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Abstract: Recent research has shown that spatial-spectral information can help to improve the
classification of hyperspectral images (HSIs). Therefore, three-dimensional convolutional neural
networks (3D-CNNs) have been applied to HSI classification. However, a lack of HSI training
samples restricts the performance of 3D-CNNs. To solve this problem and improve the classification,
an improved method based on 3D-CNNs combined with parameter optimization, transfer learning,
and virtual samples is proposed in this paper. Firstly, to optimize the network performance,
the parameters of the 3D-CNN of the HSI to be classified (target data) are adjusted according
to the single variable principle. Secondly, in order to relieve the problem caused by insufficient
samples, the weights in the bottom layers of the parameter-optimized 3D-CNN of the target data can
be transferred from another well trained 3D-CNN by a HSI (source data) with enough samples
and the same feature space as the target data. Then, some virtual samples can be generated
from the original samples of the target data to further alleviate the lack of HSI training samples.
Finally, the parameter-optimized 3D-CNN with transfer learning can be trained by the training
samples consisting of the virtual and the original samples. Experimental results on real-world
hyperspectral satellite images have shown that the proposed method has great potential prospects in
HSI classification.

Keywords: remote sensing image; convolutional neural network; optimal parameter; lack of sample;
tensor analysis

1. Introduction

Hyperspectral images (HSIs) containing hundreds of spectral channels [1,2] can be represented as
three-dimensional (3D) tensors [3,4] and have been investigated in many applications [5], for example
agriculture [6,7], resource management [8,9], environmental monitoring [10–12] and so on. Land cover
classification is one of the significant methods of mining information from HSIs and feature extraction
is an important step in classification [13]. However, most of the traditional methods extract handcrafted
features from HSIs in a shallow manner [14]. Therefore, effective feature extraction is one of the key
factors to improve HSI classification [15–18].

Recently, as an important branch of machine learning [19–23], deep learning has attracted much
interest due to its strong capabilities in analysis and feature extraction [24,25]. By extracting features
of the input data from the bottom to the top of the network, deep-learning models can form the
high-level abstract features suitable for pattern classification [26]. Among numerous deep-learning
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models, a convolutional neural network (CNN) has a relatively small number of weights owing to local
connections and sharing weights [27]. Moreover, the multidimensional tensor data, for instance HSIs,
can be directly input into 3D convolutional neural networks (3D-CNNs), which helps to preserve the
original relevant information of the data and avoids complex data reconstruction [28–30]. Therefore,
3D-CNNs have been introduced to extract high-level invariant features and improve the classification
performance of HSIs [31–33].

Sufficient training samples guarantee the performance of the deep model; however, labeled
samples in HSIs are always limited [34–37]. Some representative methods, for example
transfer learning [38,39], virtual samples [32], manifold regularization based on semi-supervised
leaning [35–37], and so on, can help to solve the problem of limited samples [40–42]. The former two
methods are suited for HSI data structures, the latter being more suitable for ordinary images.
We assume that there is another HSI (source data) which has enough samples and the same feature
space as the HSI to be classified (target data). Then, knowledge transfer can be made from the source
data to the target domain to improve the network performance by avoiding rather expensive data
labeling efforts [43]. If the source data is absent, as a pseudo-sample transformed from the original
sample of the target data, virtual samples are also a solution to make up for the lack of HSI samples [44].

In addition, the network performance of 3D-CNNs can be influenced by the parameter settings.
Therefore, in this paper, to solve the problem of insufficient samples and to further improve the
classification of HSIs, a parameter-optimized 3D-CNN combined with transfer learning and virtual
samples (named the PO-3DCNN-TV method hereinafter) is proposed. Firstly, a 3D-CNN of the
target data could be built and its parameters adjusted according to the single variable principle.
Secondly, to improve the network computing efficiency and to alleviate the problem of a lack of
samples, transfer learning is introduced to the network and the weights in the bottom layers of the
parameter-optimized 3D-CNN of the target data can be transferred from another well trained 3D-CNN
by the source data. Then, the technology of virtual samples can be applied to further solve the problem
of inadequate HSI samples. Finally, the 3D-CNN with optimized parameters and transferred weights
can be trained by the training samples, mixing the virtual samples with the original samples in the
target data.

