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Abstract: This study shows a simplified approach for calculating emissions associated with forest fires
in Mexico, based on different satellite observation products: the biomass, burnt area, emission factors,
and burning efficiency. Biomass loads were based on a Mexican biomass map, updated with
the net primary productivity products. The burning efficiency was estimated from a Random
Forest Regression (RFR) model, which considered the fuel, weather and topographical conditions.
The burned areas were the downloaded Maryland University MCD64c6 product. The emission
factors were obtained from well-known estimations, corrected by a dedicated US Forest Service and
Mexican campaign. The uncertainty was estimated from an integrative method. Our method was
applied to a four-year period, 2011–2014, in three Mexican ecoregions. The total burned in the study
region was 12,898 km2 (about 4% of the area), producing 67.5 (±20) Tg of CO2. Discrepancies of the
land cover maps were found to be the main cause of a low correlation between our estimations and
the Global Emission Database (GFED). The emissions were clearly associated to precipitation patterns.
They mainly affected dry and tropical forests (almost 50% of all emissions). Six priority areas were
identified, where prevention or mitigation measures must be implemented.

Keywords: gas emissions; remote sensing; machine learning

1. Introduction

The greenhouse gas (GHG) effect is a natural process that helps to maintain the thermal balance for
life on Earth. However, the atmospheric composition is changing as a result of human activities, such as
the burning of fossil fuels (coal, oil, natural gas), deforestation, and forest degradation. The consequent
increase in GHGs has been associated with a rise in global temperatures [1–3], including in the period
2011–2015, which has been the warmest on record [4]. Wildfires contribute between 24% and 35% of
carbon dioxide (CO2), carbon monoxide (CO), Nitrogen Oxide (NOx) and methane (CH4) emissions to
the atmosphere, as well as a significant quantity of aerosols [5]. For this reason, and because of its role in
vegetation changes, fire disturbance has been designated an Essential Climate Variable (ECV) [5] by the
Global Climate Observing System (GCOS) to better understand Climate Change trends [6]. The GHGs
associated with forest fires are CO2, CH4, and nitrogen oxides (NOx). CO is not a GHG, but it generates
ozone (O3) in the troposphere and has a deleterious effect on living organisms [7]. These gases are
the result of chemical reactions resulting from the combination of three components: vegetation,
heat, and oxygen [8]. Their emissions vary spatially and temporally, depending on the fuel moisture
conditions: the more moisture, the lower the gas emissions (owing to incomplete combustion) [9,10].
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Earth observation data are essential for monitoring natural and anthropogenic processes.
Their application can contribute to estimations of emissions, owing to the timely and reliable flow
of information; the results can be spatially comparable, and this is an ideal method for estimating
emissions from fires. Of the various methods previously proposed, the bottom-up approach [11] has
been the most commonly used. It considers four main variables: biomass loss, burned area, burning
efficiency, and emission factors. These variables can be ascertained from statistical, cartographic,
or satellite data. A variation of this model uses the Fire Radiative Power (FRP), estimated from the
radiance detected by satellite middle infrared sensors, as a surrogate of the biomass consumed by
the fire [12]. However, this method has some limitations, as polar orbiting satellites have only a few
observations on a single-fire activity, while geostationary satellites may miss small fires because of
their coarse spatial resolution.

Remote sensing products have been used to calculate GHGs for various initiatives. The most
relevant is the Global Fire Emissions Database (GFED) [13]. The GFED generates and publishes
information, at the global and regional levels, about gases derived from biomass burning, following the
proposal by Seiler and Crutzen [11]. A similar system is the Global Fire Assimilation System (GFAS),
which uses the FRP method [14], within the framework of the Copernicus Atmosphere Monitoring
System (CAMS). Other authors have worked at a regional level, such as North America [15] and
southern Africa [16], or at a national level, such as Colombia [17], using Moderate Resolution Imaging
Spectrometer (MODIS) products.

The GHG emissions associated with forest fires in Mexico are an annual phenomenon and are
of great importance in view of their impact on the natural, social, and economic sectors at the local
and regional levels, e.g., the damage to biodiversity and closure of schools. The direct effects on
local areas can expand into other areas and territories by the drift of emissions. The interannual
variation in emissions is associated with meteorological conditions that favor fire ignition, propagation,
and extinction. The main factors in Mexico are the seasonal distribution of precipitation and the
phenology of vegetation. Human activities have also been decisive in the generation of forest fires
and, therefore, in the emissions, as most Mexican forest fires are anthropogenic [18]. The emissions
from forest fires have been calculated in Mexico mainly from statistics supplied by CONAFOR (the
National Forestry Commission) and cartography from INEGI (the National Institute of Statistic and
Geography) [19–22]; these calculations followed the guidelines of the Intergovernmental Panel on
Climate Change (IPCC). Nevertheless, the accuracy of the estimation can be enhanced by using satellite
products to extract temporal and spatial variations.

