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Abstract: Recently, the United States Geological Survey (USGS) has released a new dataset,
called Landsat Analysis Ready Data (ARD), which is designed specifically for facilitating time series
analysis. In this study, we evaluated the temporal consistency of this new dataset and recommended
several processing streamlines for improving data consistency. Specifically, we examined the impacts
of data resampling, cloud/cloud shadow detection, Bidirectional Reflectance Distribution Function
(BRDF) correction, and topographic correction on the temporal consistency of the Landsat Time
Series (LTS). We have four major observations. First, single-resampled data (ARD) are generally more
consistent than double-resampled data (re-projected Collection 1 data), but the difference is very
minor. Second, the improved cloud and cloud shadow detection approach (e.g., Fmask 4.0 vs. 3.3)
moderately increased data consistency. Third, BRDF correction contributed the most in making LTS
consistent. Finally, we corrected the topographic effects by using several widely used algorithms,
including Sun-Canopy-Sensor (SCS), a semiempirical SCS (SCS+C), and Illumination Correction
(IC) algorithms, however they were found to have very limited or even negative impacts on the
consistency of LTS. Therefore, we recommend using Landsat ARD with the improved cloud and cloud
shadow detection approach (Fmask 4.0), and with BRDF correction for routine time series analysis.

Keywords: Landsat time series; Analysis Ready Data; cloud and cloud shadow detection;
BRDF correction; topographic correction; resampled data

1. Introduction

Landsat Time Series (LTS) has been widely used for a variety of time series analysis for
monitoring environmental change [1], such as forest disturbance [2–4], surface water dynamics [5,6],
urban expansion [7,8], and agricultural practice [9,10], especially since the open and free policy that was
implemented by the United States Geological Survey (USGS) in 2008 [11]. One of the most important
factors for time series analysis is the temporal consistency of time series observations. For example,
land cover changes are often detected based on LTS by differencing two images that were acquired at
a different time or comparing a model prediction and a real observation; and if the data is temporally
inconsistent with each other, more false positive errors are expected [1,12,13]. Here, we define data
consistency as data that were collected close in time have similar values to allow remote sensing
applications. Ideally, images collected at the same time should have exactly the same value. However,
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the creation of consistent LTS requires many complex pre-processes including geometric correction [14],
radiometric calibration [15], atmospheric correction [16], Quality Assessment (QA) [17], and spatial
extent alignment [18,19]. To provide easy-to-use LTS data for users, USGS reorganized all Landsat
archive into Collection 1 with almost all the pre-processes performed [20]. The Collection 1 data are
provided in the Worldwide Reference System (WRS) Path/Row scene, but they are not exactly matched
with each other due to the slight shift of Landsat satellite orbit and thus need to be aligned [21].
Fortunately, USGS released another higher version of Landsat data called Landsat Analysis Ready
Data (ARD), which have performed all of these preprocessing steps and the images are stored in a data
cube format with a fixed spatial extent [22]. This dataset can be used directly for various kind of time
series analyses [23]. However, this dataset is quite new, and according to our knowledge, there is no
comprehensive analysis of the quality of this dataset. It is possible that some other data processing
streamlines that Landsat ARD have not taken may further improve the data consistency. Here, we will
evaluate the impacts of data resampling (ARD vs. Collection 1), better cloud/cloud shadow detection,
Bidirectional Reflectance Distribution Function (BRDF) correction, and topographic correction on the
data consistency of LTS.

Landsat ARD are produced by directly calibrating and projecting the original raw Landsat data
into the Albers Equal Area Conic map projection [23]. They are only resampled once and are provided
in non-overlapping tiles of 150 × 150 km (5000 × 5000 30-m pixels). This is different from the Landsat
Collection 1 data provided by each Landsat scene that covers an area of 185 × 180 km. The Collection
1 data are widely used for generating LTS at present, but we will need to resample them twice to
create data cube that is with the same projection and have the same data dimension. The first resample
converts the raw Landsat data (Level-0 data) to the Collection 1 data, and the second resample converts
the Collection 1 data to a user-defined extent. In image processing, image resampling is generally
avoided as much as possible, because each resampling process may alter the image due to the offset of
pixel location and introduce edge-over and under-shoot issues at high contrast edges [24,25]. Therefore,
it is important to assess and compare the consistency between ARD (after single-resampling) and
Collection 1 (after double-resampling) for creating LTS.

