

Supplementary Materials

Table S1. Floristic survey and sampling strategies for the four (1–4) sampling campaigns used in this study.

	1 ^A	2^{A}	3	4
Forest type ^A	Eucalypt $(n = 6)$,	Eucalypt ($n = 23$),	Eucalypt $(n = 3)$	Eucalypt $(n = 3)$,
	Ecotone $(n = 6)$,	Ecotone $(n = 6)$,		Ecotone $(n = 2)$,
	Rainforest $(n = 6)$	Rainforest $(n = 11)$		Rainforest $(n = 5)$
Site dimensions	30 m × 30 m (0.09 ha plot size	20 m × 20 m (~0.04 ha)	20 m × 20 m (~0.04 ha)	10 m × 40 m (~0.04 ha, shortest
	adjusted for slope)			side parallel to slope)
Understorey vegetation	$20 \text{ m} \times 20 \text{ m plot}$	20 m × 20 m plot,	$20 \text{ m} \times 20 \text{ m plot}$	$10 \text{ m} \times 40 \text{ m plot}$,
survey	point intercept every 1 m on	point intercept every 1 m on	point intercept every 1 m on	point intercept every 1 m on
	transects located every 2 m	transects located every 2 m	transects located every 2 m	transects located every 2 m
	(total 210 points)	(total 210 points)	(total 210 points)	(total 205 points)
Vegetation Structure	All trees ≥ 10 cm measured for	Counts and representative	Counts and representative trees	All trees ≥ 20 cm measured,
	DBH and height, counts and	trees measured for DBH and	measured for DBH and height	counts and also maximum and
	also average height within 2 <	height for $2 < 10$, $10 < 20$ and	for $2 < 10$, $10 < 20$ and $20 < 30$ cm	minimum height within 2 < 10
	10 cm DBH class	20 < 30 cm DBH classes.	DBH classes. Larger trees were	and 10 < 20 cm DBH classes
		Larger trees were counted in	counted in DBH classes adapted	
		DBH classes adapted to the	to the size distribution of that	
		size distribution of that plot.	plot.	
Date: Vegetation structure	October to December 2012	October to December 2012	September to December 2013	March to June 2014
Date: Understorey vegetation	September to December 2013	September to December 2013	September to December 2013	October 2014

A See Fedrigo et al. [66] for further details DBH, Diameter at Breast Height (1.3 m) Over Bark Modified from Kasel et al. [63] supplementary Appendix 2. Remote Sens. 2019, 11, 93 2 of 12

Table S2. SIMPER analysis on presence and absence records of tree, shrub, and tree fern species across 71 field plots in rainforest, ecotone and eucalypt stands (average similarity within stand types in brackets). Bold species occur in both the field floristics and ecological vegetation class species list for similar stand types.