The objective of this paper is to calculate the emission of gases (CO2, CO, CH4, NOx, NH3) and
fine particulates (PM2.5) caused by forest fires in three ecoregions of Mexico using remote sensing
products and auxiliary data. Such knowledge regarding the spatial and temporal distribution of
emissions can identify the most sensitive areas. The purpose of this paper is also to demonstrate the
use of indirect techniques supported by remote sensing products with a high temporal resolution,
together with a machine learning approach, in order to estimate the burning efficiency.

2. Materials and Methods

2.1. Study Area

Three ecoregions in southwestern and southeastern Mexico, 22◦0′–15◦3′N and 86◦30′–105◦45′W,
were selected for the study (Figure 1). The three ecoregions are forest dominated and susceptible
to fires, but they differ in their natural characteristics and ecological response. These are 3 of the
22 ecoregions recognized by the ecoregion map of Mexico [23], and were selected according to the
following criteria: (1) representative area of a forest ecoregion; (2) located within political states
reporting a high incidence of forest fires (CONAFOR); (3) ecoregion with active fires identified with the
Early Warning Forest Fires System, operated by the National Commission for Knowledge and Use of
Biodiversity (CONABIO) [24]. The three ecoregions selected were: (a) Southern Sierra Madre (ecoregion
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13.5), dominated by temperate forests (e.g., pine, oak, pine-oak, and cloud forests); (b) Southern Pacific
Coastal Plain and Hills (ecoregion 14.5), characterized by dry and tropical forests; and (c) Plain and
Hills of the Yucatan Peninsula (ecoregion 15.2), dominated by tropical forests.
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2.2. Variables for Estimating Emissions

The selection of satellite and cartographic products for calculating the emissions was based on the
factors proposed by Seiler and Crutzen (1980) and on Equation (1) [25]:

Mi, j,k = BLi, j,m ∗ BEi, j,m ∗ BSi, j ∗ Ek ∗ 10−15 (1)

where Mi, j,k is the amount of gas k released for a specific area (with the coordinates i, j) in Tg, BLi, j,m
is the biomass load for the same area (g m−2) (assuming the area has a homogeneous cover of fuel
of vegetation type m), BEi, j,m is the burning efficiency (0–1, dimensionless) of the fuel/vegetation
type m, BSi, j is the burned surface of the same area (m2), and Ek (Emission Factor) is the amount of
trace gas k released per unit of dry matter (g kg−1 of biomass). The data used for each parameter are
described below.

2.2.1. Biomass

The goal was to establish a base map of the biomass and to update it for each year of interest.
The distribution of the aboveground carbon stocks of woody vegetation in Mexico was selected as
the base map [26,27], because it (1) uses field and remote sensing data with similar dates, (2) has
been validated, and (3) covers the whole of Mexico with a 30 m spatial resolution. The biomass was
estimated by applying conversion factors for the vegetation type, as proposed in [28], and it was
resampled to 500 m.

Annual updating was performed using Net Primary Production (NPP), which is defined as the
generation of organic material that plants accumulate in their tissue, as a result of photosynthesis by
unit area [29,30]. NPP was extracted from MOD17A3 data [31] for the Gross/Net Primary Production
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(GPP)/(NPP). To estimate the biomass based on NPP, a conversion factor of 0.48 [28] was used.
We applied the same conversion factor for the whole study area, because NPP is an annual product
and has a coarse spatial resolution (1 km2), while the biomass map was made for a specific period
and has a higher spatial resolution. Both products, the base map and the annual biomass from NPP,
were combined for an estimate of the biomass for a specific year.

2.2.2. Burning Efficiency

The burning efficiency corresponds to the fraction of the biomass or fuel consumed by the
fire in a specific area; Mexican studies have used default values from general tables, or [19] have
used information from the CONSUME model, which was designed specifically for the USA [19].
Here, we propose a Random Forest Regression (RFR) model, which has been extensively used in the
last years for satellite classification, including forest fire studies [32]. This used the field data of fuel
loads and their consumption, from 67 prescribed burnings in 2006 and 2007 (in 200 m2 areas) in the
following types of vegetation: oak, oak-pine, pine, pine-oak, cloud forest, shrubland, dry tropical
forest, tropical forest, and tropical rainforest (data supplied by Dr. German Flores Garnica, National
Institute of Forestry, Agriculture and Livestock Research [INIFAP]).