On the other hand, clouds and cloud shadows can change the reflectance of different spectral
bands substantially and reduce the LTS consistency [26]. Most of the LTS-based applications require to
screen clouds and cloud shadows at the very beginning of the analysis [27,28]. Currently, the cloud
and cloud shadow information in the USGS Landsat QA band are generated using the Fmask 3.3
algorithm [17,29]. The Fmask 3.3 algorithm detects clouds and their shadows based on an object-based
approach, and it has the best overall accuracy among many of the cloud detection algorithms tested
by USGS [30]; however, for certain environments, such as snow/ice, mountain, and urban, it has
issues. For example, Fmask 3.3 may misidentify snow/ice and urban pixels (bright and/or cold)
as clouds due to their spectral similarity, or miss some clouds and cloud shadows in mountainous
areas [31,32]. Up to now, the Fmask has been updated to version 4.0 and has achieved a 2–3% increase
in overall accuracy compared to Fmask 3.3 [31]. Unfortunately, the current Fmask 4.0 algorithm has
not been implemented in the USGS Landsat operational processing system. Therefore, it would be
interesting to explore the impact of using an improved cloud and cloud shadow detection algorithm
(Fmask 4.0 vs. 3.3) on the consistency of LTS.

Moreover, the BRDF effects also influence the LTS consistency, as the reflectance of Landsat spectral
bands can be altered by the variable solar-surface-sensor geometry [33–35]. For ARD observations
collected in the overlapped areas along the across-track direction from adjacent Landsat orbit swaths,
the BRDF effect is particularly significant, as the view angles can be rather different (e.g., −7.5◦~7.5◦)
for the same pixel. There are studies used external BRDF information from the Moderate Resolution
Imaging Spectroradiometer (MODIS) BRDF/Albedo product [34,35] to correct the BRDF effects in
Landsat images [36–38], but it could not work for Landsat images before February 2000 due to the
unavailability of the MODIS products [39]. To avoid such situations, Roy et al. [33] used a fixed set of
BRDF spectral model parameters to correct the BRDF effects in Landsat images. It would be interesting
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to evaluate whether the BRDF correction using a fixed set of BRDF spectral model parameters could
improve the LTS consistency of Landsat ARD.

Last, terrain shadows block the direct solar illumination and cause large fluctuations in LTS,
as their locations can change along with the solar and view angles. To address this problem,
many topographic correction methods have been proposed, such as Sun-Canopy-Sensor (SCS) [40],
semiempirical SCS (SCS+C) [41], and Illumination Correction (IC) [42]. Recently, Tan et al. [42]
demonstrated that the overall accuracy of forest change detection can be improved by about 10% when
the terrain illumination effects were corrected in Landsat images. However, Chance et al. [43] found that
more areas of forest change could be detected using Landsat images without topographic correction,
indicating that topographic correction should not be used in change detection. Such a contrary
conclusion requires further evaluations of the influence of topographic correction on the consistency
of LTS. Thus, different topographic correction approaches could be compared and evaluated for
improving LTS consistency.

2. Study Sites and Data

2.1. Study Sites

Five sites are selected over Conterminous U.S. (CONUS) in this study (Figure 1). The Vermont/New
Hampshire (shortened as NH) site is dominated by different forests (e.g., deciduous, evergreen,
and mixed forests) and the elevation gradient changes from sea level to 1914 m. The Puget Lowlands,
Washington (shortened as WA) site is mainly characterized by frequent cloud covers and the great
gradient variation changes from sea level to 4384 m. The Coastal Central California (shortened as CA)
site is selected mostly for its complex agricultural practices, forest, and urban land covers, and the
gradient variation changes from sea level to 3998 m. The Northern Colorado Rockies (shortened as NCO)
site is selected mainly due to the subtle elevation gradient ranging from 1406 to 3334 m (e.g., Rocky
Mountain). The Eastern Florida Coast (shortened as FL) site is selected due to its urban landscape
patterns and the elevation gradient changes from sea level to 152 m. Those sites are located at high,
middle, and low latitudes respectively, so we will have Landsat observations from a wide range of solar
zenith angles. Note that the topographic variations at each site were calculated based the corresponding
Digital Elevation Model (DEM) data. The DEM data are from the Shuttle Radar Topography Mission
(SRTM) one arc-second (approximately 30 m) and were selected mainly considering of their relatively
high overall accuracy [44].
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2.2. Data

2.2.1. Landsat Collection 1

The Landsat Collection 1 data are provided for each WRS Path/Row, which is defined in Universal
Transverse Mercator (UTM) projection referenced to the World Geodetic System 1984 (WGS84)
datum. They are organized into Tier 1 (T1), Tier 2 (T2), and Real-Time (RT). The T1 and T2 data
are processed based on a ground reference database (e.g., ground control points and pseudo-invariant
calibration sites), while the RT data are only based on some estimated parameters. The T1 data can
achieve relatively high geometric and radiometric quality as compared to T2 (except for T2 data from
Landsat 8 which have similar accuracy as they are from T1). The RT image has the least quality and
it will be replaced by T1 or T2 image once the corresponding ground references are available. In this
study, we excluded all T2 images from Landsats 4–7 T2 and all RT images due to their relatively
low geometry quality [20], and used the remaining Landsat Collection 1 images (Landsats 4–8 T1
and Landsat 8 T2) acquired between 1982 and 2017 in five study sites (Figure 1; Table 1). For each
image, Surface Reflectance (SR) of six spectral bands, such as three visible bands (blue, green, and red),
one near infrared (NIR) band, and two shortwave infrared bands (SWIR 1 and SWIR 2) were used
in this study. Note that the SR products were provided by USGS Earth Resources Observation and
Science (EROS) Center Science Processing Architecture (ESPA) (https://espa.cr.usgs.gov), in which
Landsats 4–5 and 7 data were generated by the Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS) [46], and Landsat 8 data were generated by the Landsat Surface Reflectance Code
(LaSRC) [16]. Except for the SR of the Collection 1 data, we also used the corresponding raw digital
numbers (DN) images as the input for Fmask 4.0 algorithm.