Species by stand type	Av. Abund.	Av. Sim.	Sim/SD	Contrib. %	Cum.%
Rainforest (45.8)					
Nothofagus cunninghamii	1.00	13.11	3.49	28.6	28.6
Dicksonia antarctica	0.91	10.94	1.78	23.9	52.5
Atherosperma moschatum	0.82	8.49	1.25	18.5	71.0
Pittosporum bicolor	0.55	3.20	0.61	7.0	78.0
Eucalyptus regnans	0.45	2.09	0.47	4.6	82.6
Hedycarya angustifolia	0.41	1.56	0.43	3.4	86.0
Tasmannia lanceolata	0.32	1.14	0.31	2.5	88.5
Ecotone (46.3)					
Dicksonia antarctica	1.00	11.43	4.70	24.7	24.7
Nothofagus cunninghamii	0.93	10.04	2.13	21.7	46.3
Acacia dealbata	0.86	8.25	1.51	17.8	64.1
Eucalyptus regnans	0.79	6.98	1.16	15.1	79.2
Olearia phlogopappa	0.36	1.17	0.35	2.5	81.7
Lomatia fraseri	0.36	1.16	0.34	2.5	84.2
Tasmannia lanceolata	0.36	1.07	0.34	2.3	86.5
Correa lawrenceana	0.36	0.94	0.35	2.0	88.6
Eucalypt (37.7)					
Dicksonia antarctica	0.89	7.69	1.69	20.4	20.4
Eucalyptus regnans	0.89	7.57	1.70	20.1	40.4
Correa lawrenceana	0.60	3.03	0.72	8.0	48.5
Polyscias sambucifolia	0.54	2.74	0.60	7.3	55.7
Cyathea australis	0.54	2.35	0.62	6.2	61.9
Olearia phlogopappa	0.49	2.21	0.52	5.9	67.8
Acacia dealbata	0.43	1.60	0.44	4.3	72.0
Prostanthera lasianthos	0.34	1.06	0.34	2.8	74.9
Acacia frigescens ^A	0.31	0.98	0.32	2.6	77.4
Coprosma quadrifida	0.34	0.92	0.34	2.4	79.9
Tasmannia lanceolata	0.31	0.83	0.31	2.2	82.1
Cassinia aculeata	0.29	0.79	0.27	2.1	84.2
Pimelea axiflora	0.29	0.75	0.28	2.0	86.2
Pomaderris aspera	0.31	0.72	0.31	1.9	88.1
Hedycarya angustifolia	0.31	0.68	0.31	1.8	89.9

Av. Abund., average abundance; Av. Sim., average similarity; Sim/SD, average similarity/standard deviation; Contrib. %, percent contribution; Cum. %, cumulative percent. See Table S3 for SIMPER analysis.

^A Absent from the ecological vegetation class (EVC) species list in similar stand types across the study area.

Remote Sens. 2019, 11, 93 3 of 12

Table S3: SIMPER analysis among rainforest, ecotone, and eucalypt stands based on presence and absence records of tree, shrub, and tree fern species across 71 field plots. Bold species were used to separate stand types based on an abundance value < 0.2 in at least one stand type.

Charies by stand type	Av.	Av.	Av. Diss.	Diss/	Contrib.	Cum.	
Species by stand type	Abund.	Abund.	AV. DISS.	SD	%	%	
	Rainforest	Ecotone					
Acacia dealbata	0.09	0.86	4.92	1.72	7.87	7.87	
Atherosperma moschatum	0.82	0.07	4.66	1.62	7.45	15.32	
Eucalyptus regnans	0.45	0.79	3.37	0.99	5.40	20.72	
Pittosporum bicolor	0.55	0.14	3.08	1.02	4.92	25.63	
Tasmannia lanceolata	0.32	0.36	2.66	0.86	4.26	29.89	
Lomatia fraseri	0.18	0.36	2.40	0.79	3.84	33.73	
	Rainforest	Eucalypt					
Nothofagus cunninghamii	1.00	0.09	5.20	2.44	7.16	7.16	
Atherosperma moschatum	0.82	0.03	4.57	1.74	6.29	13.45	
Eucalyptus regnans	0.45	0.89	3.20	1.01	4.40	17.85	
Correa lawrenceana	0.14	0.60	3.04	1.10	4.19	22.04	
Polyscias sambucifolia	0.23	0.54	2.95	0.97	4.06	26.10	
Pittosporum bicolor	0.55	0.23	2.87	1.00	3.95	30.04	
	Ecotone	Eucalypt					
Nothofagus cunninghamii	0.93	0.09	4.63	2.08	7.28	7.28	
Acacia dealbata	0.86	0.43	3.04	1.06	4.78	12.06	
Correa lawrenceana	0.36	0.60	2.76	1.02	4.35	16.41	
Polyscias sambucifolia	0.29	0.54	2.75	0.98	4.33	20.74	
Olearia phlogopappa	0.36	0.49	2.64	0.94	4.16	24.90	
Cyathea australis	0.21	0.54	2.61	1.02	4.10	29.00	

Av. Abund., average abundance; Av. Diss., average dissimilarity; Diss/SD, average dissimilarity/standard deviation; Contrib. %, percent contribution; Cum. %, cumulative percent.

