
ground truth ratio would not match the ratio received by the network from the training set.

As the selection of parameters can affect the model efficiency, we determined the best parameters
by observing training loss and testing loss during the network training. As a result, the number of
epochs we used in this work is 10 with the batch size of 16. The model was trained with an Adam
optimizer at a learning rate of 0.001. We found that using an epoch of around 10 lowers the training
loss while keeping the testing loss stable; this was determined by observing that the testing loss of
the network started to fluctuate around the 10th epoch and the loss increased afterward. In addition,
using more than 10 epochs may cause overfitting and is also time-consuming, as there is no significant
difference between using 10 epochs and more than 10 epochs.

4. Experimental Results

In this section, the experiments for evaluating the impact of weighting loss compared with that of
not weighting are described. The experiment for evaluating different patch sizes is also described in
this section.

To evaluate the results, we used the Bangkok testing dataset from the two date pairs shown in
Table 1. The accuracy in this research is calculated in the form of overall accuracy, precision, recall, F
measure, F1 measure, Kappa, intersect over union (IOU), false negative (FN) rate, and false positive
(FP) rate. The false negative rate is obtained by the number of pixels that are in the ground truth, but
not in our predicted result multiplied by 100 and then divided by the total number of positive pixels in
the ground truth; the false positive rate is the number of pixels that are not in the ground truth, but are
in our predicted result multiplied by 100 and then divided by the total number of negative pixels in
the ground truth. The calculation of each validation method, excluding the false negative and false
positive rates, is shown in Table 2. The TP in the Table 2 stands for true positive while TN stands for
true negative. Please note that the β value of our F measure is 0.3. The result of the proposed network
is compared with the results using fuzzy c-means (FCM) clustering [28] and Otsu thresholding [29].
Some other experiments that we conducted are also shown in this section. The FCNs are not used in the
comparison in this section because they cannot generate a decent detection result, as shown in Figure 5.
Please note that in Figure 5, the range of prediction value of SegNet is [0.39 × 10−2, 1.01 × 10−2], while
that of our proposed network (based on the U-net) is [8.39 × 10−6, 0.99]. As the prediction range of
SegNet is very small, it is difficult to generate the binary output map as the proper threshold value
cannot be obtained.
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Table 2. The calculation of each validation method. IOU—intersect over union.

Validation Method Calculation

Overall accuracy Overall accuracy = TP+TN
TP+TN+FP+FN

Precision Precision = TP
TP+FP

Recall Recall = TP
TP+FN

F measure Fβ =
(
1 + β2

)
·

precision·recall
(β2· precision)+recall

F1 measure F1 = 2· precision·recall
precision+recall

Kappa Kappa =
Observed agreement − chance agreement

1−chance agreement

IOU IoU =
target∩prediction
target∪prediction
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4.1. Comparison between Weighted and Non-Weighted Loss Function

While the loss function of the network used in this research is weighted, an experiment to compare
the weighted and non-weighted loss function was conducted to show the benefit of weight balancing.
The advantage of weight balancing is illustrated in Figure 6, in which the area under the curve (AUC)
of the receiver operating characteristic curve (ROC curve) of the weighted loss is higher than that of
the non-weighted loss. The ROC curve is a graph of the true positive rate plotted against the false
positive rate, and the closer the AUC is to 1, the higher the model’s efficiency in separating classes.
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As we previously stated with regard to the unbalanced class weight, we noticed that our model
can generate results with a decent accuracy without involving a positive weight in the loss function,
but ultimately, using the weighted loss still generates a better result, as shown in Table 3.

Table 3. The accuracy of non-weighted loss compared with that of weighted loss for the Bangkok
testing site.