Table 1. Statistics of Landsat Analysis Ready Data (ARD) and Collection 1 data used in this study.

Location Name
ARD Images Collection 1 Images

Horizontal/Vertical
Tile

# of
Landsats 4–5/7/8

Path/Row
Scene

# of
Landsats 4–5/7/8

Coastal Central California (CA) 002/009 1283/1054/278 043/034 452/360/98
Eastern Florida Coast (FL) 016/040 1151/964/240 016/040 434/329/91

North Colorado Rockies (NCO) 034/032 1194/944/244 034/032 410/322/86
Vermont, New Hampshire (NH) 013/029 818/625/171 013/029 286/206/50

Puget Lowlands, Washington (WA) 047/027 971/752/245 047/027 263/177/56

2.2.2. Landsat ARD

The Landsat ARD are based on the same raw data for Landsats 4–8 Collection 1 T1 and
Landsat 8 Collection 1 T2 imagery and are produced using the Landsat Collection 1 processes,
except a different map projection (the Albers Equal Area Conic referenced to the WGS84 datum)
is employed [22]. The Landsat ARD include Landsats 4–5 Thematic Mapper (TM), Landsat 7 Enhanced
Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI)/Thermal Infrared
Sensor (TIRS) imagery, which are provided with non-overlapping tiles of 5000 × 5000 30-m pixels
(Horizontal/Vertical tile) [23]. Following the determined Landsat Collection 1 Path/Row scenes,
we further selected the corresponding ARD tiles. As a Collection 1 Path/Row scene often consists
of multiple ARD tiles, we only used the ARD tile that has a maximum overlapping area with each
scene for simplicity. In each tile, all available Landsat ARD acquired between 1982 and 2017 with
cloud cover less than 80% were used (Figure 1; Table 1). Note that the percentage of cloud cover was
computed using the QA band generated by Fmask 3.3 [17,29]. For each image, the SR of six spectral
bands corresponding to the Landsat Collection 1 data were used.

3. Methodologies

We designed four different scenarios for evaluating and improving the temporal consistency
of LTS as follows: (1) build LTS based on ARD and compare it with same extent double-resampled

https://espa.cr.usgs.gov
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Collection 1 data; (2) screen clouds and cloud shadows based on Fmask 4.0 and assess its effects
on the LTS consistency as compared to Fmask 3.3; (3) correct the BRDF effects using the c-factor
approach proposed by Roy et al. [33] to improve the LTS consistency; and (4) correct and evaluate
the topographic effects on the LTS consistency using SCS, SCS + C, and IC algorithms. The detailed
information on input data and processing methods for the four scenarios is listed in Table 2.

Table 2. Different scenarios for evaluating and improving the consistency of LTS. The c-factor approach is
proposed by Roy et al. [33]; SCS: Sun-Canopy-Sensor proposed by Gu et al. [40]; SCS+C: a semiempirical
SCS proposed by Soenen et al. [41]; and, IC: Illumination Correction proposed by Tan et al. [42].

Scenario
Number Input Data

Methods

Reprojection Cloud/Cloud
Shadow

BRDF
Correction

Topographic
Correction

1 Collection 1 vs. ARD from the
Same Path/Row

Single vs.
Double Fmask 3.3 No No

2 ARD from the Same Path/Row Single Fmask 3.3 vs.
Fmask 4.0 No No

3 All ARD Single Fmask 3.3 c-factor
approach No

4 All ARD Single Fmask 3.3 No SCS, SCS+C,
and IC

3.1. Reprojection of Landsat Collection 1 Data

Historically, Landsat data are provided at a spatial extent of 180 × 180 km for each Path/Row.
Landsat Collection 1 data are provided in the same way and has been used extensively for time series
analysis. However, before they are used for time series analysis, we need to re-project them into
the same spatial extent and data dimension to make them comparable [9,47,48]. As we mentioned
above, this process will involve two resampling procedures, but no longer necessary for Landsat ARD.
To quantitatively demonstrate the LTS consistency based on ARD compared to Collection 1 data,
we re-projected all Landsat Collection 1 images into the same extent as the corresponding Landsat
ARD tile using the nearest neighbor resampling approach [49]. Additionally, we only used ARD and
Collection 1 data acquired at the same time and from the same Landsat Path/Row. In this scenario,
the same ARD QA band (generated by Fmask 3.3) was used to screen clouds and cloud shadows.