Remote Sens. 2019, 11, 93 4 of 12

Table S4: Spatially and temporally pooled cross validated error statistics for mean monthly (1981-2010) precipitation and vapor pressure across Victoria interpolated using ordinary trivariate splines.

Mean Monthly (1981-2010)	r^2	MAE	RMSE	RSR	BIAS
Precipitation (mm)	0.92	4.65 ^A	7.65 ^B	0.28	-0.19 ^C
Vapor Pressure (hPa)	0.97	0.29	0.38	0.17	0.00

 r^2 = coefficient of determination, MAE = mean absolute error, RMSE = root mean square error, RSR = ratio of the RMSE to the standard deviation of the observations, BIAS = mean error.

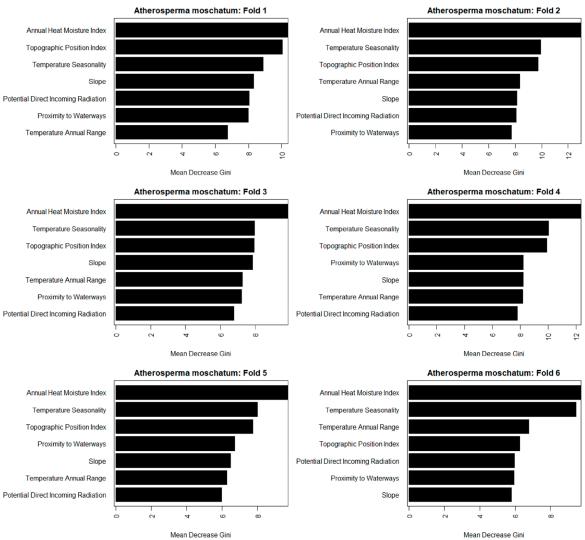
 $^{^{\}rm A}$ Precipitation MAE of 8.5% when expressed as a proportion of the mean.

 $^{^{\}rm B}$ Precipitation RMSE of 14.0% when expressed as a proportion of the mean.

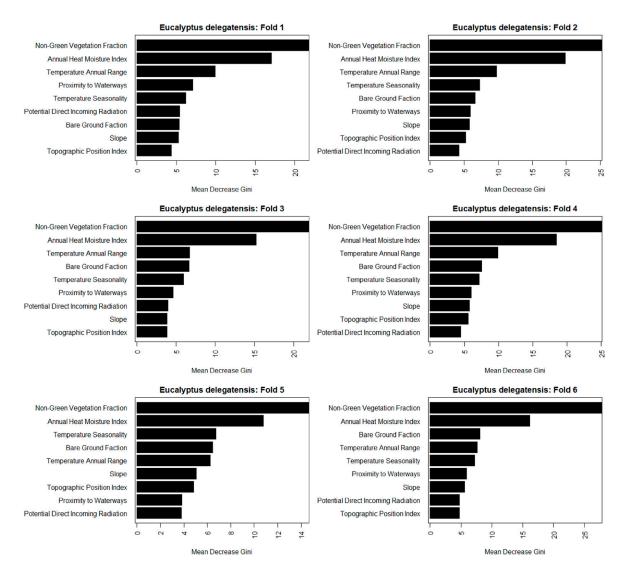
 $^{^{\}text{C}}$ Precipitation BIAS of -0.00% when expressed as a proportion of the mean.