The remainder of this paper is organized as follows: the three-dimensional convolutional
neural network is introduced in Section 2; Section 3 presents a detailed description of the proposed
classification method; some experimental results are discussed in Section 4; and Section 5 concludes
this paper.

2. Overview of Three-Dimensional Convolutional Neural Networks

CNN is one of the most efficient methods of big data classification. Two-dimensional (2D) CNNs
mainly capture features from the spatial domain, but 3D-CNNs could help to obtain spatial-spectral
features of tensors [45].

A typical 3D-CNN is mainly composed of an input layer, a convolution layer, a pooling layer,
a fully-connected layer and an output layer as shown in Figure 1.
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The convolutional layer is the most important part of the CNN structure. Convolution operations
are generally used to extract features and introduce some non-linear factors to the network through
activation functions. Through 3D convolutional kernels, the input data of the HSI tensor containing
spatial and spectral dimensions can achieve the spatial-spectral feature mapping as shown in Figure 2.
The value at position (α, β, γ) on the m-th feature map in the l-th layer can be given by [46]:

vαβγ
lm = f (∑

p

Q1−1

∑
q1=0

Q2−1

∑
q2=0

Q3−1

∑
q3=0

wq1q2q3
lmp v(α+q1)(β+q2)(γ+q3)

(l−1)m + κlm) (1)

where l represents the layer in which the current operation is located, vαβγ
lm represents the output at

the position (α, β, γ) in the m-th feature map of the layer l, κ is the offset, f is the activation function,
p represents a set of features connected to the current feature map on the l-1 layer, wq1q2q3

lmp is the weight
value at the position (q1, q2, q3) connected to the m-th feature map, and Q1, Q2 and Q3 are the height,
width and depth of the kernel, respectively.
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Overfitting is one of the frequently encountered problems in CNNs, especially when the training
samples are insufficient. To prevent complex co-adaptations, dropouts can be used to reduce overfitting
by randomly omitting some hidden units from the network [47]. Furthermore, rectified linear units
(ReLUs) which can avoid vanishing gradients or exploding gradient problems could be used as the
activation function [48].

Pooling layers can subsample the feature maps and reduce the number of network parameters.
To better retain the texture information of images, max-pooling [49] is used in this paper.

At the end of the 3D-CNN, a softmax regression can be set as a classifier to convert the network
output into a probability distribution:

OUTψ = softmax(Oψ) =
eOψ

Φ
∑

ϕ=1
eOϕ

(2)

where OUTΨ with a value between 0 and 1 is the output after the softmax classifier, Ψ is the actual
output class of the sample after passing through the network, Oϕ (ϕ = 1, 2, . . . Φ) is the output after
convolution and pooling layers, and Φ means the total class number of the target data.
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3. Improved Classification Method Based on a Parameter-Optimized Three-Dimensional
Convolutional Neural Network (3D-CNN) Combined with Transfer Learning and Virtual
Samples

Because the performance of a 3D-CNN could be influenced by its parameter settings, a parameter
optimization is proposed in this paper. To solve the problem of limited training samples and to further
improve the classification accuracy, an improved method based on a parameter-optimized 3D-CNN
combined with transfer learning and virtual samples is also proposed in our HSI classification.

3.1. Parameter-Optimized 3D-CNN (PO-3DCNN)

If the parameter setting of the 3D-CNN is not appropriate, a local minimum loss could be reached
and the performance of the network would be greatly degraded [50]. Furthermore, the deeper the
network, the more parameters there are. Generally, the setting of network parameters is usually to
select the default values or empirical values [51]. In this paper, to optimize the network performance,
the parameters of the 3D-CNN are adjusted in turn according to the single variable principle on the
basis of experimental results, and the optimal parameters are selected according to the overall accuracy
(OA) of classification. Moreover, dropout is introduced in the process of parameter optimization to
reduce overfitting.