3.2. Screening Clouds and Cloud Shadows

The presence of clouds and cloud shadows can lead to sudden changes in reflectance and thus
have severe effects on the consistency of LTS. Before most of the LTS-based applications, clouds
and cloud shadows should be screened out as the first step [26,28,50]. At present, the QA band of
Landsat ARD is generated mainly by using Fmask 3.3 [17,29]. However, the Fmask algorithm has gone
through a major upgrade from version 3.3. to version 4.0 [31]. The 4.0 version has improved cloud and
cloud shadow detection accuracy substantially by (1) integrating Global Surface Water Occurrence
(GSWO) to better separate water and land; (2) integrating global DEM to normalize thermal and
cirrus bands; (3) recalibrating new cloud probability thresholds for different sensors (e.g., TM, ETM+,
and OLI/TIRS); (4) utilizing spectral-contextual features to reduce the misidentified clouds that are
caused by bright and white surfaces (e.g., snow/ice and urban/built-up); and, (5) integrating DEM
for better cloud shadow detection for mountainous areas [32]. In this study, we attempted to use the
new Fmask 4.0 results to improve the LTS consistency. While considering that Fmask is a scene-based
algorithm, we applied the Fmask 4.0 algorithm over the corresponding Collection 1 image to generate
the new QA band and re-projected it into the same ARD tile. Finally, we can assess the LTS consistency
for ARD controlled by Fmask 4.0 and Fmask 3.3 algorithms.
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3.3. BRDF Correction

The BRDF effects of the ARD data were corrected using the c-factor approach [33] based on the
RossThick-LiSparse-R BRDF model [35]. Directional reflectance can be normalized to nadir-view
reflectance, as follows:

ρ̌ = ρ·
fiso + fvol ·Kvol(θ

′, 0◦, 0◦) + fgeo·Kgeo(θ′, 0◦, 0◦)
fiso + fvol ·Kvol(θ, ∅, ϕ) + fgeo·Kgeo(θ, ∅, ϕ)

(1)

where,

∅ is the view zenith angle,
ϕ is the view-sun relative azimuth angle,
θ is the solar zenith angle,
θ′ is the normalized solar zenith angle,
ρ is the original reflectance (directional reflectance),
ρ̌ is the BRDF-normalized reflectance (nadir-view reflectance),
fiso, fvol , and fgeo are the parameters of the BRDF model [35],
Kvol(θ, ∅, ϕ) is the RossThick kernel [51],
Kgeo(θ, ∅, ϕ) is the LiSparse-R kernel [51].

A fixed set of BRDF spectral model parameters [33] were used for BRDF correction in this
study. They were derived from more than 15 billion pixels over global MODIS 500-m BRDF parameters
product [35]. When considering that the empirical BRDF parameters are not applicable for snow/ice
pixels, we excluded all of the snow observations in this evaluation. According to the findings of
Zhang et al. [52], the optimal normalized solar zenith angle (θ′) was set constant per location,
and it follows a sixth-degree polynomial as a function of the central latitude (η) of the image [53]:

θ′ = 31.0076− 0.1272× η + 0.01187× η2 + 2.4× 10−5 × η3 − 9.48× 10−7 × η4

− 1.95× 109 × η5 + 6.15× 10−11 × η6 (2)

3.4. Topographic Correction

To comprehensively assess the topographic effect on the LTS consistency, we used three widely
used models to remove the topographic effects in Landsat ARD, including SCS [40], SCS + C [41],
and IC [42].

3.4.1. The SCS Model

The SCS correction is equivalent to projecting the sunlit canopy from the sloped surface to the
horizontal surface in the direction of illumination [40]. It assumes that the geometric relationship
between the sun and the tree canopy keeps the same before and after correction due to the geotropic
(vertical) nature of tree growth. The integrated reflectance from the sunlit canopy is proportional to its
area. The model is expressed, as follows:

ρ̂ = ρ·cos(θ)· cos(α)
cos(i)

(3)

cos i = cos(θ)· cos(α) + sin(θ)· sin(α)· cos(Ω− β) (4)

where,

ρ̂ is the topography-corrected reflectance,
Ω is the solar azimuth angle,
α is the slope angle, β is the aspect angle of the slope, and
cos i is the cosine of the local solar incidence angle (i) calculated by Equation (4).



Remote Sens. 2019, 11, 51 7 of 21

3.4.2. The SCS+C Model

The SCS+C model is based on the same SCS model, but it integrates a semi-empirical parameter
(C) that can significantly reduce the overcorrection caused by the scattered radiation from the source
of illumination [41]. The correction of SCS+C model is expressed, as follows:

ρ̂ = ρ ·cos(θ)· cos(α) + C
cos(i) + C

(5)

where, C is an estimated parameter analogous to the effects of clear-sky irradiance [54].
The parameter C was proposed based on the assumption that there is a linear relationship between

the uncorrected reflectance (ρ) and the cosine of the local solar incidence angle (cos i) over clear-sky
land pixels (Equation (6)), and it can be calculated by using the ratio of the intercept (b) and the slope (a)
of the linear regression (Equation (7)) [54]. We applied a sampling approach stratified on the cos i with
0.1 increment to select a total of 40,000 clear-sky land pixels (based on Fmask 3.3 results) and estimated
the slope (a) and the intercept (b) using the Ordinary Least Square (OLS) regression method [32].