Remote Sens. 2019, 11, 93 5 of 12

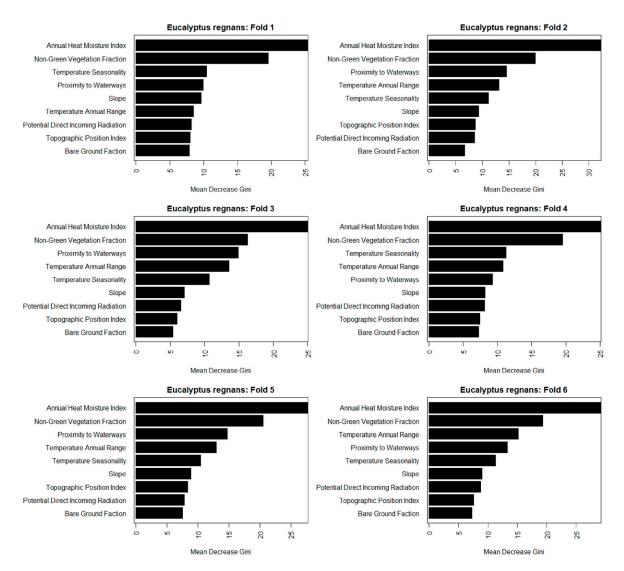
Table S5: Correlation matrix of variables considered for species distribution modelling across the study region.

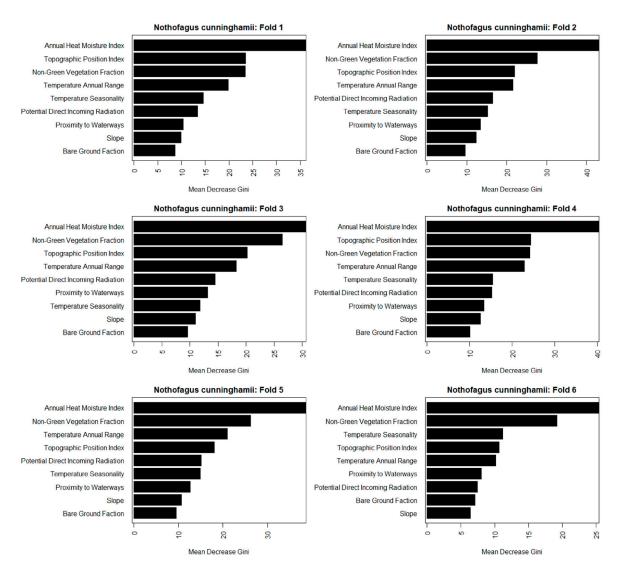

Correlation matrix of canditate predictor variables used for species distribution modelling and subsequent predictive ecosystem mapping

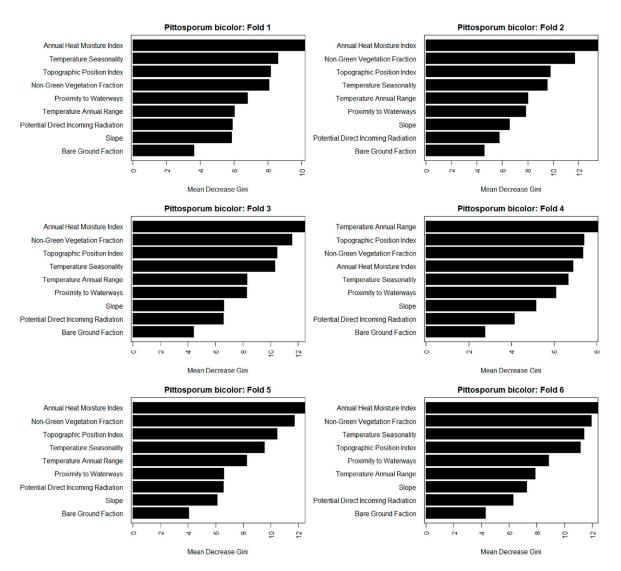
Bolded variables were used in the final analysis


