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Abstract: Remote sensing is undergoing a fundamental paradigm shift, in which approaches
interpreting one or two images are giving way to a wide array of data-rich applications. These include
assessing global forest loss, tracking water resources across Earth’s surface, determining disturbance
frequency across decades, and many more. These advances have been greatly facilitated by Google
Earth Engine, which provides both image access and a platform for advanced analysis techniques.
Within the realm of land-use/land-cover (LULC) classifications, Earth Engine provides the ability
to create new classifications and to access major existing data sets that have already been created,
particularly at global extents. By overlaying global LULC classifications—the 300-m GlobCover
2009 LULC data set for example—with sharper images like those from Landsat, one can see the
promise and limits of these global data sets and platforms to fuse them. Despite the promise in a
global classification covering all of the terrestrial surface, GlobCover 2009 may be too coarse for
some applications. We asked whether the LULC labeling provided by GlobCover 2009 could be
combined with the spatial granularity of the Landsat platform to produce a hybrid classification
having the best features of both resources with high accuracy. Here we apply an improvement of the
Bayesian Updating of Land Cover (BULC) algorithm that fused unsupervised Landsat classifications
to GlobCover 2009, sharpening the result from a 300-m to a 30-m classification. Working with four
clear categories in Mato Grosso, Brazil, we refined the resolution of the LULC classification by an
order of magnitude while improving the overall accuracy from 69.1 to 97.5%. This “BULC-U” mode,
because it uses unsupervised classifications as inputs, demands less region-specific knowledge from
analysts and may be significantly easier for non-specialists to use. This technique can provide new
information to land managers and others interested in highly accurate classifications at finer scales.

Keywords: land cover; deforestation; Brazilian Amazon; Bayesian statistics; BULC-U; Mato Grosso;
spatial resolution; Landsat; GlobCover

1. Introduction

Land use and land cover (LULC) change is a principal contributor to global greenhouse gas
emissions and can have extensive indirect effects including biodiversity loss and regional hydrologic
change [1–3]. Increasing global demands for agricultural commodities and other forest resources are
expected to continue to put pressure on remaining forests [2,4,5]. Monitoring LULC change is critical
in identifying priority conservation and restoration areas [6] and helping nations achieve their national
carbon emissions targets [7,8]. LULC change in the tropics often occurs at small scales and as a result,
an accurate accounting of LULC types requires data at correspondingly fine scales.
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With the opening of the Landsat satellite archive a decade ago [9], a new era in remote sensing
began, characterized by free data and the rapid development of time-series analysis algorithms for
tracking LULC change [10–14]. There are now many potential satellite-based imagery sources spanning
across more than 4 decades [9,12]. While Landsat represents the longest-running time series, additional
sensors also provide free imagery [15,16]. More recently, Sentinel-2 satellites were launched in 2015 and
2017 with even finer spatial resolution and revisit times [17,18]. The increase in data at fine resolutions
and in time increases the potential benefit of algorithms to incorporate evidence from large numbers of
satellite images into useful maps for monitoring landscape changes.

An earlier generation of global LULC classifications was developed by both academic and
governmental organizations to represent LULC at a static point in time. Some examples include:
The IGBP-DISCOVER classification using MODIS imagery [19]; the Global 1-km Consensus Land-cover
Product [20]; and GlobCover, using data from MERIS in two different campaigns: 2000 and 2009 [21–23].
Made and verified with great effort, these classifications are a valuable source of LULC information that
have been applied for identifying patterns of land use change [24–26], agriculture inventory [27,28],
and modeling species distribution [29–31]. Despite the power of these classifications, the relatively
coarse spatial resolution can limit their usefulness, especially at finer scales [28,32,33]. Surprisingly few
algorithms are available to sharpen the spatial resolution of moderate-resolution LULC classifications
in light of finer-scale imagery.

The Bayesian Updating of Land Cover (BULC) algorithm [34] was originally devised to use
Bayesian logic to create time series of land use and land cover classifications. In its original conception,
BULC processes classifications to estimate the probability for each class for each pixel at each time step
based on the strength of the agreement between consecutive candidate classifications. This approach
allows each pixel to incorporate information from a series of land cover maps to create ongoing
classifications, either to update a given classification through time or to confirm the estimated LULC
class of each pixel in a study area at a given time. The effect is to blend relative candidate classifications
according to their shared properties, while tracking stability and change through time as more images
are analyzed. A given pixel’s per-class probabilities reflect the ability to consistently label a pixel
with its (assumed proper) class. Despite its utility for creating time series, initial applications of
BULC were limited by the effort and foreknowledge needed to produce relatively high-quality LULC
classifications across a large number of images: prospective users need to know the study area well
enough to discern whether a given prospective classification is good enough for inclusion based on
the identified LULC categories.

In this manuscript, we modify BULC’s ability to incorporate new information by extending its
potential inputs to include unsupervised classifications. We use this enhancement, which we call
“Bayesian Updating of Land Cover: Unsupervised” (BULC-U) to refine the resolution of a relatively
coarse global data set by an order of magnitude in a heterogeneous, finely structured landscape in
Mato Grosso, Brazil. Using 13 Landsat 5 images near in time to the nominal 2009 date of the GlobCover
global data set, BULC-U blends Landsat’s finer-scale spatial information with the coarse labels of
GlobCover 2009 to produce a higher-resolution land-cover classification with GlobCover 2009’s labels
and Landsat 5’s spatial resolution. We conduct an accuracy assessment comparing the GlobCover 2009
and the BULC-U 2009 classification products, demonstrating that the new classification has both finer
spatial resolution and improved accuracy.

2. Methods

2.1. Study Area

The study area is a 2 × 105 km2 (166 km × 121 km) region of Mato Grosso, Brazil, located within
Landsat path 224 row 69 and centered near 51.884◦W, 12.601◦S. (Figure 1).
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Figure 1. Location of study area in eastern Mato Grosso, Brazil. 

The study area has a mix of grasslands, rainforest, hilly shrubland and extensive agricultural 
areas. The varied land cover types and clearly visible agriculture make this area a good location for 
testing the ability of BULC-U to sharpen a coarser classification. In particular, 30-m satellite imagery 
shows well-demarcated edges between cropland and forest that are difficult to capture with 300-m 
resolution imagery. In addition, the small rivers that run through the area, visible in 30-m imagery, 
are not discernible at coarser scales.  