ρ = a· cos(i) + b (6)

C = b/a (7)

3.4.3. The IC Model

The IC model was proposed to remove the dependency of the reflectance on the cosine of the local
solar incidence angle (cos i) based on the same linear regression shown by Equations (6) and (7) [42].
It can be expressed, as follows:

ρ̂ = ρ− a·
(
cos(i)− cos

(
i′
))

(8)

where, cos i′ is the cos i for a horizontal surface calculated using Equation (4) with a slope angle (α) of 0.
As cos i is sensitive to land cover types, such as vegetation (e.g., forest) and non-vegetation type

(e.g., soil and rock), the IC approach creates 3 × 3 km moving windows over the entire image and in
each window it uses a threshold of 0.5 in Normalized Difference Vegetation Index (NDVI) to separate
all pixels into a dense vegetation and a sparse vegetation group. In each group, a regression will be
performed based on all clear-sky land pixels (Equation (6)).

3.5. Assessment of Temporal Consistency

Assume that there is no land surface change within a short period from date 1 (d1) to date 2 (d2),
then the clear-sky SR at d1 and d2 should be very similar. Therefore, we use the SR difference between
two consecutive observations within a short temporal period to indicate the temporal consistency
of LTS. The smaller the difference, the better the consistency. The SR difference (∆ρd21) for each
band between the two closest acquisition dates (d1 and d2) can be computed by ∆ρd21 = ρd2 − ρd1.
In this study, we calculated the clear-sky SR differences within the entire LTS and limited the
two closest acquisition dates within 16 days. Note that sometimes the intervals are eight days due to
the combinations of two different Landsat satellites (e.g., Landsat 7 and Landsat 8), or even less in the
overlapping areas [55].

The histogram of the SR differences for all pixels in an ARD tile was applied to evaluate the LTS
consistency, and if the shape of the histogram is thin and tall, the consistency is high. At the same
time, the Standard Deviation (SD) of SR difference was chosen to quantify the consistency of LTS.
The smaller the SD, the better the consistency. Note that we only calculated the SD within the 95%
confidence interval for topographic correction and BRDF correction. This is to exclude the effects of
the missed clouds and cloud shadows in the Landsat QA band.
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4. Results

4.1. Scenario 1: The Influence of Single- (ARD) vs. Double-resampling (Collection 1) on LTS

Figure 2 shows the histograms of SR differences between ARD and Collection 1 data for each
band at the CA site characterized by large areas of urban/built-up and agriculture. The distributions
of the SR difference of ARD are very similar to that of Collection 1 data for all spectral bands, but ARD
always achieved slightly lower SD when compared to the same measurements in Collection 1 data.
This means that Landsat ARD and Collection 1 have similar data consistency, but ARD is slightly better
than Collection 1 data. Similar results can be also found in Figure S1–S4 for the other four tested sites.
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A comparison between ARD and Collection 1 image at the CA site is shown in Figure 3. While the
two images are visually similar, ARD provide “smoother” landscape patterns than Collection 1 data
(after the nearest neighbor resampling) (Figure 3). This is because the nearest neighbor resampling
process will lead to pixel shifts and thus reduce geometric fidelity for Landsat Collection 1 data,
particularly for the places with a large spatial difference, such as the pixels located at the boundaries of
urban/built-up and crop fields (Figure 3c). This finding is also similar to that made by Dwyer et al. [22].
Additionally, the time series observations from ARD and Collection 1 data at locations 1–3 in Figure 3c
showed that the ARD values can be systematically higher or lower than the Collection 1 at edge pixels
(Figure 4a,b), but for pixels located at homogeneous places, such as the center of an agricultural field,
they are almost the same (Figure 4c). Therefore, though the consistency between Collection 1 and ARD
are very similar, ARD are preferred, as they preserve edge pixels values better and are easier to be
applied in time series analysis.
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Figure 3. A comparison between Landsat ARD and the corresponding Landsat Collection 1 image
acquired on June 28, 2013 at the CA site (150 × 150 pixels). (a) True color Landsat ARD (red, green, and
blue bands). (b) True color Landsat Collection 1 image (red, green, and blue bands). (c) The difference
of near-infrared (NIR) band surface reflectance between ARD and Collection 1. The red squares 1–3 are
the locations of example pixels in Figure 4a–c, respectively.
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Figure 4. Time series plot of near infrared (NIR) band surface reflectance over (a) an urban/built-up
pixel located at the center of the red square 1 in Figure 3c, (b) a cropland edge pixel located at the center
of the red square 2 in Figure 3c, and (c) a cropland pixel located at the center of the red square 3 in
Figure 3c.