Validation Method Non-Weighted Loss Weighted Loss (ωp = 181.5)

False negative 84.5628 55.9093
False positive 0.0090 0.2238

Overall accuracy 99.14% 99.22%
Precision 0.9458 0.6669

Recall 0.1544 0.4409
F measure 0.6645 0.6398
F1 measure 0.2654 0.5308

Kappa 0.2633 0.5270
IOU 0.1530 0.3613

4.2. Comparison between Different Patch Sizes

As we stated in Section 2.3, we aimed to use a patch size that yields the most suitable ratio between
black pixels and white pixels that enables the network to learn the positions of building constructions
from positive samples; in this research, we used a patch size of 256 × 256 pixels. Before we selected
this size, we conducted an experiment to test which patch size—128 × 128 or 256 × 256 pixels—results
in better accuracies. The results are shown in Figures 7 and 8, in which the threshold applied to the
prediction maps is 0.5, the ωp of the 128 × 128 patch size is 80, and the ωp of the 256 × 256 patch
size is 181.5. ωp = 80 is obtained when the proportion of white pixels = 1.23% and the proportion of
black pixels = 98.77%, while ωp = 181.5 is obtained when the proportion of white pixels = 0.55% and
the proportion of black pixels = 99.45%. The process of applying ωp to our network is described in
Section 3.

The results in Table 4 indicate that using a 256 × 256 patch size leads to better accuracies. As a
result, we decided to use a patch size of 256 × 256 in all experiments. A 256 × 256 patch size results
in better accuracies because a 128 × 128 patch size is too small, causing the loss of features of some
parts, such as paddy fields, and leading to the network’s inability to fully learn the change pattern
of these areas. Even though the negative part is not the focus of this study, it is indispensable for
network training, which can be more recognizable in a 256 × 256 patch size. Moreover, because the
sliding step in patches cutting is smaller in a 128 × 128 patch size, the cut patches would have too many
repetitive patterns of both positive and negative features, which can cause the model to be overfitted at
an early stage.

Table 4. The accuracy of a 128 × 128 patch size compared with a 256 × 256 patch size on the Bangkok
testing site.

Validation Method 128 × 128 Patch Size 256 × 256 Patch Size

False negative 94.3625 55.8006
False positive 0.0680 0.4033

Overall accuracy 98.98% 99.04%
Precision 0.4572 0.5269

Recall 0.0564 0.4420
F measure 0.2881 0.5187
F1 measure 0.1004 0.4807

Kappa 0.0984 0.4759
IOU 0.0528 0.3164
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Figure 7. Comparison between each patch size in the first area of the Bangkok site. The resolution of
each image is 6 km × 6 km (for SAR pairs 27 November 2008/15 January 2010 and 12 January 2009/21
November 2009, respectively: (a,c) Time 1 SAR image, (b,d) Time 2 SAR image, (e,g) result of 128 × 128
patch size, (f,h) result of 256 × 256 patch size, (i,j) ground truth).

4.3. Result of Bangkok Testing Site

The Bangkok test site includes two date pairs: 27 November 2008/15 January 2010 and 12 January
2009/21 November 2009. The results of the model shown in this section are the binary maps obtained
from prediction maps with a threshold of 0.5. The model used in this experiment was trained with a
weight of ωp = 181.5. The results of our model are shown for two different areas in Figures 9 and 10.

From the results of the first test area, in which paddy fields account for the majority of the area,
the model can predict the construction of buildings while avoiding the changes in paddy fields caused
by seasonal effects. On the other hand, while both FCM and Otsu can capture most of the building
changes, they fail to ignore the changes in other parts; this is especially the case for Otsu, which is very
sensitive to intensity changes, resulting in about half of the image being detected as a building change.
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Validation Method 128 × 128 Patch Size 256 × 256 Patch Size 

Figure 8. Comparison between each patch size in the second area of the Bangkok site. The resolution
of each image is 6 km × 6 km (for SAR pairs 27 November 2008/15 January 2010 and 12 January 2009/21
November 2009, respectively: (a,c) Time 1 SAR image, (b,d) Time 2 SAR image, (e,g) result of 128 × 128
patch size, (f,h) result of 256 × 256 patch size, (i,j) ground truth).