2.2. LULC Categories 

For this study, we were interested in illustrating the study area during its conversion from a 
landscape that had recently been mostly dense-canopy Forest or some type of Grassland or Shrubland 
to one increasingly dominated by Cropland. We identified four fundamental LULC categories of 
interest: Cropland; Forest; Shrubland or Grassland (referred to hereafter as Shrubland); and Water. 
These four classes are easy to visually identify in this area in Landsat-scale satellite images, and are 
useful in this study for detecting active agriculture that may be missed in coarsely grained 
classifications. 

2.3. BULC-U Algorithm 

BULC-U is intended to track classes that can be reliably identified in a sequence of images that 
have been categorized into Events. The BULC-U algorithm can sharpen an existing LULC 
classification by incorporating higher-resolution information from unsupervised classifications of 
finer-resolution satellite images. Like the BULC algorithm on which it is based, BULC-U ingests a 
time-ordered series of classified images and creates a land cover classification at each time step 
(Figure 2).  

Figure 1. Location of study area in eastern Mato Grosso, Brazil.

The study area has a mix of grasslands, rainforest, hilly shrubland and extensive agricultural
areas. The varied land cover types and clearly visible agriculture make this area a good location for
testing the ability of BULC-U to sharpen a coarser classification. In particular, 30-m satellite imagery
shows well-demarcated edges between cropland and forest that are difficult to capture with 300-m
resolution imagery. In addition, the small rivers that run through the area, visible in 30-m imagery,
are not discernible at coarser scales.

2.2. LULC Categories

For this study, we were interested in illustrating the study area during its conversion from
a landscape that had recently been mostly dense-canopy Forest or some type of Grassland or
Shrubland to one increasingly dominated by Cropland. We identified four fundamental LULC
categories of interest: Cropland; Forest; Shrubland or Grassland (referred to hereafter as Shrubland);
and Water. These four classes are easy to visually identify in this area in Landsat-scale satellite
images, and are useful in this study for detecting active agriculture that may be missed in coarsely
grained classifications.

2.3. BULC-U Algorithm

BULC-U is intended to track classes that can be reliably identified in a sequence of images that
have been categorized into Events. The BULC-U algorithm can sharpen an existing LULC classification
by incorporating higher-resolution information from unsupervised classifications of finer-resolution
satellite images. Like the BULC algorithm on which it is based, BULC-U ingests a time-ordered series
of classified images and creates a land cover classification at each time step (Figure 2).
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Figure 2. Schematic of BULC-U. The BULC-U processing is driven by unsupervised classifications 
and update tables relating them to a common reference classification (here, the GlobCover 2009 
classification). As in BULC, evidence from each new Event is used to update the estimates of each 
pixel’s LULC using Bayes’ Theorem. 

At each time step, BULC-U tracks an estimate of the probability of each land cover class for each 
pixel. Like BULC, BULC-U initializes the land cover estimate using a reference classification that 
represents the best existing estimate of LULC in the study area. The series of classified images, which 
we term ‘Events’, is created using unsupervised classification algorithms. BULC-U creates an ‘update 
table’ (formed like an accuracy assessment table) to compare the evidence from the Events to the 
reference classification following the methods outlined in Cardille and Fortin [34]. In this application, 
the reference classification was the 300-m GlobCover 2009 classification and Events were made from 
30-m Landsat images, both prepared as described in the subsections immediately below. The BULC-
U process begins with the a priori proposition that the LULC in the study area is exactly as seen in the 
reference classification, with a moderate level of confidence. The evidence from an Event is combined 
with the a priori estimate using Bayes’ Theorem to create an a posteriori vector of probabilities for each 
pixel, which is used as the new a priori estimate for incorporating evidence from the next Event. The 
highest probability class of each pixel in the a posteriori stack can be assessed to create a BULC-U 
classification at any time step in every location given the information that has been seen to that point 
in the process. BULC and BULC-U differ in two small but important ways. The first difference is in 
the nature and shape of the update table—where the BULC table is square (n × n for n tracked classes), 
the update table in BULC-U is m × n, where m is the number of classes in the unsupervised 
classification for an Event. The two methods also differ in the classification used as the nominal 
‘reference’ classification in making the update table: In BULC-U, the update table is made for an 
Event by cross-tabulating the Event with the reference classification, not another Event as is done in 
BULC. 

Another very substantial difference between BULC and BULC-U is its implementation in Google 
Earth Engine [35]. BULC was implemented as experimental code in R and could take up to several 
days for a run, making troubleshooting difficult and severely limiting the number of images that 

Figure 2. Schematic of BULC-U. The BULC-U processing is driven by unsupervised classifications
and update tables relating them to a common reference classification (here, the GlobCover 2009
classification). As in BULC, evidence from each new Event is used to update the estimates of each
pixel’s LULC using Bayes’ Theorem.

At each time step, BULC-U tracks an estimate of the probability of each land cover class for
each pixel. Like BULC, BULC-U initializes the land cover estimate using a reference classification
that represents the best existing estimate of LULC in the study area. The series of classified images,
which we term ‘Events’, is created using unsupervised classification algorithms. BULC-U creates an
‘update table’ (formed like an accuracy assessment table) to compare the evidence from the Events
to the reference classification following the methods outlined in Cardille and Fortin [34]. In this
application, the reference classification was the 300-m GlobCover 2009 classification and Events were
made from 30-m Landsat images, both prepared as described in the subsections immediately below.
The BULC-U process begins with the a priori proposition that the LULC in the study area is exactly
as seen in the reference classification, with a moderate level of confidence. The evidence from an
Event is combined with the a priori estimate using Bayes’ Theorem to create an a posteriori vector of
probabilities for each pixel, which is used as the new a priori estimate for incorporating evidence from
the next Event. The highest probability class of each pixel in the a posteriori stack can be assessed to
create a BULC-U classification at any time step in every location given the information that has been
seen to that point in the process. BULC and BULC-U differ in two small but important ways. The first
difference is in the nature and shape of the update table—where the BULC table is square (n × n for
n tracked classes), the update table in BULC-U is m × n, where m is the number of classes in the
unsupervised classification for an Event. The two methods also differ in the classification used as the
nominal ‘reference’ classification in making the update table: In BULC-U, the update table is made for
an Event by cross-tabulating the Event with the reference classification, not another Event as is done
in BULC.