Firstly, a 3D tensor with a size of w × w × I3 (w × w and I3 being the spatial and the spectral sizes
respectively) around each sample in the HSI is selected as one of the inputs of the 3D-CNN [52,53].

Secondly, a 3D-CNN with two convolution layers, two pooling layers, and one fully-connected
layer can be constructed as an initial network, and softmax regression is used as a classifier.

Thirdly, nine parameters are optimized in this paper: input size, network structure, batch size,
number of units in the fully-connected layer, activation function, pooling method, the number of
convolutional kernels, the number of epochs, and dropouts. The input size is determined by the size of
the input sample; the network structure is mainly affected by the depth of the network and parameters
of convolution kernels; during each of the training processes, a part of the training data called batch
data is usually used to train the model and update the weights, and the number of samples contained
in batch data is called batch size; a process of all the samples in the training data set passing through the
network is called one epoch. When one of the nine parameters is being adjusted, the other parameters
remain unchanged. The parameters that have been adjusted will be kept at the optimal value. Because
most of the references of HSI classification, including the ENVI (Environment for Visualizing Images)
software used by remote-sensing professionals and image analysts, have chosen the OA expression
as [54], in this paper, in order to facilitate to comparison with the results in other works, the 3D-CNN
parameters are optimized in turn according to the single variable principle based on the OA value
defined as [54]:

OA =
1
λ

R

∑
r=1

arr (3)

where λ is the total number of samples, and arr is the number of test samples that actually belong to
class Sr (r = 1, 2, . . . R where R is the total number of classes in the HSI) and are also classified into Sr.

Finally, the trained 3D-CNN with the optimal parameters could be used for HSI classification.
However, the limited number of labeled samples in hyperspectral data has a negative impact on

the classification results.

3.2. Parameter-Optimized 3D-CNN with Transfer Learning (PO-3DCNN-TL)

Obtaining good network performance under the condition of insufficient samples is important
for HSI classification. If there is another HSI (source data) with enough samples and the same feature
space as the HSI to be classified (target data), then some weights can be transferred from the network
of the source data to that of the target data and fewer training samples will be needed for the network
of the target data.
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As mentioned in Section 3.1, the initial values of the parameters can also affect the network
performance of the 3D-CNN for transfer learning. Therefore, if the 3D-CNN used for transfer learning
can be initialized by its optimal parameters, the transferred weights would be more conducive to
improving the classification compared with those in a randomly initialized network. This inference has
been confirmed by the quantitative experimental results which are not included in the experimental
section due to the size and focus of this paper. On the other hand, if the transfer learning was
performed before parameter optimization, the classification results were not ideal due to the changes of
the transferred weights after parameter optimization having a negative influence on the classification.

Therefore, the flow chart of the parameter-optimized 3D-CNN with transfer learning
(PO-3DCNN-TL) is illustrated in Figure 3 where Ck (k = 1, 2) represents the k-th convolution layer,
Pk (k = 1, 2) means the k-th pooling layer and F is the abbreviation of the fully-connected layer.
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Step 1: a 3D-CNN model of the target data is constructed and its parameters can be optimized
according to Section 3.1.

Step 2: another 3D-CNN which has the same framework as that in Step 1 can be constructed and
initialized by the optimal parameters obtained in Step 1.

Step 3: the 3D-CNN in Step 2 could be pre-trained by sufficient training samples from the source
data. High-level features can be extracted after several convolution and pooling layers.

Step 4: knowledge transfer can be made: the weights in convolutional and pooling layers in the
3D-CNN in Step 1 can be transferred from the same layers of the 3D-CNN in Step 2.

Step 5: to further optimize the network performance, the 3D-CNN in Step 1 will be fine-tuned by
the training samples from the target data.

3.3. Virtual Samples

Transfer learning can alleviate the problem of insufficient samples and significantly improve
the training efficiency only when the source data are available. If the source data are absent, as a
pseudo-sample transformed from the original samples of the image, a virtual sample can also help to
solve the problem of insufficient HSI samples. After mixing the virtual samples with the original ones,
the overall number of training samples can be greatly increased.