4.2. Scenario 2: The Influence of Improved Cloud and Cloud Shadow Detection Algorithm

We applied Fmask 4.0 algorithm for ARD from the same Path/Row and compared the influence
of using a different version of Fmask (e.g., 3.3 version) on the consistency of LTS. As Figure 5
illustrates, Fmask 4.0 significantly reduced SDs when compared to Fmask 3.3 at the CA site. The same
results were observed at other four test sites (Figure S5–S8). This suggests the LTS consistency are
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influenced substantially by clouds and cloud shadows, and a more accurate cloud and cloud shadow
detection algorithm, such as Fmask 4.0, can be quite beneficial. Figure 6 illustrates a comparison
between Fmask 4.0 and Fmask 3.3 for a Landsat 8 image. It shows Fmask 3.3 may fail to detect some
clouds (especially thin clouds), but Fmask 4.0 succeeded. The missed clouds and cloud shadows
from Fmask 3.3 would decrease the consistency of the entire LTS due to the sudden changes in SR
(Figure 7). Therefore, the Fmask 4.0 algorithm is recommended to identify clouds and cloud shadows
for LTS applications.Remote Sens. 2018, x, x FOR PEER REVIEW  10 of 23 
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SR difference pixels) and that with Fmask 4.0 (derived from 8.46 billion SR difference pixels) at the CA
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Figure 6. Comparison of cloud (yellow) and cloud shadow (green) detection results between Fmask
4.0 and Fmask 3.3 for a Landsat ARD acquired on November 3, 2013 at the CA site (5000 × 5000 pixels).
(a) True color composite Landsat ARD (red, green, and blue bands). (b) Fmask 3.3 results. (c) Fmask 4.0
results. Note that Fmask 4.0 results were calculated based on the corresponding Landsat 8 Collection
1 data and re-projected into the same extent of Landsat ARD.
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Figure 7. Time series observations in blue band screened by Fmask 4.0 and Fmask 3.3 for a pixel located
at the center of the red square in Figure 6 (urban/built-up). “Both clear” indicates the observations
which are labeled as clear by Fmask 4.0 and Fmask 3.3 at the same time. “Only Fmask 4.0 clear”
indicates the observations that Fmask 4.0 identified as clear, but Fmask 3.3 identified as cloud or cloud
shadow. “Only Fmask 3.3 clear” indicates the observations that Fmask 3.3 identified as clear but Fmask
4.0 identified as cloud or cloud shadow.

4.3. Scenario 3: The Influence of BRDF Correction

The BRDF correction was conducted to guarantee that every observation in the time series for
a given pixel location was obtained at nadir view and for a fixed (latitudinally dependent) solar zenith.
Figure 8 shows the histograms of SR difference between the original ARD and the BRDF-corrected
ARD for different bands at the CA site. The SR difference of BRDF-corrected ARD shows a taller
and thinner shape when compared to the original data. The histograms of visible bands are much
thinner than the histograms of NIR and SWIR bands, which might be explained by the relatively low
reflectance values of visible bands when compared to NIR and SWIR bands. Quantitative results
demonstrated that the SDs of BRDF-corrected ARD are much smaller than that of the original ARD.
The same results were also observed over other four test sites (Figure S9–S12). These results indicated
that conducting BRDF correction is very important and necessary for improving the consistency of
Landsat ARD.
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The BRDF effects are more significant in the overlapped areas in Landsat ARD due to the large
difference between surface reflectance observed in the forward and backward directions. Figure 9
shows the temporal distributions of the four solar and view angles for a pixel in the overlapped areas,
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including the forward and backward observations (e.g., view azimuth angles from 0◦ to 360◦ and
view zenith angles from −7.5◦ to 7.5◦). For both directions (Figure 9a,c), the solar zenith angles can
range from 20◦ to 70◦, while the solar azimuth angles can be different from 100◦ to 170◦. For the sensor
azimuth and zenith angles, there are two different distribution ranges that can be caused by the forward
and backward observations. In the forward direction (Figure 9b), sensor zenith angles can range from
4.5◦ to 7◦, while sensor azimuth angles can be different from−85◦ to−78◦ (a slight difference compared
with the solar angles); in the backward direction (Figure 9d), sensor zenith angles can range from 7◦

to 7.5◦, while sensor azimuth angles can be different from 100◦ to 112◦. Each distribution range was
relatively small, and this is one of the reasons why a fixed set of BRDF model parameters can be used
for Landsat BRDF correction [33,56].Remote Sens. 2018, x, x FOR PEER REVIEW  12 of 23 
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that from the original ARD. The SCS method showed relatively larger SD than the other two methods 
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Figure 9. Solar and sensor angles of the continuous observations in the forward and backward direction
at a pixel in the CA site. (a) Solar azimuth and zenith angles in the forward direction. (b) Sensor azimuth
and zenith angles in the forward direction. (c) Solar azimuth and zenith angles in the backward direction.
(d) Sensor azimuth and zenith angles in the backward direction.