Another very substantial difference between BULC and BULC-U is its implementation in Google
Earth Engine [35]. BULC was implemented as experimental code in R and could take up to several
days for a run, making troubleshooting difficult and severely limiting the number of images that
could be processed, the amount of data that could be retained at each time step, and the area
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that could be analyzed. BULC-U was implemented in Google Earth Engine’s JavaScript platform,
which permits easy prototyping, parameter exploration, and interactive visualization. It is also much
faster: The same BULC logic of Cardille and Fortin [34], running in Earth Engine, takes a few moments
for its calculations. The BULC and BULC-U methodology also take advantage of a sequential iterator
tool that distinguishes it from most other work in Earth Engine. In contrast to studies that use Earth
Engine’s power to compute, say, the maximum greenness value for a year, BULC and BULC-U process
an Event, update the state of each pixel, then process another Event, for a known finite set of Events.
The iteration of BULC-U through a series of events is described below.

In this context, BULC-U operates as follows: At the beginning of a given iteration i of BULC-U,
each pixel has an estimated probability vector for each LULC category, which reflects the evidence
seen to that point in the process about LULC in that pixel. An update table is formed for Event i
(an unsupervised Landsat classification) by cross-tabulation with the reference GlobCover classification.
This table quantifies the extent to which each unsupervised class coincides with one of the LULC
categories. If, say, class 7 of Event i very strongly coincides with Agriculture pixels in the GlobCover
classification, the probability vectors of class 7 pixels change in the direction of Agriculture. Each pixel
maintains its own history as described in Cardille and Fortin [34]. In the next iteration, a new Event
i + 1 is considered—say, with class 11 of Event i + 1 coinciding with Agriculture pixels in the GlobCover
classification, though not as strongly as class 7 had in iteration i. When updated, the probability vectors
of those class 7 pixels would move again toward Agriculture, though not as strongly as class 11 pixels
had in iteration i. Pixels that were in class 7 in Event i and class 11 in Event i + 1 would have moved
considerably toward agriculture; pixels in class 7 in i and then a different class in i + 1 would have
a different probability vector that reflected their own history. The preparation of the Events and the
reference classification are described below.

2.4. GlobCover 2009

GlobCover is a global LULC classification with 300-m resolution and 22 potential categories,
created with a nominal date of 2009 using data from the MERIS sensor [23]. Within the study
area, the GlobCover 2009 LULC classification had 14 categories. Of these, seven covered more
than 1% of the study area. Several of the classes were too specific for our purposes and were
reclassified to one of the four categories to begin the BULC-U process. Specifically, “Rainfed
Cropland (5% of the study area)” and “Mosaic Cropland” (mixed pixels strongly dominated by
Cropland, 14% of the area), were reclassified as “Cropland” for the BULC-U reference layer. Second,
the Forest-dominant categories “Closed to Open Broadleaved Evergreen” (33%), “Closed Broadleaved”
(13%), “Flooded Broadleaved” (<1%), and “Open Broadleaved” (<0.1%) were reclassified as “Forest”
for the BULC-U process. The Shrubland category was comprised of GlobCover classes “Closed to
Open Shrubland” (17%), “Flooded Closed to Open Vegetation” (4%), “Closed to Open Grassland”
(<0.1%), and “Sparse” (<0.1%). The “Water” LULC category was made of the “Open Water” GlobCover
category. Importantly, some GlobCover categories potentially contained elements of two BULC-U
target classes. These included: “Mosaic Vegetation”, which comprised 13% of the study area in
GlobCover; “Mosaic Forest or Shrubland” (1% of the study area), and a few pixels of “Mosaic
Grassland”. These were initialized as “Mosaic/Unknown” for the purposes of creating BULC-U’s a
priori classification. The effect was for BULC-U to not use spectral information of those classes to refine
GlobCover. Rather, they were treated as areas whose LULC was not known clearly before the study,
to be filled in with one of the four tracked LULC categories at the 30-m resolution during the BULC-U
refinement process. The effect of the remapping was to condense original GlobCover categories into a
set of LULC categories that could be reliably distinguished on Landsat imagery, and that were known
to be accurate in the GlobCover validation report [23].

As it met our purposes of tracking the development of cropland in the area, there were
indications that GlobCover was properly used only for these Level 1 categories within our study
area. The GlobCover validation report [23] (which assessed points worldwide) considered the two



Remote Sens. 2018, 10, 1455 6 of 21

cropland classes within our study area to be interchangeable for judging user’s accuracy. Meanwhile,
significant confusion was noted in the GlobCover report between the classes of evergreen broadleaf
forest and closed deciduous forest, the two Level 2 forest categories that dominated forest in our study
area. For shrubland, the two categories that comprised the shrubland found in our study area had
user’s accuracy of 50% and 20%, with the smaller of the two noted in the report for its “classification
instability”. Perhaps more importantly, it would have been unfair to ask the GlobCover data, a global
coverage, to capture LULC to such a fine degree in an area quite small compared to its global reach.
Fortunately, the desired Level 1-analogous LULC labels of our study were of sufficient quality to be
used in BULC-U, as described below.

The remapped GlobCover was used in two important ways in the fusion process. First, it was
used as the a priori classification of the area for the 86% of the study area estimated to be in one of the
four tracked LULC categories. For the 14% of the pixels labeled in this way as “Mosaic/Unknown”,
BULC-U began with equal a priori probabilities and gradually refined the estimate of the LULC based
on evidence from the Events as describe above. Second, the remapped GlobCover layer was used
as the reference classification for the update tables. The Events with which it was compared are
described below.

2.5. Landsat Imagery

Thirteen Events for BULC-U were created from clear Landsat 5 images (<10% cloud cover)
spanning 2008 to 2010 (Table 1). BULC-U uses unsupervised classifications as its Events, meaning
that the multidimensional color space of Landsat needed to be reduced into groupings with similar
spectral characteristics. Exploratory efforts to classify images revealed considerable speckling that was
not greatly improved with smoothing techniques. Since the distinctive edges of agricultural fields
are often amenable to image segmentation methods [36], we segmented the images. Unsupervised
classification techniques were unavailable in Google Earth Engine, and so we downloaded the images
into ArcGIS for analysis. Each Landsat 5 image was segmented using the ArcGIS implementation of the
Segmented Mean Shift algorithm (ESRI 2014) using bands 4, 5, and 7, which were clear and informative
for segmenting the images. The segments of each unsupervised classification were then classified using
the well-known ISODATA unsupervised classification tool [37,38] in ArcGIS with 20 unsupervised
classes. Each of the resulting Events represented groups of pixels that mostly followed apparent LULC
distinctions in the landscape, with much of the speckling removed during the segmentation (Figure 3).
The degree to which a given unsupervised class was entirely within a single GlobCover LULC class
varied among unsupervised classes and across the landscape. Determining the amount and meaning
of this overlap was the work of the BULC-U algorithm. Events were then introduced in time order to
the BULC-U algorithm’s implementation in Earth Engine.