Similar to the first area, the changes in the second area in paddy fields are ignored, while the
construction of the temple (the big square object in Figure 10e) and surrounding constructions are
detected. The construction of the temple starts with the appearance of four corners of the square as
construction preparation tools in Figure 8a, followed by the development of the construction site in
Figure 8c, and then the complete construction in Figure 10b,d. The results from the FCM and Otsu
methods are similar to those for the first area—they fail to detect only the building changes.
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Figure 9. Results of the Bangkok site in the first area. The resolution of each image is 6 km × 6 km (for 
SAR pairs 27 November 2008/15 January 2010 and 12 January 2009/21 November 2009, respectively: 
(a,c) Time 1 SAR image, (b,d) Time 2 SAR image, (e,g) ground truth, (f,h) proposed result, (i,k) result 
of fuzzy c-means (FCM), (j,l) result of Otsu). 

Figure 9. Results of the Bangkok site in the first area. The resolution of each image is 6 km × 6 km
(for SAR pairs 27 November 2008/15 January 2010 and 12 January 2009/21 November 2009, respectively:
(a,c) Time 1 SAR image, (b,d) Time 2 SAR image, (e,g) ground truth, (f,h) proposed result, (i,k) result of
fuzzy c-means (FCM), (j,l) result of Otsu).

The accuracy of each method for the Bangkok test site is shown in Table 5.
Despite the very high overall accuracy, our model has quite a high false negative rate, which

means that it detects buildings as being smaller or in the wrong shape compared with those in the
ground truth. However, the low false positive rate means that our model has a very low chance of
detecting other types of changes as a building change, and this is the target of our research. Other
accuracies are not very high, but they are all at an acceptable level, especially when compared with the
FCM and Otsu methods.
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Figure 10. Results of the Bangkok site in the second area. The resolution of each image is 6 km × 6 km
(for SAR pairs 27 November 2008/15 January 2010 and 12 January 2009/21 November 2009, respectively:
(a,c) Time 1 SAR image, (b,d) Time 2 SAR image, (e,g) ground truth, (f,h) proposed result, (i,k) result of
FCM, (j,l) result of Otsu).

Table 5. Accuracy of each model in the Bangkok area. FCM—fuzzy c-means.

Validation Method Proposed Network FCM Otsu’s Threshold

False negative 55.8006 51.4676 21.8357
False positive 0.4033 14.8646 58.3693

Overall accuracy 99.04% 84.77% 42.00%
Precision 0.5269 0.0321 0.0134

Recall 0.4420 0.4853 0.7816
F measure 0.5187 0.0348 0.0146
F1 measure 0.4807 0.0602 0.0264

Kappa 0.4759 0.0422 0.0068
IOU 0.3164 0.0311 0.0134

5. Applicability to Other Datasets and Discussion

Although our model can generate the prediction output that identifies building constructions in
the Bangkok area, the training set for the model is also from the Bangkok area, so its applicability to
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other areas can be questioned. To prove that our model can be used globally, we tested it with the
Hanoi and Xiamen areas, which are completely different from the training area, to see if it can detect
constructions as effectively as it does in the Bangkok area.

5.1. Hanoi Testing Site

The first testing data we selected are from the area of Hanoi. Hanoi is not only considered to be
a developing city comparable to Bangkok, but it also has a similar environment. The results of the
Hanoi area from the proposed model trained with the Bangkok dataset are shown in Figure 11. While
Bangkok and Xiamen each have two test areas, we validated the Hanoi test site with one area because
of the lack of available data.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 19 
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predicted sizes of building changes in the Hanoi area are larger than those in the ground truth. While 
the detected size and shape resulting from the FCM and Otsu methods are closer to the ground truth, 
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Even though the model has lower accuracies in Hanoi compared with those in Bangkok, the 
accuracy of the proposed network is higher than that of the other methods in almost every aspect. 

Figure 11. Result of the Hanoi site. The resolution of each image is 6 km × 6 km. (a) Time 1 SAR data,
(b) Time 2 SAR data, (c) ground truth, (d) result of proposed model, (e) result of FCM, (f) result of
Otsu thresholding.