4.4. Scenario 4: The Influence of Topographic Correction

The topographic correction was conducted to reduce the terrain illumination effects. Figure 10
represents the histograms of comparisons between the original ARD surface reflectance and the
topographic corrected ARD surface reflectance derived by SCS (Figure 10a), SCS+C (Figure 10b),
and IC (Figure 10c) models for each band over the NCO site, where there are large topographic
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gradients. For each band, the histograms of the surface reflectance difference between the original data
and the topographic corrected data shared almost the same shape. For the three topographic correction
methods compared, the SD values of SCS+C and IC were almost the same and slightly larger than
that from the original ARD. The SCS method showed relatively larger SD than the other two methods
because of its overcorrection artifact [41]. The results showed that the three topographic correction
methods did not contribute to improving the consistency of LTS in the NCO and similar results also
were observed at other tested sites (Figures S13–S16).

Figure 11 illustrates the topographic corrected results derived by SCS (Figure 11c), SCS+C
(Figure 11d), and IC (Figure 11e) for a Landsat ARD. Based on the visual comparison, the IC and SCS+C
methods performed better, as the dark areas were often over-corrected by the SCS method. The same
results can be observed from the SDs at different sites in Figure 10 and Figure S13–S16 (the SCS method
generally has the largest SD value). At the same time, we also found that the SCS+C method generally
has better performance than the IC method, especially for the three visible bands. However, the original
ARD had the smallest SD value and showed better consistency than the topographically corrected
time series. Figure 12 shows an example that the SCS, SCS+C, and IC method do not contribute on
improving the consistency of a single Landsat pixel, in which the difference of adjacent observations is
actually larger after the correction.   
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Figure 10. The histograms of SR difference values between the topographically corrected ARD surface
reflectance and original ARD surface reflectance derived from three different methods based on a total of
2.59 billion SR difference values at the NCO site. From the top to bottom are the (a) SCS, (b) SCS+C, (c) IC.
SD: Standard Deviation; SR: Surface Reflectance; SCS: Sun-Canopy-Sensor; SCS+C: a semiempirical
SCS; IC: Illumination Correction.Remote Sens. 2018, x, x FOR PEER REVIEW  15 of 23 

 

 
Figure 11. Topographically corrected results for a subset Landsat ARD acquired on June 19, 2015 at 
the NCO site (300 × 300 pixels). (a) True color image (red, green, and blue bands). (b) DEM. (c) SCS 
result. (d) SCS+C result. (e) IC result. DEM: Digital Elevation Model; SCS: Sun-Canopy-Sensor; 
SCS+C: a semiempirical SCS; IC: Illumination Correction. 

 
(a) 

 
(b) 

 
(c) 

 

Figure 11. Topographically corrected results for a subset Landsat ARD acquired on June 19, 2015 at the
NCO site (300 × 300 pixels). (a) True color image (red, green, and blue bands). (b) DEM. (c) SCS result.
(d) SCS+C result. (e) IC result. DEM: Digital Elevation Model; SCS: Sun-Canopy-Sensor; SCS+C:
a semiempirical SCS; IC: Illumination Correction.
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Figure 12. Time series observations of near-infrared (NIR) band derived from three different
topographic correction methods for a shaded pixel located at the center of the red square in Figure 11.
(a) SCS result. (b) SCS+C result. (c) IC result. SCS: Sun-Canopy-Sensor; SCS+C: a semiempirical SCS;
IC: Illumination Correction.

5. Discussion and Conclusions

Landsat ARD is a new dataset for facilitating time series analysis and the data consistency is one
of the most important factors. This new data collect images from different sensors (e.g., TM, ETM+,
and OLI/TIRS) and the consistency would be inherently effected [57,58]. Except for this effect,
we explored four different scenarios (Table 2) for making LTS more consistent using Landsat ARD.
In Figure 13, the color bars represent the magnitude of SD values for all spectral bands, five study sites,
and four different testing scenarios, in which the shorter the bar, the more consistent the data.

First, we evaluated whether ARD (single-resampling) can result in a better consistency than
Collection 1 (double-resampling). Results indicate that Landsat ARD has a slightly better consistency
when compared to Landsat Collection 1 data (Figure 13a). This is mainly because each resampling
process will lead to the loss of geometric fidelity, especially in places with a large spatial difference.
In this study, we used the nearest neighbor resampling method to resample the Collection 1 data
mainly because of its simple and fast characteristics, but it also resulted in pixel shifts that can make
systematic biases and reduce the data consistency. Though other resampling methods, such as bilinear
and cubic convolution, may provide better results than the nearest neighbor resampling method [59,60],
they also change the value of samples by smoothing the data and generating artifacts at high contrast
edges [24,61]. As the influenced pixels are relatively small (mostly edge pixels), there is very limited
improvement in terms of data consistency between Collection 1 data and ARD. It is worth noting that
the Landsat users may use or define other projection systems that are different from the current Landsat
ARD projection, and we recommend using the Landsat ARD as it is for their analysis, and re-project the
final results (e.g., classification or change detection maps) to their preferred map projections. Overall,
the Landsat ARD are recommended to build LTS due to its slightly better consistency and easy-to-use.
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Double 505.38 377.47 430.31 532.19 404.92 323.76