Table 1. Dates of Landsat images classified as Events in BULC-U.

Year Day

2008

1 June
3 July
19 July

4 August

2009

18 June
4 July
20 July

5 August
22 September

2010

17 May
2 June
20 July

6 September
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pixel as each Event is introduced into BULC-U. 

  

Figure 3. Three views of the study area on three different dates (18 June 2009, 5 August 2009,
and 22 September 2009), as shown in the unsupervised Landsat classifications used as Events by
BULC-U to refine the GlobCover 2009 classification. Left panel shows the complete study area with
a reference grid superimposed; right panels show sector B3 of each classification. To create Events,
each Landsat image was first segmented into relatively homogeneous regions. The band means of these
regions were then clustered with unsupervised classification into 20 categories for processing as Events
in BULC-U. The classifications are similar in that they are mostly successful in distinguishing LULC
categories, such as Forest and Agriculture, from each other. As described in the text, BULC-U uses the
degree and nature of the correspondence between GlobCover 2009 and each of these unsupervised
classes to inform the probability that each of these classes is each of the tracked LULC categories. Based
on this correspondence, BULC-U updates the probabilities of each class for each Landsat-sized pixel as
each Event is introduced into BULC-U.
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2.6. Validation

Validation of the GlobCover and BULC-U classification was done by a researcher unassociated
with this project, with experience classifying time series in Mato Grosso and accuracy assessment.
The simple LULC classification categories enabled straightforward comparison of the GlobCover and
BULC-U classifications while avoiding complex ontological questions about the specific meaning
of similar LULC types, and without being needlessly demanding of labeling accuracy in a 300-m
classification. We validated both GlobCover 2009 and BULC-U 2009 with the same protocol and classes.
The assessment was made by determining land cover from visual inspection of a clear Landsat 5 image
that was not used in the BULC-U process. The image was from 12 September 2010 and is shown at
various scales in Figure 4 and later. We identified 400 points across the study area, using 100 points each
for the Cropland, Forest, Shrubland and Water. To identify reference points for the Cropland, Forest,
and Shrubland classes, several thousand candidate reference points were first generated at random
locations across the study area using the Create Random Points tool in ArcGIS. Points were viewed on
the Landsat validation image and evaluated as being a member of one of the three terrestrial classes;
any points within 30 m of an edge of two LULC classes were discarded and the next random point
considered, until 100 points were found for each of the three terrestrial categories. Points that appeared
in locations that had been labeled as Mosaic/Unknown when preparing the reference classification
were discarded. Reference points for Water, which was a much rarer LULC class, were identified
using the mask of permanent water bodies from Hansen et al. [39]. We generated a large number of
candidate points randomly (again with the Create Random Points tool in ArcGIS) located within that
data set’s Water mask, retaining the first 100 that were identifiable as open water on the reference
Landsat image and more than 30 m from an edge of two LULC categories. A confusion matrix was then
created between the 400 reference points and both the GlobCover 2009 classification and the BULC-U
classification to determine standard assessment values of Overall Accuracy, Producer’s Accuracy,
and User’s Accuracy [40].
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Figure 4. Comparison of GlobCover 2009 (top), Landsat 5 (middle) and BULC-U 2009 (bottom),
showing the coarse resolution of GlobCover, the increased level of spatial detail available with Landsat,
and the resulting BULC-U 2009 image created by fusing Landsat imagery and GlobCover 2009. The
Landsat image is from 12 September 2010.
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3. Results

Compared to the GlobCover 2009 300-m classification on which it was based, the resulting
BULC-U 2009 classification represents LULC in the year 2009 (Figure 4) with a finer spatial resolution
and considerably greater accuracy in all four validation categories (Table 2).

Table 2. Accuracy assessments of GlobCover and BULC-U 2009.

Land Cover Classification Accuracy

GlobCover BULC-U 2009 Improvement

Overall 69.1% 97.5% 28.4%

Producer’s

Agriculture 71.0% 99.0% 28.0%
Forest 98.0% 98.0% 0.0%

Shrubland 67.0% 93.0% 26.0%
Water 40.8% 100.0% 59.2%

User’s

Agriculture 83.1% 95.2% 12.1%
Forest 59.5% 98.0% 38.5%

Shrubland 64.4% 97.9% 33.5%
Water 100.0% 99.0% -1.0%

The Overall Accuracy of the BULC-U 2009 classification (97.5%) is substantially higher than that
of the GlobCover 2009 classification (69.1%) in the study area (Table 2). Within individual classes,
the Producer’s Accuracy values of BULC-U 2009 were substantially higher than that of GlobCover 2009
for three of the LULC categories: 28.0% higher for Cropland, 26.0% higher for Shrubland, 59.2% higher
for Water.

Producer’s Accuracy of the Forest category was equally high (98%) in both classifications.
User’s Accuracy values of BULC-U 2009 were also high for each class in the BULC-U 2009 classification,
with all four accuracies above 95%. Meanwhile, through the incorporation of classifications based on
30-m imagery, the resulting BULC-U 2009 classification resolution appears as spatially refined as the
Landsat data itself, creating a classification sharpened by a factor of 10 when compared to GlobCover.

From its initialization as the GlobCover classification, the introduction of Events changed the
intermediate BULC-U classifications greatly over the first iterations and stabilized after ingesting
several unsupervised classifications (Figure 5). The progression from the GlobCover a priori map to
the BULC-U classification can be seen in Figure 6 and, in a closer view, in Figure 7, as well as the
Video Abstract. GlobCover’s fusion with the information from Landsat can be directly seen in those
figures as the eye moves from the GlobCover panel, to Iteration 1, then Iteration 2. The GlobCover
panel (Figures 6 and 7, upper left) is the best estimate of the area before any new data is considered.
Figures 6 and 7’s Iteration 1 panel is the best estimate by BULC-U of the area after the GlobCover
classification was fused with the first Event via BULC-U. Iteration 2 shows an intermediate product
that is a fused set based on GlobCover, Event 1, and Event 2. It mostly “looks like” the GlobCover
classification, but is in the process of sharpening the classification in light of both the GlobCover
reference and the Events—for example, reclassifying some of the pixels that will be eventually be
called Water in the finer-scale BULC-U classification after all Events have been processed.