The burning efficiency was calculated with a Random Forest in the regression mode. The model
was implemented in the R programming language. The variables used to create the model included
fuel, weather conditions, and topography, all of which affect fire behavior. The following variables
were considered: (a) the above-mentioned biomass carbon map, (b) a land use and vegetation map
(1:250,000) produced by INEGI, (c) land cover maps for 2005 and 2010 produced with MODIS data at a
250 m spatial resolution [33], (d) Vegetation Continuous Field products (MOD44), downloaded from
the MODIS web page, and (e) a time series of the Normalized Difference Vegetation Index (NDVI) and
Enhanced Vegetation Index (EVI) at a 250 m spatial resolution in a composite of 16 days. We used the
difference between the vegetation indices before and after each fire. In this case, both vegetation indices
were used in order to select the best option. The weather conditions were obtained through a 100 h
fuel moisture model, which used MODIS and Tropical Rainfall Measuring Mission (TRMM) data [34]
for the temperature and precipitation and which applied the Tetens–Murray equation [35]. The model
uses the flow of moisture into the types of fuels from one day to another [34]. The topography was
expressed through a digital elevation model in terms of three indicators: altitude, slope, and aspect.

The final RFR model consisted of 1000 trees. The individual tree predictions were then aggregated
using the mean statistic. The coordinates of 67 areas of prescribed burning were characterized with
37 variables obtained from the above-mentioned cartographic and satellite products, in accordance with
the date of the burning. The RFR model was assessed by means of the out-of-bag (OOB) estimations of
accuracy (e.g., the correlation between the observed and predicted values), and the importance of the
explanatory variables for the RFR model. In each run of the algorithm, the indicators were changed
or removed depending on the importance of their participation in the RFR model. The method is
described with more detail in [36]. The resulting RFR model was tested on the burned areas identified
in March 2006.

2.2.3. Burned Areas

The burned areas were defined as the areas affected by forest or agriculture fires and are
characterized by the presence of coal and ash, by the removal of vegetation, and by the alteration of
the structure of the vegetation [6,37,38]. MCD45 and MCD64 satellite products, which are generated
from the MODIS data, were evaluated and compared with the burned areas that were identified in
high resolution images and polygons from fieldwork (CONAFOR). MCD64 was selected because
it identifies burned areas better than MCD45 does; it displays burned and unburned pixels with a
500 m spatial resolution by showing persistent changes in the surface identified with the normalized
difference between the MODIS bands 5 and 7, as well as by applying a dynamic threshold using
the spatial and temporal distribution of active fires [39]. In October 2016, MCD64 Collection 6 was



Remote Sens. 2019, 11, 1185 5 of 18

published with improvements. We validated this product with Landsat images from 2014 and 2017 by
following the method described in [40].

2.2.4. Emission Factor

The emission factor is the amount of a compound released in grams per kilogram of fuel consumed
(g/kg). The data in [41] have been widely used, but they are at the global level; thus, in this work,
we used emission factors that were measured during a campaign in Mexico as part of the Megacity
Initiative Local and Global Research Observation (MILAGRO) project, which was developed by the
US Forest Service and Mexican agencies, including CONAFOR [42]. For this study, those results [42]
were complemented with the work of [43], since the MILAGRO project did not consider two types of
vegetation involved in the prescribed burnings.

2.3. Estimation of Emissions

Once the data were selected for estimating the parameters in Equation (1), we calculated the
emissions for four years: 2011, 2012, 2013 and 2014. These years were selected because CONAFOR
recorded that the year 2011 had the second highest number of forest fires and burned areas, with 1998
having had the highest since 1970, because of the El Niño phenomenon that started in 1997. In 2013,
the number of fires had increased again. Consequently, the years 2011 and 2013 represent high numbers
of forest fires, and the years 2012 and 2014 represent lower numbers.

The pixels identified as burned sites in MCD64A1 Collection 6 were characterized by the vegetation
type, and the day of year (DOY) was transformed into the proper date. Pixels identified as natural
vegetation were selected, eliminating those in cultivated areas. These selected pixels were characterized
through a data cube generated with eight indicators of fuel and weather, according to the date of
burning. The burning efficiency, which was calculated from the RFR model, was overlaid on the maps
of the biomass and vegetation types; the latter is associated with the emission factors. The calculated
emissions (Equation (1)) were integrated into cells of 10 × 10 km for their cartographic representation.

2.4. Uncertainty Calculation

The calculation of the four parameters to estimate the emissions with the remote sensing data
entailed several assumptions that are considered to be valid; these assumptions were made because of
a lack of field data, incomplete knowledge, and inherent data characteristics. Moreover, the spatial and
temporal resolution and the minimum map unit generalize the information, so systematic and random
errors are generated. Therefore, the uncertainty associated with the data can be estimated as [44]:

Utotal =
√

U2
1 + U2

2 + U2
3 + U2

n, (2)

where: U2
i (i = 1, n) is the percentage uncertainty associated with each of the parameters, and Utotal is

the percentage uncertainty of the product of the parameters.
The data used were (a) accuracy data of the biomass map [26]; (b) an accuracy matrix to validate

the MCD64A1 product (burned area) using Landsat data, with a resulting accuracy of 0.79 and the
calculation of the confidence interval of the producer accuracy [45]; (c) the prediction interval used to
obtain the confidence interval, within an error of a critical value (t) and 95% confidence level; and (d)
a confidence interval for the emission factors, calculated for each gas with an error formula with a
critical value (t) and 95% confidence level.