(b) Fmask 3.3 297.26 302.36 339.00 465.22 427.16 390.59
Fmask 4.0 144.77 168.88 228.06 408.80 376.21 350.11
Fmask 3.3 301.34 298.43 306.56 474.02 437.38 328.36
Fmask 4.0 233.19 231.36 238.18 398.05 367.18 277.87
Fmask 3.3 498.67 507.86 520.28 558.53 405.38 333.49
Fmask 4.0 473.87 486.64 496.98 522.76 359.99 297.19
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Fmask 4.0 284.48 294.51 314.44 470.09 335.36 272.03

(c) noBRDF 139.28 145.73 163.93 277.46 277.98 226.52
BRDF 126.25 130.45 149.12 240.73 246.49 209.48
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Figure 13. Standard deviation statistics of four tested scenarios at five study sites (SD: ×104).
(a) Scenario 1: single vs. double reprojection. (b) Scenario 2: Fmask 3.3 vs. Fmask 4.0. (c) Scenario 3:
c-factor BRDF correction. (d) Scenario 4: topographic correction. noBRDF: no Bidirectional Reflectance
Distribution Function (BRDF) correction; noTC: no Topographic Correction; SCS: Sun-Canopy-Sensor
proposed by Gu et al. [40]; SCS+C: a semiempirical SCS proposed by Soenen et al. [41]; IC: Illumination
Correction proposed by Tan et al. [42].
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Second, we demonstrated the benefit of using better cloud and cloud shadow detection
algorithm (Fmask 3.3 vs. Fmask 4.0) for improving the consistency of LTS, and the improvement
was substantial (Figure 13b). Considering that there are other more accurate cloud and cloud shadow
detection algorithms that are based on multitemporal images, such as Tmask (multiTemporal mask),
more consistent LTS is expected if they are applied [26,28]. However, it should be noted that the
multitemporal cloud and cloud shadow detection algorithms may also remove some ephemeral
surface changes, because they may have similar change patterns as clouds and cloud shadows [28].

Third, we assessed the impact of BRDF correction on the consistency of Landsat ARD. By using the
c-factor approach with a fixed set of BRDF spectral model parameters [33], the consistency of Landsat
ARD is significantly improved (Figure 13c). These parameters could be used for Landsat ARD, because
the BRDF shapes of different terrestrial surfaces are sufficiently similar over the narrow 15◦ field of
view [33,56], but they are not applicable to observations with large view angle variations or significant
solar illumination variations [33]. In these cases, the local spatially and temporally contemporaneous
BRDF model parameters are needed.

Last, none of the topographic correction methods that were tested in this study were helpful
in improving LTS consistency (Figure 13d). The SCS topographic correction results showed large
overcorrections. The results of SCS+C and IC were determined by the estimated parameters (Figure 14).
The parameters were calculated either globally by the SCS+C method or locally by the IC method,
and both methods can reduce overcorrection of dimly lit pixels effectively. The parameters of SCS+C
fluctuated irregularly, because the clear observations used to fit the parameters were different on
different dates. The parameters of IC fluctuated dramatically because the fitting process was retrieved
for each 3 × 3 km moving window; however, for each ARD tile, there may not have enough valid
observations to fill every moving window (e.g., pixels outside the scene boundary) to fit for the
parameter in the IC method. Another reason may be that the topographic corrections were directly
applied to the surface reflectance, which ignored the interactions between atmosphere and topography.
In the future, the combination of atmospheric and topographic correction is encouraged to be tested
for making the time series data more consistent. Finally, though the use of topographic correction may
have limited contributions in improving temporal consistency, it can be beneficial for increasing the
consistency of data in the spatial domain. For example, for land cover classification in mountainous
areas, the use of the topographic corrected image can greatly reduce the classification errors in the
shaded areas [62,63].
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In conclusion, we evaluated and improved LTS consistency using Landsat ARD at five different
sites in CONUS. The results suggest that (1) Landsat ARD are recommended to build LTS because the
ARD data can achieve a slightly better time series consistency and are easier to use when compared to
Landsat Collection 1 data. (2) LTS consistency can be further improved if a more accurate cloud and
cloud shadow detection algorithm (e.g., Fmask 4.0) is used. (3) BRDF correction is the most important
factor for improving the consistency of Landsat ARD. (4) Topographic corrections, such as SCS, SCS+C,
and IC algorithms, generally have no contributions, and they may even reduce temporal consistency.
These findings provide a routine guidance for how to build a consistent LTS for varies of LTS-based
applications, such as forest disturbance, urban expansion, and agricultural practice.

Supplementary Materials: The Supplementary Materials are available at http://www.mdpi.com/2072-4292/11/
1/51/s1
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