The convergence of the process suggests a spin up time of about 6 Events, with minimal differences
thereafter. The convergence was evident both for the proportions (Figure 5) and, importantly, of the
maps themselves between iterations (Figure 6). In observation of the LULC maps at both large
(Figure 6) and much smaller (Figure 7) extents, later iterations were only slightly different from each
other, with fewer than 1% of the pixels changing between iterations after BULC-U had ingested
several Events.

Although the BULC-U and GlobCover 2009 classifications appear at first view to be quite similar,
BULC-U revealed that the GlobCover map substantially overestimated the amount of Forest and
under-reported Cropland in its assessment of the land use and land cover of the area (Table 3).
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Before the BULC-U refinement process began, 45.7% of the study area was estimated as Forest
by GlobCover, even without including the Forest implied by the Mosaic categories that we had
recategorized to be an unknown LULC. This contrasts with what is indicated (35.1%) by the more
accurate and finer-scale BULC-U 2009 classification, an estimate that is 23% lower. Closer inspection
indicates that much of what was called Forest in the GlobCover classification was either mislabeled
(as in sector B2), or, more often, labeled properly at the 300-m scale but contained substantial Cropland
within. The amount of Cropland was more than double that estimated by GlobCover (40.0% vs. 19.2%).
This very substantial difference is more than a distinction between LULC labels: even if all pixels in the
GlobCover mosaic categories had been Cropland in truth, the BULC-U estimate of Cropland was even
higher than what could be detected in the GlobCover reference set. In practice, the higher estimate of
Cropland came both from better labeling of some GlobCover Forest pixels (Figures 8 and 9) and from
splitting and labeling the 14% of the GlobCover 300-m classification that had been labeled as a Mosaic
category (see especially Figure 9).

Table 3. Proportions of each category compared between GlobCover 2009 and derived BULC-U 2009.
Note that GlobCover, a 300-m classification, had 14% of its area labeled as Mosaic classes that were
relabeled as NoData for the BULC-U process. BULC-U’s 30-m classification eliminated those mosaic
categories in favor of their component LULC classes.

Percentage Cover

GlobCover BULC-U 2009 Amount Loss/Gain

Forest 45.7% 35.1% −10.6%
Cropland 19.2% 40.0% 20.9%
Shrubland 20.8% 23.1% 2.3%

Water 0.2% 1.8% 1.6%
Mosaic 14.1% 0.0% −14.1%
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Figure 6. Progression from GlobCover 2009 LULC classification (upper left panel) toward the BULC-U
2009 classification. Shown are intermediate iterations of BULC-U as the map converges to the final
classification seen in Figure 4, lower panel. Lower right panel: percentage of differing LULC labels
between subsequent iterations of BULC-U, showing that iterations rapidly converge as new data is
added. Fewer than 1% of pixels are different between the later iterations and the final BULC-U 2009
classification, which is taken from Iteration 13 (Figure 4, lower panel). The dashed box superimposed
on Iteration 11’s classifications (with the upper right corner visible on B2) is seen in Figure 7.
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The area centers on the town of Querência, whose location is shown in the dashed box on Figure 6.
The BULC-U classification compares favorably with the Landsat image from 12 September 2010.

The other two categories of the BULC-U classification were also different than their counterparts
in the GlobCover base image. The amount of detected open Water increased by an order of magnitude,
from 0.2 to 1.8%, principally due to an increase in the number of pixels along river courses as the
resolution improved with the incorporation of 30-m data. For the Shrubland category, it has roughly
the same proportion in both the GlobCover and BULC-U classifications, although the location and
distribution of the pixels of the class were somewhat different. This appears to have been due
to the spatial configuration of Shrubland in the study area: With fewer mixed pixels than in the
GlobCover 2009 Forest class, the refinement of the coarser classification tended to resolve labeling
errors, rather than uncovering previously undetected pockets of Shrubland within 300-m GlobCover
pixels. This can be seen most clearly in Figure 10, where the large expanse of Shrubland is mostly
consistent between GlobCover and BULC-U. In most cases where Shrubland in the GlobCover category
was changed by BULC-U, (e.g., in the southwest portion of Figure 8), BULC-U labeled the area
Cropland. Meanwhile, some larger areas marked as Forest (e.g., in the northeast portion of Figure 10)
were found by BULC-U as being more properly labeled Shrubland. These two relatively independent
phenomena resulted in a Shrubland class that was more precise and accurate, with a similar amount
between the two classifications (Table 3).
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4. Discussion

The BULC-U 2009 classification represents a successful fusion of the high-quality labeling of the
GlobCover project with the finer-resolution spatial information available from Landsat-class imagery.
In this aspect, the BULC-U algorithm is reminiscent of the well-known pan-sharpening process, but for
sharpening classifications rather than raw imagery. The specific effect of BULC-U is to tap scene-wide
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pixel-label information that is encoded in the relatively coarse GlobCover 2009 information and fuse it
to higher-resolution spatial information taken from Landsat imagery. In this study, the spatial structure
was interpreted using multiple Landsat color bands; although we have not attempted it here, it is
conceivable that an even finer-scale product could be attempted by fusing GlobCover imagery with
pan-sharpened Landsat or Sentinel-2 data.

4.1. Accuracy Improvements from BULC-U

The accuracy of the final BULC-U land cover product is considerably higher when compared to
that of the original GlobCover 2009 classification from which it was built (Table 2). The improvement
in accuracy appears to be due to two factors: First, the BULC-U algorithm was able to effectively
‘repair’ many inaccurate GlobCover 300-m scale pixel classification labels. In ingesting information
from an Event, BULC-U treats the pixels of a given unsupervised cluster as likely being from a single
LULC class. Over the course of ingesting the Events, this allowed pixels with incorrect labels in
GlobCover to be gradually labeled like other pixels that shared their spectral characteristics. BULC-U
also had a similar effect for areas labeled as Mosaic in GlobCover and marked as NoData by us
when preparing the BULC-U run. These areas were gradually labeled like other pixels that shared
their spectral characteristics at the finer 30-m scale. Second, the improved resolution of the Events
used in this demonstration of BULC-U also played a role in the increased accuracy, by allowing
finer-scale delineation of land cover within pixels whose LULC was heterogeneous at the 300-m scale.
This was particularly relevant for 300-m pixels labeled by GlobCover as “Cropland” that contained,
say, 80% Cropland and 20% Forest.