Dolded Adjustic																															
	FracBare F		acNonGreen						₩aterdi													01010	0011			0.011	01010		Ann_VPD St		AHMI
FracBare	1.000	-0.712	0.560		0.097	0.099		0.112		0.246					0.169	0.383	0.233	0.240	0.267	0.223	-0.280	-0.236	-0.254	-0.036	-0.242	-0.280	-0.256		0.263	0.285	
FracGreen	-0.712	1.000	-0.980	0.312		-0.091	-0.276	-0.130	-0.261	-0.301	-0.428	-0.322	-0.228	-0.379	-0.219		-0.249	-0.305	-0.336	-0.266	0.404	0.332	0.386	0.005		0.398	0.371	0.357	-0.371	-0.419	
FracNonGreen		-0.980	1.000	-0.301	0.054	0.083	0.275	0.119	0.259	0.289	0.406	0.303	0.228	0.365	0.215		0.230	0.295		0.255	-0.400	-0.328	-0.384	0.002	0.020	-0.392	-0.367	-0.355	0.366	0.415	
Elevation	-0.246	0.312	-0.301	1.000	-0.065	-0.057	-0.116	0.007	-0.130	-0.977		-0.904		-0.957	-0.930		-0.876	-0.961		-0.979	0.913	0.901	0.861	0.452		0.896	0.885			-0.829	
Slope	0.097	-0.068	0.054	-0.065	1.000	0.017	-0.309	-0.466	-0.002	0.131	0.063	0.072	-0.037	0.116	0.139		0.089	0.115		0.132	-0.091	-0.091	-0.081	0.017		-0.098	-0.097	-0.065	0.146	0.111	
TPI	0.099	-0.091	0.083	-0.057	0.017	1.000	0.142	0.085	0.132	0.148	0.000	-0.015	0.111	0.140	0.191	0.036	0.075	0.169	0.166	0.133	-0.147	-0.115	-0.191	0.046	-0.118	-0.187	-0.214	-0.075	0.193	0.208	
PDIR	0.170	-0.276	0.275	-0.116	-0.309	0.142	1.000	0.733	0.116	0.115	0.136	0.100	0.112	0.143	0.094	0.167	0.082	0.138	0.131	0.098	-0.125	-0.093	-0.149	0.027	-0.097	-0.143	-0.140	-0.088	0.136	0.162	
HLI	0.112	-0.130	0.119	0.007	-0.466	0.085	0.733	1.000	0.094	-0.034	0.016	-0.025	0.139	-0.002	-0.053		-0.014	-0.002	-0.018	-0.050	0.000	0.029	-0.021	0.044		-0.012	-0.015	0.017	-0.019	0.030	
₩aterdist	0.173	-0.261	0.259	-0.130	-0.002	0.132	0.116	0.094	1.000	0.194	0.016	-0.034	0.239	0.207	0.249		0.046	0.216		0.162	-0.335	-0.296	-0.345	-0.028		-0.348	-0.364	-0.259	0.311	0.365	
BIO1	0.246	-0.301	0.289	-0.977	0.131	0.148	0.115	-0.034	0.194	1.000	0.840	0.849	-0.177	0.979	0.970		0.853	0.989		0.993	-0.933	-0.910		-0.389		-0.940	-0.932	-0.820	0.960	0.892	
BIO2	0.347	-0.428	0.406	-0.880	0.063	0.000	0.136	0.016	0.016	0.840	1.000	0.950		0.897	0.694		0.723	0.831	0.843				-0.750	-0.231	-0.708	-0.769	-0.730			0.728	
BIO3	0.273	-0.322	0.303	-0.904	0.072	-0.015	0.100	-0.025	-0.034	0.849	0.950	1.000	-0.359	0.848	0.746		0.840	0.819		0.867	-0.767		-0.663	-0.483	0.110	-0.713	-0.690	-0.751	0.706	0.618	
BIO4	0.132	-0.228	0.228	0.248	-0.037	0.111	0.112	0.139	0.239	-0.177	-0.064	-0.359	1.000	-0.008	-0.266		-0.537	-0.098		-0.291	0.178	0.335	-0.168	0.827	0.333	-0.062	-0.038	0.455	0.013	0.248	
BIO5	0.297	-0.379	0.365	-0.957	0.116	0.140	0.143	-0.002	0.207	0.979	0.897	0.848		1.000	0.911		0.776	0.980		0.952	-0.906			-0.242				-0.748	0.958	0.933	