If the original samples in the HSI are presented as a 3D tensor ϑ with a size of w × w × I3,
the virtual sample v can be defined as [32]:

v = ηϑ + n (4)

where η is the coefficient value close to 1 and can help to reduce the difference between the virtual
samples and the original ones, and n denotes the Gaussian noise with zero mean and is used to
simulate the interference of the external environment to the samples.



Remote Sens. 2018, 10, 1425 6 of 16

3.4. Parameter-Optimized 3D-CNN Combined with Transfer Learning and Virtual Samples (PO-3DCNN-TV)

Since both transfer learning and virtual samples can make contributions to solve the problem
of limited HSI training samples, a hybrid method named PO-3DCNN-TV which combines 3D-CNN,
parameter optimization, transfer learning, and virtual samples, is proposed in this paper in order to
further improve HSI classification. Figure 4 shows the procedure of the proposed PO-3DCNN-TV
method. In Figure 4, a stadium box indicates the beginning and ending of a process, a parallelogram
box denotes the process of inputting and outputting data, a rectangular box represents a processing
step or a set of operations, and a diamond box shows a conditional operation determining which one
of the two paths the program will take.
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First of all, based on the original samples of the target data and the OA values of classification,
the parameters of the 3D-CNN constructed for the target data can be adjusted to obtain the optimal
values as explained in Section 3.1.

Meanwhile, some virtual samples are generated from the original samples and then these two
together form the training samples as described in Section 3.3.

Then, another 3D-CNN with the same structure as the network of the target data can be
constructed and initialized by the optimal parameters obtained above. It can be trained by the source
data to improve the network performance. When the network performance is stable, the weights
in the convolution and the pooling layers can be transferred to the corresponding layers in the
parameter-optimized 3D-CNN of the target data as mentioned in Section 3.2.
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At last, the training samples consisting of the original and the virtual ones can help to pre-train
and fine-tune the 3D-CNN model of the target data after parameter optimization and transfer learning,
then the results of the improved classification can be obtained.

4. Experiments

In order to evaluate the performance of the proposed classification method, some typical
classification methods, such as support vector machines (SVM) [55,56], deep belief networks
(DBNs) [57] and 2D-CNNs are compared in the classification experiment of a real-world HSI. To obtain
better classification results of 2D-CNNs, the parameter optimization is also introduced to this model in
this paper.

4.1. Real-World Hyperspectral Image (HSI) Data Sets

Two widely used hyperspectral data sets, i.e., the University of Pavia (PaviaU) shown in Figure 5a
and the center of Pavia (PaviaC) city shown in Figure 5b are used in the experiment.

Both HSIs are acquired by the Reflective Optics System Imaging Spectrometer (ROSIS) sensor
during a flight campaign over the city of Pavia, northern Italy, which makes the disparity between
the PaviaU HSI (target data) and the PaviaC HSI (source data) become small. For the Pavia data
set, there are strong bands and weak bands; some bands have a higher signal-to-noise level, some
bands have a lower signal-to-noise level. In addition, some bands are degraded by random noise,
some bands may suffer from residual fixed pattern phenomena, and atmospheric effects may have a
different visibility and impact in many bands. Some low-quality bands could be visibly distinguished
and should simply be disregarded. Some other noisy bands can be found by denoising algorithms [58].
Therefore, the remaining number of spectral bands is 103 for the PaviaU HSI and 102 for the PaviaC HSI.
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In order to further evaluate the data quality of the two HSIs in different bands, a Frobenius norm
(F-norm) [59] is introduced:

‖I(:, :, i3)‖F =

(
I1

∑
i1=1

I2

∑
i2=1
|I(i1, i2, i3)|2

) 1
2

(5)

where I is a tensor consisting of I1 rows, I2 columns and I3 spectral bands with i1 = 1, . . . , I1, i2 = 1,
. . . , I2 and i3 = 1, . . . , I3. The smaller the corresponding F-norm value of the image, the lower the
corresponding energy, and in consequence, the less useful the information contained. According to
Equation (5), the square of the F-norm of each band in two HSIs is shown in Figure 6.
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Figure 6. Square of the Frobenius norm (F-norm) of Pavia city HSIs. (a) PaviaU HSI. (b) PaviaC HSI.