The specific ways that BULC-U improved accuracy are illustrated by a closer view of the
study area in the GlobCover and BULC-U classifications, in sectors B5, B2, and E5 (Figures 8–10).
Sector B5, which GlobCover had classified as predominantly Forest (with some Shrubland), BULC-U
classified as predominantly Shrubland (Figure 8). BULC-U correctly identified most of Sector B2 as
Cropland (Figure 9), including a substantial area that had been misclassified Shrubland or Forest in
GlobCover. BULC-U also labeled much of the central part of B2 as more highly fragmented forest,
and properly classified the GlobCover’s Mosaic classes. GlobCover 2009 classified most of E5 as Forest,
while BULC-U identified it as being predominantly Shrubland (Figure 10).

4.2. Fusing Information from Different Sensors and Projects

The BULC-U algorithm allows users to create and update land cover classifications using the
same legend as a previously created classification, but with higher resolution and, at least in the
case illustrated here, considerably improved accuracy. Using BULC-U it should be possible to refine
the GlobCover classification elsewhere or to downscale other high-quality coarse classifications.
Once a classification is refined to a sharper resolution it should be possible, as in Cardille & Fortin
(2016), to roll the classification forward in time to show updated land cover at finer resolution in areas
that are changing—or backward to show LULC history in earlier periods. Although we have used
segmented ISODATA-classified Landsat data here to drive BULC-U, the algorithm can be driven with
classifications created by any viable method. As a result, other sensors (e.g., Sentinel-2) could also be
included alongside Landsat to refine and update a BULC-U classification.

4.3. GlobCover 2009 as a High-Quality Data Source

The comparison between GlobCover 2009 and BULC-U 2009 should not be misconstrued as
criticism of any aspect of the GlobCover approach or result. In fact, the refinement described here
would not have been possible without the GlobCover 2009 serving as a base. The global classification
GlobCover 2009 is a source of high-quality global LULC data that, although imperfect at a fine scale,
provided a statistical and spatial framework that could be refined by BULC-U to create an even
higher-quality classification of the study area. GlobCover may well be the best product available for
some locations, but even if its resolution is coarse for a given application, it can still be useful. Here,
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it is valuable in two roles: First, as the reference classification against which to compare unsupervised
classifications; and second, as the a priori estimate of LULC for the study area, before the incorporation
of Landsat-based Events. As seen in this study, although GlobCover 2009 was not correct on a
pixel-by-pixel basis, and was substantially incorrect in its assessment of LULC proportions, it was
sufficiently correct to be used as a reference to create probabilities of each class for BULC-U.

4.4. Number of Unsupervised Classes for BULC-U

The number of classes in the unsupervised Event classifications must be identified by the user of
BULC-U and adapted to the distinct spectral classes in the satellite image and the number of classes
being tracked. In this study, choosing the number of classes to create the Events in BULC-U was done
using trial and error. During the stage of determining how many classes to use for Events, we asked
whether: (a) for each of the unsupervised classes, each segment of a given class appeared to be the
same LULC class in the Landsat image; and (b) the number of unsupervised classes was not excessively
high to create instability in the transition matrices used by BULC. In our experiments, a too-large
number of classes caused stray errors to appear unacceptably often in the output BULC-U classification,
(e.g., stray clouds were displayed as Water). An Event classification with a too-small number of classes
(e.g., 5 or fewer unsupervised classes) caused the resulting BULC-U classification to be less accurate,
due to Event classes spanning multiple base classification classes—for example, containing both Forest
and Shrubland. We advise that other users of BULC-U start with 20 unsupervised classes in a process
of trial and error for creating Events.

4.5. Strengths of the BULC-U Method

The BULC-U methodology presents a considerable improvement to the overall BULC process,
substantially reducing the time needed to produce an accurate time series. The original BULC
algorithm required supervised classifications having the same legends for each Event, a process that
demanded substantial amounts of human intervention, knowledge of the study area, and processing
time. The adaptation of BULC to use unsupervised classifications allows the rapid creation of Events
needed for BULC’s Bayesian logic, by allowing the spectral characteristics of the imagery to directly
drive the resulting time-series classification. The ease with which BULC-U generated a plausible
classification can be a useful complement or starting point for more labor-intensive efforts like
MapBiomas [41], which leverage a large amount of regional expert opinion and close observation to
produce classifications with more detailed classes, though with substantially more effort.

One possible fruitful use of BULC-U is to update classifications to different time periods than
that of the base image. Because most of a sufficiently large landscape does not change across the
span of a few years or even decades, it should be possible to use the GlobCover 2009 classification
to update classifications to years other than 2009. Because the vast majority of LULC pixels would
not have changed their proper label in the intervening year, the same process described here could be
able to be applied to earlier or later images. In the simplest case, there is nothing in this methodology
that should inhibit the use of GlobCover 2009 to inform a BULC-U built using 2011 or 2012 Landsat
imagery. Using this same logic, it is worth exploring BULC-U’s potential to “leapfrog” to earlier dates
of interest—2002 or 1986, for example. Although this is outside the scope of this manuscript, exploring
the limits of that hypothesis will be the subject of future work.

5. Conclusions

Using unsupervised segmented Landsat classifications and the BULC-U algorithm, we were able
to create a spatially refined map that was consistent with, but considerably improved from, the LULC
labeling of the GlobCover 2009 classification. Although this technique has been shown here using
Landsat 5 images and GlobCover 2009, the BULC-U algorithm is robust and general enough to use
any classification legend and any satellite data. Future studies with BULC-U could include data from
multiple sensors, as was done by Cardille & Fortin [34] and in review by Fortin et al. [42]. Additionally,
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this study used the unsupervised ISODATA classification algorithm to produce Events, and future
work might compare and contrast the influence of other classification algorithms on the resulting
BULC-U results.

A significant strength of the BULC-U process is that the resulting product is not entirely new,
but is instead built on a foundation of an older expert-created classification. BULC-U uses data that
may not have been readily available at the time of the original LULC classification to create a hybrid
product with finer resolution and greater accuracy that is still compatible with the original classification.
Those who have been using global classifications can continue to do so (with the same categories as
before, if desired) with a finer-resolution data set that is highly consistent with the coarser source.
It also opens the door to using accurate older, region-specific classifications to create new or extended
time series.