The changes occurring between the two times of the SAR image pair comprise mainly the
construction of a small building. The building changes detected by the proposed model are larger than
in those in the ground truth, especially at the buildings around the center of the image. This can be
explained by the large group of intensity changes in the SAR images, as indicated by the red rectangles
in Figure 11a,b. Also, because the sizes of the constructions in the Bangkok area used to train the
network are larger than those in the Hanoi area, the model tends to perform better in the detection of
constructions with sizes that are similar to those in the training data. As a result, the predicted sizes of
building changes in the Hanoi area are larger than those in the ground truth. While the detected size
and shape resulting from the FCM and Otsu methods are closer to the ground truth, as shown before,
they cannot distinguish between building changes and other kinds of changes.

The accuracy is shown in Table 6.
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Table 6. Accuracy of the model applied to the Hanoi area.

Validation Method Proposed Network FCM Otsu’s Threshold

False negative 58.3236 55.1804 29.2308
False positive 0.9218 10.7332 30.7600

Overall accuracy 98.77% 89.03% 69.25%
Precision 0.1962 0.0220 0.0084

Recall 0.4168 0.4482 0.7077
F measure 0.2051 0.0239 0.0091
F1 measure 0.2668 0.0420 0.0165

Kappa 0.2614 0.0321 0.0094
IOU 0.1539 0.0215 0.0083

Even though the model has lower accuracies in Hanoi compared with those in Bangkok, the
accuracy of the proposed network is higher than that of the other methods in almost every aspect.

5.2. Xiamen Testing Site

Similar to the Hanoi case, we validated our model with the Xiamen test site, which has been
developing rapidly throughout the last decade. The two areas were tested, and the results of our model
are as follows.

In the first test site, a faded line from the center to the bottom, as seen in Figure 12b, is not detected
by our model; we assume that this line is noise in the SAR image because it does not appear in any
optical images close to these dates, while both FCM and Otsu failed to ignore this line. On the other
hand, our model can predict most of the constructions built, even those on the artificial island created
around the center of the images between Time 1 and Time 2.
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Figure 12. Result of the first Xiamen test site. The resolution of each image is 6 km × 6 km. (a) Time
1 SAR data, (b) Time 2 SAR data, (c) ground truth, (d) result of proposed model, (e) result of FCM,
(f) result of Otsu thresholding.
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At the second test site, three bridges are correctly excluded from our model’s prediction, as this is
not the objective of this research. While these bridges are in the middle of construction, please note that
bridges in Figure 13a have a higher intensity than those in Figure 13b because of the nearly complete
condition of the bridge surfaces at the time the image in Figure 13b was acquired; these surfaces cause
more reflectance of the SAR signal.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 19 
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1 SAR data, (b) Time 2 SAR data, (c) ground truth, (d) result of proposed model, (e) result of FCM, (f) 
result of Otsu thresholding. 
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Compared with the accuracies for the Hanoi area, the accuracies for Xiamen are improved, even 
though they are not as good as those in the Bangkok area. The main reason is that Xiamen is an island 
area surrounded by water. Because the model was trained with the Bangkok dataset, in which there 
is no water, the accuracy of the Xiamen result is slightly lower than that of the Bangkok result. 

5.3. Other Experiments 
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Figure 13. Result of the second Xiamen test site. The resolution of each image is 6 km × 6 km. (a) Time
1 SAR data, (b) Time 2 SAR data, (c) ground truth, (d) result of proposed model, (e) result of FCM,
(f) result of Otsu thresholding.

The accuracy is shown in Table 7.

Table 7. Accuracy of the model in the Xiamen area.

Validation Method Proposed Network FCM Otsu’s Threshold

False negative 77.5769 63.0076 30.4775
False positive 0.5083 12.1638 15.7484

Overall accuracy 98.4121% 87.88% 84.05%
Precision 0.3852 0.0414 0.0590

Recall 0.2242 0.3699 0.6952
F measure 0.3636 0.0447 0.0638
F1 measure 0.2834 0.0745 0.1088