According to Figure 6, the square of F-norm of two HSIs in each band is acceptable; therefore,
the above 103 bands of the PaviaU HSI and 102 bands of the PaviaC HSI could all be kept in the
experiment. Furthermore, in order to maintain the same number of bands in the two HSIs for transfer
learning, the 103-rd spectral dimension of the PaviaC HSI is represented by its original data from the
102-nd dimension.

Taking into account the computational efficiency and the 9 classes contained in the distributed
image, one part of the PaviaU (part-PaviaU) HSI is selected as the target data in the experiment. All 9
classes are in the part-PaviaU HSI with a size of 100 × 160 × 103 pixels as shown in Figure 7a,b is its
ground truth.
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Figure 7. (a) Part-PaviaU HSI. (b) Ground truth.

In this paper, 10% of the samples of each class from the part-PaviaU HSI are randomly chosen
to train the network and the remaining 90% are for testing. The total number of samples, training
samples and testing samples for each class are shown in Table 1.

Table 1. Land-cover classes and numbers of samples in the part-PaviaU HSI.

No Color Class Total Testing Training

1 Asphalt 271 27 244
2 Meadows 277 28 249
3 Gravel 333 33 300
4 Trees 277 28 249
5 Metal sheets 206 21 185
6 Bare Soil 484 48 436
7 Bitumen 758 76 682
8 Bricks 594 59 535

9 Shadow 196 20 176

All classes 3396 340 3056
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4.2. Parameter Setting of the Considered Classification Methods

4.2.1. Support Vector Machines (SVM)

SVM are one of the supervised learning models [60] and have been applied in classification,
regression and outlier detection etc. The effectiveness of a SVM depends mainly on the kernel function
which can be well designed by the generalized power spectral density (GPSD) in [56]. In this paper,
the SVM in ENVI software [61] is used for the comparison. There are four options for the kernel type
of SVM in ENVI: linear, polynomial, radial basis function (RBF) and sigmoid. For SVM classification
depending on training and testing samples, the generalization performance of kernels will change
with different remote sensing data sets, for instance hyperspectral, and synthetic-aperture radar (SAR),
etc. Thus, it is difficult to conclude that any type of kernel can always outperform all other kernel
types [62].

In our experiment, taking into account that the polynomial kernel is time-consuming and the
linear and sigmoid proved not to perform as well as RBF in HSI classification [62], the RBF is selected
as the kernel function of SVM in the ENVI toolbox.

In addition, the hyper-parameters of the RBF kernel, gamma (γ) and penalty factor whose values
would affect the classification accuracy, are selected as 100 and 0.01, respectively, for the part-PaviaU
HSI through multiple experiments.

4.2.2. Deep Belief Networks (DBN)

A DBN can be stacked by a restricted Boltzmann machine (RBM) to extract features efficiently [63,64].
Because the input of a DBN should be a vector and the HSI is a 3D tensor, in this paper, principal
component analysis (PCA) is introduced to reduce the dimension of the HSI, and helps to obtain the
one-dimensional (1D) input for the DBN. The 27 × 27 pixel blocks on the first principal component
(PC) of the part-PaviaU HSI can be taken and converted into a 1D vector (1 × 729). Then, the input
consisting of the 1D vector given above and the 1D spectral vector (1 × 103) of the center pixel in
the 27 × 27 pixel blocks can be obtained for the DBN. At last, a DBN of 832-1000-2000-4000-9 units
could be constructed. There are 100 epochs of pre-training and 300 epochs of the back-propagation
(BP) algorithm.