As the era of open data continues, much more satellite data are available to researchers than even
in the very recent past. At the same time, researchers now have decades of experience using existing
classifications in a range of studies, including LULC change simulation models, carbon accounting
analyses, and hydrologic studies. As more and more data emerges from archives for researchers,
there will be a high priority on creating new data products that extend existing work but preserve data
continuity. As a straightforward process that requires only a modest amount of expert remote sensing
knowledge, BULC-U may be useful for a large set of applications.

Author Contributions: J.L. initiated this work as part of his MS thesis at McGill University, and did the initial
development and coding of BULC-U. J.L. produced the first report of the method. M.T.C. and J.A.C. redeveloped
the draft for publication with J.L., including figure/table design and execution. All three authors contributed
to revisions.

Funding: This research was funded by a Google Earth Engine Research Award to develop BULC-U in
Earth Engine.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Brawn, J.D. Implications of agricultural development for tropical biodiversity. Trop. Conserv. Sci. 2017, 10.
[CrossRef]

2. DeFries, R.S.; Rudel, T.; Uriarte, M.; Hansen, M. Deforestation driven by urban population growth and
agricultural trade in the twenty-first century. Nat. Geosci. 2010, 3, 178–181. [CrossRef]

3. Costa, M.H.; Botta, A.; Cardille, J.A. Effects of large-scale changes in land cover on the discharge of the
Tocantins River, Southeastern Amazonia. J. Hydrol. 2003, 283, 206–217. [CrossRef]

4. Cardille, J.A.; Bennett, E.M. Tropical teleconnections. Nat. Geosci. 2010, 3, 154–155. [CrossRef]
5. Turner, B.L., 2nd; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental

change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [CrossRef] [PubMed]
6. Budiharta, S.; Meijaard, E.; Erskine, P.D.; Rondinini, C.; Pacifici, M.; Wilson, K.A. Restoring degraded tropical

forests for carbon and biodiversity. Environ. Res. Lett. 2014, 9, 114020. [CrossRef]
7. Soares-Filho, B.; Rajao, R.; Macedo, M.; Carneiro, A.; Costa, W.; Coe, M.; Rodrigues, H.; Alencar, A. Cracking

Brazil’s Forest Code. Science 2014, 344, 363–364. [CrossRef] [PubMed]
8. Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R.A. Tropical forests are a net

carbon source based on aboveground measurements of gain and loss. Science 2017, 358, 230–233. [CrossRef]
[PubMed]

9. Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.;
Helder, D.; Helmer, E.; et al. Free access to Landsat imagery. Science 2008, 320, 1011. [CrossRef] [PubMed]

10. Coppin, P.R.; Bauer, M.E. Digital change detection in forest ecosystems with remote sensing imagery.
Remote Sens. Rev. 1996, 13, 207–234. [CrossRef]

11. Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land cover 2.0. Int. J. Remote Sens. 2018, 39,
4254–4284. [CrossRef]

http://dx.doi.org/10.1177/1940082917720668
http://dx.doi.org/10.1038/ngeo756
http://dx.doi.org/10.1016/S0022-1694(03)00267-1
http://dx.doi.org/10.1038/ngeo810
http://dx.doi.org/10.1073/pnas.0704119104
http://www.ncbi.nlm.nih.gov/pubmed/18093934
http://dx.doi.org/10.1088/1748-9326/9/11/114020
http://dx.doi.org/10.1126/science.1246663
http://www.ncbi.nlm.nih.gov/pubmed/24763575
http://dx.doi.org/10.1126/science.aam5962
http://www.ncbi.nlm.nih.gov/pubmed/28971966
http://dx.doi.org/10.1126/science.320.5879.1011a
http://www.ncbi.nlm.nih.gov/pubmed/18497274
http://dx.doi.org/10.1080/02757259609532305
http://dx.doi.org/10.1080/01431161.2018.1452075


Remote Sens. 2018, 10, 1455 20 of 21

12. Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free
data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10.
[CrossRef]

13. Zhu, Z. Change detection using Landsat time series: A review of frequencies, preprocessing, algorithms,
and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [CrossRef]

14. Verbesselt, J.; Zeileis, A.; Herold, M. Near real-time disturbance detection using satellite image time series.
Remote Sens. Environ. 2012, 123, 98–108. [CrossRef]

15. Giri, C.; Pengra, B.; Long, J.; Loveland, T.R. Next generation of global land cover characterization, mapping,
and monitoring. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 30–37. [CrossRef]

16. Yüksel, A.; Akay, A.E.; Gundogan, R. Using ASTER imagery in land use/cover classification of eastern
Mediterranean landscapes according to CORINE land cover project. Sensors 2008, 8, 1237–1251. [CrossRef]
[PubMed]

17. Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.;
Laberinti, P.; Martimort, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services.
Remote Sens. Environ. 2012, 120, 25–36. [CrossRef]

18. Li, J.; Roy, D.P. A global analysis of Sentinel-2a, Sentinel-2b and Landsat-8 data revisit intervals and
implications for terrestrial monitoring. Remote Sens. 2017, 9, 902. [CrossRef]

19. Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a
global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens.
2000, 21, 1303–1330. [CrossRef]

20. Tuanmu, M.N.; Jetz, W. A global 1-km consensus land-cover product for biodiversity and ecosystem
modelling. Glob. Ecol. Biogeogr. 2014, 23, 1031–1045. [CrossRef]

21. Bicheron, P.; Amberg, V.; Bourg, L.; Petit, D.; Huc, M.; Miras, B.; Brockmann, C.; Hagolle, O.; Delwart, S.;
Ranera, F.; et al. Geolocation Assessment of MERIS GlobCover Orthorectified Products. IEEE Trans. Geosci.
Remote Sens. 2011, 49, 2972–2982. [CrossRef]

22. Bicheron, P.; Henry, C.; Bontemps, S.; Partners, G. Globcover Products Description Manual; MEDIAS-France:
Toulouse, France, 2008; p. 25.

23. Bontemps, S.; Defourny, P.; Bogaert, E.; Arino, O.; Kalogirou, V.; Perez, J. GLOBCOVER 2009–Products
Description and Validation Report; Université catholique de Louvain and European Space Agency:
Louvain-la-Neuve, Belgium, 2011.