Kappa 0.2756 0.0506 0.0852
IOU 0.1651 0.0387 0.0575

Compared with the accuracies for the Hanoi area, the accuracies for Xiamen are improved, even
though they are not as good as those in the Bangkok area. The main reason is that Xiamen is an island
area surrounded by water. Because the model was trained with the Bangkok dataset, in which there is
no water, the accuracy of the Xiamen result is slightly lower than that of the Bangkok result.
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5.3. Other Experiments

We also applied our model to an area that is outside of the ground truth boundary for the Bangkok
image pair acquired on 27 November 2008 and 15 January 2010. The proposed model detects the
appearance of new construction that is actually happening, as shown in Figure 14. As it is difficult to see
the corresponding area between optical images and SAR images because of the low resolution of SAR
images, we add red rectangles in order to allow the readers see the boundary of buildings clearer. Please
note that area in Figure 14 is cropped from the tested image of 400 × 400 pixels (6 km × 6 km resolution).
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Figure 14. The result of the proposed model with an area outside the ground truth boundaries.
The resolution of each image is 0.5 km × 0.45 km. (a) Time 1 optical data, (b) Time 2 optical data,
(c) proposed result, (d) Time 1 SAR data (zoom), (e) Time 2 SAR data (zoom), (f) prediction map.

In addition to testing other networks and testing areas, we further tested our model, which was
trained with ascending SAR data, with descending SAR data. The result in Figure 15 shows that the
proposed model can also be used with SAR data from another orbit. Please note that the size of the
descending SAR images used in this experiment is 300 × 300 pixels, and the ground truth is the same
for the 12 January 2009/15 January 2010 SAR pair.

The accuracy shown is in Table 8.
Most of the accuracies resulting from using the model with descending SAR images are even

slightly higher than those with ascending SAR images of Bangkok (Table 5). This is because there are
more significant differences between a pair of descending images compared with ascending images,
as the model tends to detect construction more easily when there is a significant change in intensity
values. As can be seen in Figure 16, the highest number of pixels of the descending images at Time 1
and Time 2 is different, resulting in intensity values of approximately −8 and −8.5, respectively; on the
other hand, in the ascending images, the intensity values are the same at approximately −8.5, although
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the number of pixels is different. Please note that the size of each image used to create the histogram is
400 × 400 pixels.
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Table 8. Accuracy of the model with descending SAR data.

Validation Method Descending SAR Image

False negative 41.9199
False positive 0.4677

Overall accuracy 98.51%
Precision 0.6209

Recall 0.5808
F measure 0.6174

F1 measure 0.6002
Kappa 0.5663

IOU 0.4287
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5.4. Model Accuracy Discussion

Because of the variety and complexity of the shapes of buildings in satellite images, it is difficult
for the proposed method to give the exact shape of a detected building change, which is reflected by
the low recall of our results. On the other hand, our proposed method can give the position of almost
all building changes that occurred between two different dates, and these changes can be confirmed by
visual inspection. The model can identify almost all changes according to the ground truth. The false
positive rate is low because the score was obtained by a pixel-based validation method. As can be seen
in Figure 17, almost all of the blue areas are attached to the red areas, which means that our model can
predict newly built construction positions that are very close to the ground truth.
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constructions if the difference in SAR intensity is too small, as in the case of the row of houses in the 
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inspection to detect changes if the difference in intensity is very low. The reason for the low intensity 
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Figure 17. Comparison of the proposed model’s result and the ground truth of (a) the first test area of
Bangkok SAR pair 27 November 2008/15 January 2010, (b) the first test area of Bangkok SAR pair 12
January 2009/21 November 2009, (c) the second test area of Bangkok SAR pair 27 November 2008/15
January 2010, (d) the second test area of Bangkok SAR pair 12 January 2009/21 November 2009, (e) the
first test area of Xiamen SAR pair, (f) the second test area of Xiamen SAR pair, (g) the test area of Hanoi
SAR pair ((red) true positive area, (green) false positive area, (blue) false negative area) (the resolution
of each image is 6 km × 6 km).