2.5. Comparative Analysis

The results developed using the methods described above were compared with the GFED data.
The GFED information has a spatial resolution of 0.25◦, and the percentage of burned area was
estimated [46,47] to calculate emissions using the method proposed in [48]. The GFED annual files from
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2011 to 2014, together with the GFED carbon emission algorithm, were downloaded. The algorithm is
useful for calculating emissions by region and vegetation cover. The algorithm code was modified
to generate a raster file of emissions within a cell of 0.25◦, since the original code only provides the
results as a table. The carbon emissions were calculated from the measured data (annual biomass,
burned area [MCD64 C.6], burning efficiency calculated with the RFR model), but the emission factors
were based on the GFED information. The pixel results were incorporated into a cell of 0.25◦ for a
spatial comparison of the results.

3. Results

3.1. Variables to Estimate Emissions

3.1.1. Biomass

The map (Figure 2) shows high biomass values in the mountain in the ecoregion Southern Sierra
Madre (13.5), which is characterized by temperate forests, as well as in the ecoregion Plain and Hills
of the Yucatan Peninsula (15.2), where tropical forests dominate. The values were intermediate in
the Southern Pacific Coastal Plain and Hills (14.5). Figure 3 shows the four annual biomass results,
and Table 1 lists the correlation between the biomass map and biomass from NPP. Both biomass
products have a similar behavior in each year, with differences in the quantity of the biomass as a
response to meteorological conditions. The NPP data allowed for the interpretation of annual changes
and the annual adjustment of the biomass variable.
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Table 1. Biomass map and biomass from the NPP correlation 1.

Biomass
Alianza map

Biomass NPP
2011

Biomass NPP
2012

Biomass NPP
2013

Biomass NPP
2014

Biomass Alianza map 1.0000 0.8174 0.8320 0.8180 0.8176
Biomass NPP 2011 0.8174 1.0000 0.9956 0.9950 0.9608
Biomass NPP 2012 0.8320 0.9956 1.0000 0.9949 0.9641
Biomass NPP 2013 0.8180 0.9950 0.9949 1.0000 0.9639
Biomass NPP 2014 0.8176 0.9608 0.9641 0.9639 1.0000
1 The correlation was calculated using ENVI (Environment for Visualizing Images) software. NPP: Net
Primary Productivity.
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Figure 3. Annual updated biomass. A: 2011; B: 2012; C: 2013; D: 2014.

3.1.2. Burning Efficiency

For the Random Forest Regression (RFR) model, the OOB estimate yielded a correlation of
0.73 between the observed and predicted values, an absolute error of 0.079, and an RMSE (Root Mean
Square Error) of 0.009. The model explained 49% of the variance in the data. The variables with a higher
importance in the RFR model were (Figure 4): the vegetation type, land cover, biomass, VCF (Vegetation
Continuous Field) tree cover, and 100 h fuel moisture; of these variables, the fuel moisture was the
most dynamic variable (daily) and had a coarser spatial resolution. The least important variables were
the VCF short vegetation cover, VCF bare ground cover and EVI; this last variable is dynamic, because
it changes throughout the year.
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The variables had three different spatial–temporal characteristics: (a) Permanent or referential,
such as the field data on the vegetation type, complemented with the map of the land use and
vegetation, and the biomass data from a map [26]. (b) The annual variation, such as the land cover
(2005), tree cover percentage, no tree cover percentage, and without vegetation cover percentage
coming from VCF. (c) The intra-annual variation, which is associated with the relative differences in EVI
of 16-day composites; the difference was calculated from one composite before and one after the fire
(defined by the burned area date), and the 100 h fuel moisture for a specific date. These characteristics
may be an influence on the burning efficiency behavior.

We used prediction intervals calculated by Quantile Regression Forest [49], as an evaluation
element. The prediction intervals were the widest for tropical forests (maximum ±0.2), and the
narrowest for temperate forests (minimum ±0.04). Temperate forests had the highest values of burning
efficiency and a higher correlation than tropical forests. Table 2 lists the burning efficiency estimated by
RFR model applied to burned areas of March, 2006, in contrast to the data presented by CONAFOR [50].
These estimates range from 0.37 in dry tropical forests to 0.61 in oak forests. The higher values
correspond to oak vegetation, followed by tropical vegetation. The lowest estimates correspond to pine
vegetation. There were not large variations between the estimates of the same vegetation type; in all
cases the differences between the maximum and minimum values were smaller than 0.19. The values
estimated by the RFR model were consistently lower than those of CONAFOR. The estimates most
similar to those from CONAFOR were registered in tropical forests, and those that were most different
were in dry tropical forests.