24. De Sy, V.; Herold, M.; Achard, F.; Beuchle, R.; Clevers, J.; Lindquist, E.; Verchot, L. Land use patterns
and related carbon losses following deforestation in South America. Environ. Res. Lett. 2015, 10, 124004.
[CrossRef]

25. Hu, S.; Niu, Z.; Chen, Y.; Li, L.; Zhang, H. Global wetlands: Potential distribution, wetland loss, and status.
Sci. Total Environ. 2017, 586, 319–327. [CrossRef] [PubMed]

26. Sloan, S.; Jenkins, C.N.; Joppa, L.N.; Gaveau, D.L.; Laurance, W.F. Remaining natural vegetation in the global
biodiversity hotspots. Biol. Conserv. 2014, 177, 12–24. [CrossRef]

27. Fritz, S.; See, L.; McCallum, I.; You, L.; Bun, A.; Moltchanova, E.; Duerauer, M.; Albrecht, F.; Schill, C.;
Perger, C. Mapping global cropland and field size. Glob. Chang. Biol. 2015, 21, 1980–1992. [CrossRef]
[PubMed]

28. Liu, J.; Liu, M.; Tian, H.; Zhuang, D.; Zhang, Z.; Zhang, W.; Tang, X.; Deng, X. Spatial and temporal patterns
of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens. Environ. 2005,
98, 442–456. [CrossRef]

29. Seppälä, S.; Henriques, S.; Draney, M.L.; Foord, S.; Gibbons, A.T.; Gomez, L.A.; Kariko, S.;
Malumbres-Olarte, J.; Milne, M.; Vink, C.J. Species conservation profiles of a random sample of world
spiders I: Agelenidae to Filistatidae. Biodivers. Data J. 2018. [CrossRef] [PubMed]

30. Truong, T.T.; Hardy, G.E.S.J.; Andrew, M.E. Contemporary remotely sensed data products refine invasive
plants risk mapping in data poor regions. Front. Plant Sci. 2017, 8, 770. [CrossRef] [PubMed]

31. Wilting, A.; Cheyne, S.M.; Mohamed, A.; Hearn, A.J.; Ross, J.; Samejima, H.; Boonratana, R.; Marshall, A.J.;
Brodie, J.F.; Giordiano, A. Predicted distribution of the flat-headed cat Prionailurus planiceps (Mammalia:
Carnivora: Felidae) on Borneo. Raffles Bull. Zool. 2016, 33, 173–179.

32. Schulp, C.J.; Alkemade, R. Consequences of uncertainty in global-scale land cover maps for mapping
ecosystem functions: An analysis of pollination efficiency. Remote Sens. 2011, 3, 2057–2075. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2012.01.010
http://dx.doi.org/10.1016/j.isprsjprs.2017.06.013
http://dx.doi.org/10.1016/j.rse.2012.02.022
http://dx.doi.org/10.1016/j.jag.2013.03.005
http://dx.doi.org/10.3390/s8021287
http://www.ncbi.nlm.nih.gov/pubmed/27879763
http://dx.doi.org/10.1016/j.rse.2011.11.026
http://dx.doi.org/10.3390/rs9090902
http://dx.doi.org/10.1080/014311600210191
http://dx.doi.org/10.1111/geb.12182
http://dx.doi.org/10.1109/TGRS.2011.2122337
http://dx.doi.org/10.1088/1748-9326/10/12/124004
http://dx.doi.org/10.1016/j.scitotenv.2017.02.001
http://www.ncbi.nlm.nih.gov/pubmed/28190574
http://dx.doi.org/10.1016/j.biocon.2014.05.027
http://dx.doi.org/10.1111/gcb.12838
http://www.ncbi.nlm.nih.gov/pubmed/25640302
http://dx.doi.org/10.1016/j.rse.2005.08.012
http://dx.doi.org/10.3897/BDJ.6.e23555
http://www.ncbi.nlm.nih.gov/pubmed/29725239
http://dx.doi.org/10.3389/fpls.2017.00770
http://www.ncbi.nlm.nih.gov/pubmed/28555147
http://dx.doi.org/10.3390/rs3092057


Remote Sens. 2018, 10, 1455 21 of 21

33. Schulp, C.J.; Alkemade, R.; Klein Goldewijk, K.; Petz, K. Mapping ecosystem functions and services in
Eastern Europe using global-scale data sets. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2012, 8, 156–168.
[CrossRef]

34. Cardille, J.A.; Fortin, J.A. Bayesian updating of land-cover estimates in a data-rich environment.
Remote Sens. Environ. 2016, 186, 234–349. [CrossRef]

35. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine:
Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

36. Blaschke, T.; Burnett, C.; Pekkarinen, A. Image segmentation methods for object-based analysis and
classification. In Remote Sensing Image Analysis: Including the Spatial Domain; De Jong, S.M., Van der Meer, F.D.,
Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 211–236.

37. Ball, G.H.; Hall, D.J. ISODATA, A Novel Method of Data Analysis and Pattern Classification; Stanford Research
Institute: Menlo Park, CA, USA, 1965.

38. Richards, J.A.; Jia, X. Remote Sensing Digital Image Analysis; Springer: Berlin, Germany, 2006; p. 439.
39. Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.;

Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-Century forest cover
change. Science 2013, 342, 850–853. [CrossRef] [PubMed]

40. Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data.
Remote Sens. Environ. 1991, 37, 35–46. [CrossRef]

41. Souza, C.; Azevedo, T. MapBiomas General Handbook; MapBiomas: São Paulo, Brazil, 2017; pp. 1–23.
42. Fortin, J.A.; Cardille, J.A.; Perez, E. Multi-sensor detection of forest-cover change across five decades in Mato

Grosso, Brazil. Remote Sens. Environ.. In Revision.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/21513732.2011.645880
http://dx.doi.org/10.1016/j.rse.2016.08.021
http://dx.doi.org/10.1016/j.rse.2017.06.031
http://dx.doi.org/10.1126/science.1244693
http://www.ncbi.nlm.nih.gov/pubmed/24233722
http://dx.doi.org/10.1016/0034-4257(91)90048-B
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Study Area 
	LULC Categories 
	BULC-U Algorithm 
	GlobCover 2009 
	Landsat Imagery 
	Validation 

	Results 
	Discussion 
	Accuracy Improvements from BULC-U 
	Fusing Information from Different Sensors and Projects 
	GlobCover 2009 as a High-Quality Data Source 
	Number of Unsupervised Classes for BULC-U 
	Strengths of the BULC-U Method 

	Conclusions 
	References