BIO6	0.169	-0.219	0.215	-0.930	0.139	0.191	0.094	-0.053	0.249	0.970	0.694	0.746	-0.266	0.911	1.000		0.847	0.955		0.975			0.0.0	-0.475		-0.913	-0.920	-0.848		0.854	0.887
BIO7	0.383	-0.485	0.462	-0.733	0.054	0.036	0.167	0.065	0.096	0.726	0.918	0.751	0.329	0.845	0.550		0.474	0.748	0.110	0.665	-0.628	-0.527	-0.774	0.125	0.021	-0.748	-0.701	-0.416	0.110	0.783	
BIO8	0.233	-0.249	0.230	-0.876	0.089	0.075	0.082	-0.014	0.046	0.853	0.723	0.840		0.776	0.847		1.000	0.805		0.893				-0.676		-0.711	-0.710	-0.879		0.597	
BIO9	0.240	-0.305	0.295	-0.961	0.115	0.169	0.138	-0.002	0.216	0.989	0.831	0.819	-0.098	0.980	0.955		0.805	1.000		0.973				-0.319		-0.951				0.910	
BIO10	0.267	-0.336	0.324	-0.960	0.129	0.166	0.131	-0.018	0.229	0.993	0.843	0.816	-0.057	0.992	0.952			0.991		0.972	-0.927	-0.884		-0.296		-0.962	-0.951	-0.779		0.936	
BIO11	0.223	-0.266	0.255	-0.979	0.132	0.133	0.098	-0.050	0.162	0.993	0.823	0.867	-0.291	0.952	0.975		0.893	0.973		1.000	-0.930	-0.926	-0.866	-0.478		-0.907	-0.903	-0.854	0.932	0.838	
BIO12	-0.280	0.404	-0.400	0.913	-0.091	-0.147	-0.125		-0.335	-0.933			0.178			-0.628		-0.918	0.021		1.000	0.982	0.907	0.504	0.983	0.955	0.951	0.935		-0.866	
BIO13	-0.236	0.332	-0.328	0.901	-0.091	-0.115	-0.093	0.029	-0.296	-0.910	-0.708	-0.778	0.335	-0.853	-0.927			-0.880		-0.926	0.982	1.000	0.829	0.639		0.894	0.894	0.972		-0.779	
BIO14	-0.254	0.386	-0.384	0.861	-0.081	-0.191	-0.149	-0.021	-0.345	-0.911	-0.750		-0.168	-0.941		-0.774	-0.626	-0.933			0.907	0.829	1.000	0.129		0.988	0.978	0.704	-0.957	-0.971	
BIO15	-0.036	0.005	0.002	0.452		0.046				-0.389		-0.483										0.639	0.129	1.000	0.647	0.250	0.274	0.749			-0.506
BIO16	-0.242	0.334	-0.328	0.899	-0.085	-0.118	-0.097	0.020	-0.300		-0.708		0.333			-0.527		-0.878			0.983	0.998	0.828	0.647	1.000	0.894	0.896	0.973		-0.774	
BIO17	-0.280	0.398	-0.392	0.896	-0.098	-0.187	-0.143							-0.953		-0.748					0.955	0.894	0.988	0.250	0.894	1.000	0.992	0.789		-0.957	
BIO18	-0.256	0.371	-0.367		-0.097	-0.214			-0.364						-0.920		-0.710			-0.903	0.951	0.894	0.978	0.274	0.896	0.992	1.000	0.790		-0.943	
BIO19	-0.241	0.357	-0.355	0.832		-0.075	-0.088	0.017	-0.259	-0.820			0.455	-0.748	-0.848		-0.879	-0.775		-0.854	0.935	0.972	0.704	0.749		0.789	0.790	1.000		-0.653	
Ann_VPD	0.263	-0.371	0.366	-0.905	0.146	0.193	0.136	-0.019	0.311	0.960	0.749	0.706	0.013	0.958	0.947		0.744	0.958		0.932	-0.931	-0.879	-0.957	-0.253	0.011	-0.968	-0.959	-0.778		0.969	
Sum_VPD	0.285	-0.419	0.415	-0.829	0.111	0.208	0.162	0.030	0.365	0.892	0.728	0.618	0.248	0.933	0.854		0.597	0.910		0.838	-0.866	-0.779		-0.059		-0.957	-0.943	-0.653		1.000	
AHMI	0.314	-0.465	0.461	-0.885	0.062	0.137	0.129	0.021	0.327	0.896	0.741	0.750	-0.143	0.878	0.887	0.630	0.817	0.876	0.894	0.890	-0.982	-0.958	-0.876	-0.506	-0.960	-0.926	-0.919	-0.932	0.909	0.856	1.000