Table 2. Estimated burning efficiency and literature data.

PF OF POF OPF DTF TF G CF

Estimated
Minimum 0.50 0.47 0.42 0.50 0.37 0.41 0.39 0.46

Mean 0.51 0.57 0.48 0.54 0.47 0.50 0.45 0.49
Maximum 0.52 0.61 0.52 0.60 0.55 0.59 0.53 0.52
CONAFOR 0.75 0.71 0.74 0.74 0.96 0.5 s/d 0.81

PF: pine forest, OF: oak forest, POF: pine-oak forest, OPF: oak-pine forest, DTF: dry tropical forest, TF: tropical forest,
G: grassland, CF: cloud forest. CONAFOR: Comisión Nacional Forestal.

3.1.3. Burned Area

The improvements in MCD64 Collection 6 identified 52% more burned areas than version 5.1
did. The validation using Landsat imagery indicated an underestimation in the identification of the
burned areas from the MCD64 product, especially when the burned areas were both few and small in
extent, because of the coarse spatial resolution of the MODIS data. For instance, for the wet year 2014,
an omission error of 80% was observed. The accuracy can be improved in years with more forest fires



Remote Sens. 2019, 11, 1185 9 of 18

and large burned areas, such as in 2017, which has a 70% accuracy, with less than 30% in omission and
commission errors.

Figure 5 shows all of the burned areas identified by the MCD64 product in the period of 2011–2014.
Spatially, zones with a concentration of burned areas were identified, as in the Guerrero and Oaxaca
States into Southern Sierra Madre and Southern Pacific Coastal Plain and Hills ecoregions, or in the
Yucatan and Campeche States into Plain and Hills of the Yucatan Peninsula ecoregion. Temporarily,
there were large differences in the period; 2014 reported less than 1000 km2, in this case we expect
fewer emissions. Meanwhile, other years reported more than 2000 km2 of burned areas. The extreme
case was in 2013, when were reported more than 5000 km2 of burned areas, which could be translated
into eight times more emissions that in 2014.
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3.1.4. Emission Factors

The emission factors used in this work were selected for CO2, CO, CH4, NOx, and NH3 gases
and PM2.5 particles. Table 3 lists these used emission factor. CO2 was the most abundant gas with
values between 1603 g/kg in pine-oak forests and 1657 g/kg in tropical rainforests, and NH3 was the
least abundant, with 0.5 g/kg in oak forests and 2.4 g/kg in tropical forests. The information was
complemented with published data [43] for pine forests and desert shrubland.



Remote Sens. 2019, 11, 1185 10 of 18

Table 3. Emissions factors (g/kg).

Original Reference Vegetation Type (INEGI) CO2 CO NOx CH4 NH3 PM2.5

Temperate forest 1 Pine forest 1638 100.75 1.910 4.413 0.918 16.94
Pine-oak forest 2 Oak forest 1603 102.90 3.658 5.704 0.518 11.33

Pine-oak forest 1603 102.90 3.658 5.704 0.518 11.33
Oak-pine forest 1603 102.90 3.658 5.704 0.518 11.33

Cloud forest 1603 102.90 3.658 5.704 0.518 11.33
Tropical dry forest 2 Tropical dry forest 1657 87.13 4.625 5.681 2.477 4.50

Tropical forest 1657 87.13 4.625 5.681 2.477 4.50
Savanna 2 Grassland 1660 79.28 6.031 4.126 0.477 7.65

Shrubland 1 Shrubland 1674 74.00 2.180 3.690 1.500 7.06
Hydrophilic vegetation 1657 87.13 4.625 5.681 2.477 4.50

1 Urbanski (2014). We used mean values in the forest case. 2 Yokelson et al. (2011). Mean values were used.

3.2. Spatial and Temporal Distribution of Emissions

The accumulated emissions of CO2, CO, CH4, NOx, and NH3 gases and PM2.5 particles for the
four years in our study area were 67.5 (±20) Tg, over a surface of 12,898 km2. The uncertainty of
emissions (29%) was lower than that reported elsewhere [19] (47%). Figure 6 shows the annual spatial
distribution of emissions in cells of 100 km2, and Table 4 lists the total emissions.
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Table 4. Emissions reported in the study area by ecoregion in Tg.