The area in Figure 18 is a cropped version of the first test area of Bangkok to discuss whether
the model can or cannot detect newly built constructions from SAR images. The model can precisely
detect the construction if the change in SAR intensity is significant, as shown by the blue rectangles in
Figure 18d,e. Please note that the southern part of the blue rectangle has high intensity in the Time 1
SAR image, but there is no house in the optical image because of a time gap between the available
optical image and our SAR dataset. On the other hand, in some cases, the model is not able to detect
constructions if the difference in SAR intensity is too small, as in the case of the row of houses in the
red rectangles in Figure 18d,e. However, it is nearly impossible for any algorithm or even manual
inspection to detect changes if the difference in intensity is very low. The reason for the low intensity
of the houses in the red rectangular area compared with the intensity of those in the blue rectangular
area is the difference in the orientation of the houses. As they are constructed in different orientations,
it is possible that they reflect the SAR signal differently. The high intensity in the blue rectangle is
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possibly the result of the double bounce on the houses’ walls or a strong single bounce on the houses’
roofs, but these phenomena do not happen with the houses in the red rectangle because the orientation
of the houses is different, and the latter may end up reflecting the SAR signal at their roof edge. It is
also worth mentioning that our model does not detect any changes that are not construction changes.
In Figure 19a,b, the change due to cutting forests is not detected by our model even though there is a
significant change in SAR intensity, as shown in Figure 19c,d. The change in paddy fields caused by
seasonal effects is also not detected by our model, as shown in Figure 19e–h. Despite its efficiency in
distinguishing constructions from paddy fields or open spaces, it is possible that the model would fail
to detect an area such as land with snow cover, for which the intensity change differs from that of the
constructions and paddy fields or open spaces that we used to train the model. Constructions with
very different shapes from those we used for training also have a small chance of not being detected by
our model. We believe that the result of the model is strong enough for the goals of this study and can
be developed further to use as the ground truth of building changes in any other work.
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Figure 18. Example of successful detection and failed detection: (a) optical image from 22 August 2008,
(b) optical image from 15 April 2010, (c) ground truth, (d) SAR image from 27 November 2008, (e) SAR
image from 15 January 2010, (f) result of the model (the resolution of each image is 1 km × 0.75 km).
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Figure 19. Examples of changes ignored by the model: (a) optical image of forest area from
18 December 2004, (b) optical image of forest area from 15 April 2010, (c) SAR image of forest area from
27 November 2008, (d) SAR image of forest area from 15 January 2010, (e) optical image of paddy field
area from 18 December 2004, (f) optical image of paddy field area from 15 April 2010, (g) SAR image
of paddy field area from 27 November 2008, (h) SAR image of paddy field area from 15 January 2010
(the resolution of each image is 0.14 km × 0.265 km for (a–d) and 1.5 km × 1.2 km for (e–h)).

6. Conclusions

In this research, we propose a U-net-based network to detect the new construction of buildings
in developing areas between two SAR images taken at different times. Because the proposed model
is based on the U-net, which includes a skip connection, it can generate good results without losing
boundary information, while other FCNs cannot, even with our dataset from ALOS-PALSAR at a
resolution of 15 m/pixel. The dataset was preprocessed to reduce noise with a 3 × 3 Lee filter, and the
intensity was normalized to [−1, 1]. Then, images were cut into patches before their use in the network
training process. The ground truth used for network training and testing was created manually by
drawing polygons on optical images obtained from Google Earth. Because of the unbalanced class
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weights in the training dataset, we weighted the loss function with the ratio between the positive class
percentage and negative class percentage. The suitable weight, patch size, and epoch number used
for network training were obtained after conducting several experiments. Our U-net-based model
satisfies our objective, which is to identify the position of the newly built constructions. By comparing
the results with the ground truth, we validated the proposed model with conventional methods, and it
achieves a higher accuracy with any testing area. In addition to its effectiveness using the ascending
SAR data of the Bangkok area, which we used as training data, the model can also return the position
of changes in Hanoi and Xiamen, and is successful when used with descending SAR data. As the
current ground truth data do not contain the constructions smaller than 2025 m2 and the training data
of Bangkok area do not contain mountains or water, which can lead to failure when using the model
with such areas, we will try to further generalize our method by investigating this topic in the future.
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