Remote Sens. 2019, 11, 93 6 of 12


Figure S1: Random forest variable importance plots for distribution models of species which characterize rainforest, ecotone and eucalypt stand types.


Remote Sens. 2019, 11, 93 7 of 12


Remote Sens. 2019, 11, 93 8 of 12

Remote Sens. 2019, 11, 93 9 of 12

Remote Sens. 2019, 11, 93

Remote Sens. 2019, 11, 93

Figure S2: Map of stand type distributions as predicted by the predictive ecosystem mapping model within the lidar footprint acquired across the Central Highlands region.

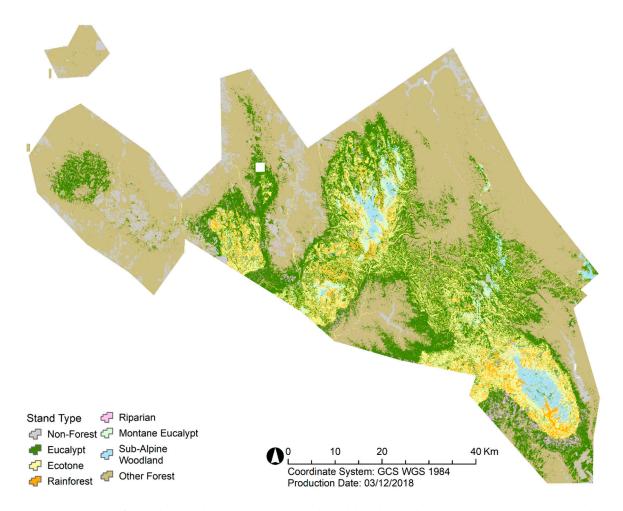
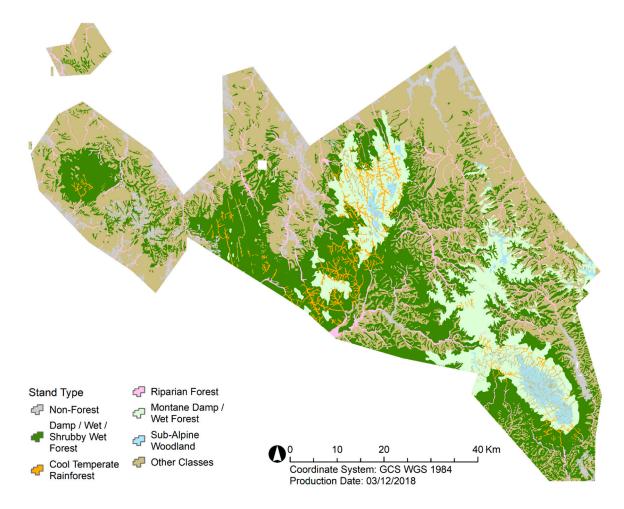



Figure S3: Map of stand type distributions as predicted by the ecological vegetation classes within the lidar footprint acquired across the Central Highlands region.

Remote Sens. 2019, 11, 93

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).