4.2.3. Parameter-Optimized 2D-CNN (PO-2DCNN)

Since the input data of 2D-CNN should be a matrix, the 1st principal component (PC) of the
part-PaviaU HSI is used. By adjusting the parameters mainly according to the OA values, the optimal
values of parameters in our 2D-CNN can be obtained as illustrated in Table 2 where 64@5 × 5 means
64 convolutional kernels with a size of 5 × 5 pixels and act-f means activation function. The size of the
input training samples is 27 × 27 for the 1st PC. The weights of the 2D-CNN were randomly initialized
with zero mean and a standard deviation of 0.5. Based on the Adadelta algorithm [65], the batch size
could be set as 32, and the number of epochs as 300. Dropouts were introduced to prevent overfitting
and to improve the network performance. The probabilities of dropout in the P1, P2 and F layers are
set to 0.5, 0.5 and 0.1 respectively.

Table 2. Optimal parameters in the PO-2DCNN method.

Parameter C1 P1 C2 P2 F Epoch Act-f Pooling Batch

Value 64@5 × 5 64@5 × 5 128@4 × 4 128@2 × 2 128 300 ReLU Max-pooling 128

4.3. The Parameters of Some Improved 3D-CNN Models

As a comparison, the improved 3D-CNN models in this paper, for example, the 3D-CNN after
parameter optimization (PO-3DCNN), the parameter-optimized 3D-CNN with transfer learning
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(PO-3DCNN-TL), and the parameter-optimized 3D-CNN with virtual samples (PO-3DCNN-VS) were
evaluated and analyzed.

4.3.1. The PO-3DCNN Method

Because the size of input data should be determined first for a 3D-CNN, it is adjusted according
to the classification accuracy. In our experiment, for the part-PaviaU HSI, the size of input training
samples in the 3D-CNN can be defined as w × w × 103. Under the condition that other network
parameters remain unchanged, the relationship between the OA value and w can be seen in Figure 8.
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It can be seen from Figure 8 that the OA values reach two peaks when the spatial size w is
19 and 27 respectively. Through a large number of simulations and comprehensive testing of both
network classification performance and computational efficiency, 27 was chosen as the optimal spatial
size w. For the following experiments, the input size of the 3D-CNN was fixed at 27 × 27 × 103.
The optimization process of other parameters is similar to that of the input size.

After parameter optimization, the values of some main parameters of the PO-3DCNN method can
be seen in Table 3 where 4 × 4 × 13@16 indicates 16 3D convolutional kernels with a size of 4 × 4 × 13.
The number of convolution kernels in the first layer is 16, the batch size for training is 32 and the
number of units in the fully-connected layer is 128, and the dropout in the P1, P2 and F layer is set
to 0.1.

Table 3. Parameters in the PO-3DCNN method.

Network Layer Convolutional Layer Act-F Pooling Layer Pooling Function Dropout

1 4 × 4 × 13@16 ReLU 2 × 2 × 2 Max-pooling 0.1
2 5 × 5 × 13@32 ReLU 2 × 2 × 2 Max-pooling 0.1
3 4 × 4 × 13@64 ReLU - - -

4.3.2. The PO-3DCNN-TL Method

The PaviaC HSI can be used as the source data to pre-train the 3D-CNN model with optimal
parameters and to obtain the weights to be transferred. To ensure the stability of the network
performance, 70% of samples of each class in the PaviaC HSI are randomly chosen as the training set
and the remaining 30% belong to the testing set. Then, the weights of the convolution and the pooling
layers in the 3D-CNN model of the target data, the part-PaviaU HSI, could be transferred from the
trained 3D-CNN model of the source data, which can help to improve the feature extraction capability
of the network and alleviate the problem of insufficient samples in the target data. After transfer
learning, the epoch needed to achieve the peak OA value could be less for the 3D-CNN model of the
part-PaviaU HSI and was set to 100 in the experiment. Moreover, fewer samples are enough to train
the parameter-optimized 3D-CNN model with transfer learning, and the time required to converge to
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the optimum is also shorter. Therefore, the introduction of transfer learning can improve the training
efficiency of the network and ease the problem of insufficient samples.