Year Southern Sierra Madre (13.5) Southern Pacific Coastal
Plain and Hills (14.5)

Plain and Hills of the
Yucatan Peninsula (15.2) Total

2011 9.6 1.6 10.7 21.9
2012 10.9 3.1 1.2 15.2
2013 14.8 5.0 7.7 27.5
2014 1.4 0.6 0.9 2.9
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The emissions were highest in 2013 (27.5 Tg), accounting for 40.8% of the four-year total, with a
burned area of 5272.75 km2. The spatial distribution was more uniform in 2013 than in the other years
(Figure 6C): 53.8% in the Southern Sierra Madre ecoregion (13.5); 28.1% in Plain and Hills of the Yucatan
Peninsula (15.2); and 18.1% in Southern Pacific Coastal Plain and Hills (14.5). In contrast, in 2014,
the emissions were 2.9 Tg, representing 4.2% of the four-year total, with a burned area of 657.25 km2.
Furthermore, the concentrations of gases were low (Figure 6D); 2014 was a wet year, with precipitations
in May exceeding the May four-year average, with 45 mm in Oaxaca State and >93 mm in Yucatan.
The emissions in the other two years were moderate: 21.9 Tg (32.4%) in 2011 with 4214.25 km2 burned;
15.2 Tg (22.6%) in 2012 with 2753.75 km2 burned. The emissions were concentrated in specific areas
as a consequence of the drought distribution in Mexico. In 2011, 48.7% of the emissions were from
Plain and Hills of the Yucatan Peninsula (ecoregion 15.2), 4.8% more than those from Southern Sierra
Madre (ecoregion 13.5), where the highest percentage is usually recorded (Figure 6A). This increase
was due to the low precipitation in April and May in 2011 compared with the same months in the
other three years: 10 mm lower in Campeche State, 36 mm lower in Tabasco in April, and 111 mm
lower in Quintana Roo in May. In this part of Mexico, 2011 was a year of extreme drought [51]. In 2012,
71.9% of emissions were in Southern Sierra Madre (ecoregion 13.5), in contrast to the 8.0% in Plain and
Hills of the Yucatan Peninsula (15.2) (Figure 6B). May 2012 was the second driest May in the four years
that were analyzed, with precipitations varying from 12 mm lower than the overall mean in Oaxaca to
18 mm lower in Michoacan. The year 2012 was abnormally dry in Guerrero and Oaxaca [52].

3.3. Emissions and Precipitation

Emissions were associated with the distribution of precipitation in Mexico [53] (Figure 7).
Two seasons were identified: wet from May to October; and dry from November to April.
The concentration of emissions in the dry season has two main causes: (a) the vegetation’s susceptibility
to burning in the driest months, and (b) the use of fire in agricultural activities. In Mexico, the months
with the highest activity of agricultural burning are those in the early part of the year (e.g., in 2017 the
prescribed burning in Campeche State was from 12 March to 31 May).
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The month with the highest emissions was one month after the driest month and before the
wet season; therefore, May, April, and March had >90% of all emissions. The remaining 10% was
distributed mainly among the other months of the dry season, with a smaller proportion in the wet
season months. In none of the four years were there emissions recorded in September, the month
before the end of the wet season and often the month with the highest precipitation. Only two years
showed any emissions in August (0.03%) or October (0.01%). The 2013 wet season was the wettest of
the four years; hence, in 2014, fires were fewer and the emissions were the lowest (Figure 7). The dry
season in 2013 was the driest, and it had the highest emissions.

3.4. Emissions and Vegetation Type

Table 5 lists the annual percentage of emissions by vegetation type. Tropical forests accounted
for the highest percentage of emissions: >29.4% in 2011, 2014, and 2013. This type of vegetation is
distributed in Plain and Hills of the Yucatan Peninsula (15.2) and Southern Pacific Coastal Plain and
Hills (14.5) (Figure 1). Dry tropical forests have lower emissions but a greater variability, from 8.2%
to 17.4%. In 2012, emissions were distributed more uniformly in temperate forests, such as pine-oak,
oak-pine, and oak in the 13.5 Southern Sierra Madre ecoregion, with the percentage in tropical forests
at <15%. In cloud forests, which are restricted to the mountainous area in that ecoregion, the burned
pixels ranged between 2.7% and 4.9% over the four years. Meanwhile, the emissions generated in
tropical rainforests and hydrophilic vegetation represented less than 1% for all of the years; the former
was restricted to small areas of the ecoregions 15.2 and 13.2, and the latter was limited to the coastal
zone of the ecoregions 15.2 and 14.5. Grassland produced emissions at low percentages, between 3.7%
and 5.9%, in all periods with the exception of 2014, when they reached 12.0%.

The annual emission dynamic depends on the distribution of vegetation and precipitation.
In January, the vegetation type that had more emissions was grassland, because it is light fuel and
quickly loses the moisture that it accumulates during the wet season. As each year progressed,
emissions significantly increased in temperate forests, reaching more than 50% in May and June,
while in tropical forests the emissions decreased. In July, emissions were generated in the tropical
forests. By the end of the year, emissions had again increased in temperate forests and grassland.
Therefore, under the conditions described here, the distribution of emissions at the ecoregion level is
due mainly to environmental characteristics.

Table 5. Emissions by vegetation type.

Vegetation Type 2011 (%) 2012 (%) 2013 (%) 2014 (%)

Pine forest 2.5 9.7 5.8 3.8
Oak Forest 10.4 14.8 16.5 14.1

Pine- oak forest 19.2 23.8 17.7 11.6
Oak- pine forest 3.8 14.0 9.6 7.2

Cloud forest 4.3 4.9 2.7 2.8
Dry tropical forest 8.2 14.3 11.6 17.4

Tropical forest 46.7 11.7 29.4 30.8
Tropical rainforest 0.5 0.1 0.3 0.0

Grassland 3.7 5.9 5.9 12.0
Hydrophilic vegetation 0.8 1.0 0.4 0.3

100 100 100 100

3.5. Areas of Interest in Terms of Emissions

Six areas were considered to be of interest because of a concentration of cells with emissions
exceeding 119 Gg and because they were spatially continuous (Table 6 and Figure 8). Three areas
were in temperate forests and the remainder were in tropical forests. The origin of forest fires in these
areas is associated with agricultural activities and urban expansion; e.g., in Cancun, the cells with
a concentration of emissions were along the highway and close to the urban area. When fire used
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in agricultural and urban activities loses control and involves natural vegetation, it is considered a
forest fire.

Table 6. Areas of interest by forest fire emissions.

Ecoregion State Id Name Total Emissions (Tg) Cell Area (Km2)

13.5
Guerrero A Western Guerrero State 12.43 4300
Guerrero B Central Guerrero State 4.23 2000
Oaxaca C Sierra Juarez 1.00 700

15.2

Quintana
Roo D Site between Sian Ka´an and Calakmul 3.47 1600

Quintana
Roo E Cancun 1.72 1000

Campeche F Site between Calakmul and Laguna de Terminos 1.59 900
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3.6. Comparative Analysis of Results with Global Fire Emissions Database (GFED)

The present estimates of carbon emissions during 2011 and 2013 were similar to the GFED data
for forested areas (Table 7). However, in all years except 2011, there was a lack of correlation because
of strong local discrepancies. The highest coincidence in the estimated amount of carbon was in 2013
in Plain and Hills of the Yucatan Peninsula (ecoregion 15.2), and the lowest was in 2012 in Southern
Sierra Madre (13.5). In the latter, the cells with the highest emissions identified by GFED were towards
the south of the cells with the highest emissions identified by this work. The MCD12Q1 land cover
product, which is an input of GFED, identifies this zone as woody savannas, whereas the INEGI
cartography of Mexico identifies it as oak forests, located on the leeward side of Southern Sierra Madre,
where the climate is drier than that of the windward side. In the GFED, the savanna is not considered
to be a forest. Hence, differences in the cartography of the Southern Sierra Madre are the main source
of discrepancy in the results. In contrast, the correlation was higher when there were more emissions
in the Plain and Hills of the Yucatan Peninsula (15.2) ecoregion. Another element to consider is the
difference between the versions of the burned area product; the present work used the latest version
(Collection 6), whereas GFED uses a previous version.
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Table 7. Emissions of carbon (Tg).

Year Carbon Estimated in Burned
Areas in Vegetation

Carbon Estimated by GFED
in All Classes

Carbon Estimated by GFED
in Forest Area Correlation 1 (r2)

2011 6.1 12.1 7.0 0.52
2012 4.3 3.3 0.8 0.11
2013 7.7 13.5 7.8 0.12
2014 0.8 1.8 0.3 0.24

1 Polynomial correlation. We considered all cells of 10 × 10 km. GFED: Global Fire Emissions Database.

4. Discussion

The use of satellite Earth observation data allowed for the spatial and temporal estimation of
emissions, providing an annual updating of the biomass and burned areas, as well as the evaluation of
environmental conditions for estimating the burning efficiency.

The parameter with the highest uncertainty was the biomass load (27%). Even though the biomass
map had an RMSE of 54% in its validation [26], it was still considered acceptable because similar results
have been reported by other projects; e.g., the GlobBiomasss project, University of Leicester (2017),
reported RMSE values of 51%, 53% and 55% for the years 2005, 2010, and 2015, respectively, in the
Central Mexico and Yucatan Peninsula regions. As a complement to the present work, the emissions
were estimated by using only the biomass map [26] for each of the four years; this led to a value that
was lower by 19 Tg, thereby reinforcing the importance of annual updating.

The burning efficiency results obtained for March 2006 were within those values reported
elsewhere: (a) in the literature [50]; (b) in the documentation of prescribed fires [54], and (c) in a study
to estimate the spatial variability in burning efficiency in Spain [55]. Hence, they were considered
appropriate, although they were lower than those reported in the literature. The results also indicated
that the behavior of the burning efficiency can be explained by the vegetation type; temperate forests
have a relatively low species diversity, and the fire behavior is more uniform than in the species-diverse
tropical forests. Here, field data are a fundamental aspect of the method. We considered that the
Random Forest approach [36] offers an approximation for estimating the burning efficiency over a large
and biodiverse territory such as Mexico; it considers spatial and temporal changes in environmental
conditions when a fire occurs, without depending on a unique and static value.

Despite the relatively low accuracy revealed by the omission error for the burned area product,
MCD64 has been the best operational product with the historical and recent data, because the data
are processed with the same algorithm. This is supported by a study [56] that concluded that the
Collection 5.2 MCD64 was the best of three evaluated burned area products, and Collection 6 identifies
more burned areas than Collection 5.2.

The emission factors obtained from the MILAGRO project are higher than those reported in
the global study of [41] for CO2 and CH4 but lower for CO. These differences have implications
in the estimation of emissions because CO2 is the gas with the highest emission factor. However,
the MILAGRO data are specific to Mexican vegetation.

Southern Sierra Madre (ecoregion 13.5) had the highest percentage of emissions, but the vegetation
type most affected was the tropical forest distributed in ecoregions 15.2 (Plain and Hills of the Yucatan
Peninsula) and 14.5 (Southern Pacific Coastal Plain and Hills). If the emissions originating in temperate
forests are added, the result is similar in tropical forests. Therefore, it is important to highlight two
elements in the calculation of emissions: the biomass quantity and burning efficiency. Although the
amount of emissions per ecoregion reflects the area of that region, it is also influenced by the type of
vegetation, the date, and the causes of the fire. For example, ecoregion 13.5 represented 34.8% of the
study area and 54.8% of the emissions over the period, whereas ecoregion 15.2 represented 44.3% of
the study area but only 28.7% of the emissions.

The differences found between the GFED data and our results are due to the scale of the analysis;
GFED is at a global scale without regional detail, giving a general view of the problem, whereas our
results have a local precision. We also identified an important difference between our results and a
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number of previous works [20–22]. The results of those three works are similar to each other (9.6 Tg,
on average) but lower than those of this study. We found that the burned area parameter had a large
influence. CONAFOR statistics recorded less than twice the burned area identified by MCD64A1
Collection 6.0, and this can be explained by the discrepancy in the definition of forest fires. Many fires
involving vegetation are associated with the clearing of agricultural fields and with forestry operations;
these are not considered uncontrolled fires, and hence are not registered as forest fires, but they are
still recorded by MCD64. Hence, it is necessary to identify whether the emissions come from a forest
fire or from a change in the land use [57]. Another parameter with an influence on the differences
was the biomass. When only the biomass map was considered, without the annual update of NPP,
the calculated mean of the emissions fell from 16.8 Tg to 12.1 Tg; even so, this is still a high value.

The spatial and temporal distributions of emissions in the study area were associated with the
distribution of precipitation, drought, and human activities. There were two very important elements
in the emissions distribution: hydrological drought and biomass. The values of the estimated emissions
were expected to be low because the estimates of the burning efficiency were small compared with
those of other studies. However, the emissions were higher, owing to the inclusion of different inputs,
such as a yearly update of the biomass and burned areas. Therefore, it is important to consider the
changes over time in the variables and the contribution of satellite data, e.g., the observation of the
phenomenon on the day of occurrence. In this work, we considered drought conditions by using the
fuel moisture model and the annual update of the biomass.

5. Conclusions

The availability of satellite data and products allows for the estimation and update,
both dynamically and periodically, of three out of four parameters for calculating the emissions
from forest fires. However, there is still a lack of data with the same resolution and scale to contribute
to the precision of the spatial analysis. This was illustrated by a comparison between the GFED data
and our results, given that the values of the emissions were very similar, although local discrepancies
were observed when data with a better spatial resolution were used.

The present study contributes a product of burned areas that identifies areas affected by fires
in vegetation, irrespective of the forest fires registered in the statistics. It is important to collaborate
with CONAFOR in using remote sensing data to improve the statistics. Recently, CONAFOR has
improved the method for estimating burned areas in the field, and has sometimes incorporated satellite
data, in collaboration with CONABIO. Remote sensing data and field knowledge will increase the
quality of information regarding emissions. We demonstrated the use of remote sensing data and
machine learning to calculate parameters such as the burning efficiency, taking into account natural
conditions on the date of the fire; this allows for a better understanding of emissions resulting from
forest fires. The areas of interest with burned biomass emissions were located at a larger scale than that
used in other works and included an adjustment to the environmental conditions on the date of the
fire. This information can help to implement measures to prevent or to mitigate fires according to the
environmental characteristics.

The described methodology may be implemented on a countrywide scale because the variables
and field data that it uses in the Random Forest Regression (RFR) model are to some degree flexible.
As mentioned, it includes an evaluation of the accuracy of its estimates. This allows the methodology to
be applied on other ecoregions. Finally, the satellite imagery proposed as input is generated periodically
and is available on different distribution platforms.
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