4.3.3. The PO-3DCNN-VS method

Virtual samples can be introduced to the parameter-optimized 3D-CNN model according to
Equation (4) and η can be set to a uniformly distributed random number in [0.9, 1.1]. The number of
virtual samples and the interference n will influence the network performance. Therefore, a sensitivity
analysis has been conducted in this paper to achieve better network performance. If the number of
original training samples selected from among the target data is T, then the number of virtual samples
will be P × T where P represents the ratio between the number of virtual samples and the number
of original samples, and the noise variance of n in Equation (4) could be set to 0.01 at the beginning.
In the experiment, the virtual and the original samples are mixed together to form the training data
set. When the value of the ratio P is different, i.e., when the number of virtual samples is different,
the OA value changes. The relationship between P and OA of the part-PaviaU HSI classified by the
PO-3DCNN-VS method is shown in Figure 9.
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It can be seen from Figure 9 that for the part-PaviaU HSI, the OA value of the PO-3DCNN-VS
method changes a little when P is varying, but it reaches the highest value when the number of
virtual samples is 1 × T, i.e., the number of virtual samples is equal to the number of original samples.
Therefore, the number of virtual samples can be set to T for the PO-3DCNN-VS method in the
part-PaviaU HSI classification.

When introducing virtual samples, the noise variance of n will also affect the classification
performance. Keeping the number of virtual samples fixed at T and changing the value of the noise
variance, denoted as σ2, the resulting OA values are shown in Table 4.

Table 4. OA values vs. different noise variances in the virtual samples.

σ2 0.00001 0.0001 0.001 0.01 0.1 1

OA 0.9927 0.9942 0.9947 0.9936 0.9849 0.9912

As presented in Table 4, the OA value is relatively high when the noise variance σ2 is less than
0.001. There is a peak at 0.001 which means that the virtual samples are more similar to the original
samples at this point. It can also be indicated that the network performance can be improved by
adding virtual samples to the training data set in a certain range.

4.4. The Parameters of the Proposed PO-3DCNN-TV Method

As mentioned in Section 4.3.2, a parameter-optimized 3D-CNN model with transfer learning
can be constructed for the classification of the part-PaviaU HSI. Meanwhile, the virtual samples
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with zero mean and noise variance of 0.001 could be generated from the original samples in
the part-PaviaU HSI. Then, the virtual samples are mixed with the original ones to pre-train
the parameter-optimized 3D-CNN model with transferred weights. Therefore, the values of the
corresponding parameters of the proposed PO-3DCNN-TV method for the part-PaviaU HSI are the
same as those in Sections 4.3.2 and 4.3.3.

4.5. Classification Results and Discussion

The classification accuracy of the part-PaviaU HSI obtained under different classification models
is shown in Table 5 where the OA values are the average of multiple experiments for each classification
model considered in this paper.

Table 5. OA values of nine classes in the part-PaviaU HSI vs. different classification models.

Class
Classifier

SVM DBN PO-2DCNN PO-3DCNN PO-3DCNN-TL PO-3DCNN-VS PO-3DCNN-TV

Asphalt 0.9004 0.9631 0.9631 0.9815 1 1 1
Meadows 0.7748 0.8949 0.9489 0.9700 1 1 1

Gravel 0.8195 1 1 0.9712 1 0.9928 1
Trees 0.9747 1 0.9134 0.9712 0.9856 0.9892 0.9819

Metal sheets 1 0.9272 0.9757 0.9806 0.9806 0.9757 0.9806
Bare Soil 0.9669 1 0.9773 1 1 1 1
Bitumen 0.9235 0.9670 0.9934 1 1 1 1

Bricks 0.9529 0.8771 1 1 1 1 1
Shadow 1 0.9031 0.9592 0.9439 0.9367 0.9592 0.9796
Overall 0.9231 0.9505 0.9764 0.9891 0.9938 0.9947 0.9962

It can be seen from Table 5 that SVM has a good performance on metal sheet classification and
DBN performs well for gravel, trees and bare soil. A CNN has great potential in the classification of
HSIs. With the introduction of transfer learning and virtual samples, the classification accuracy of the
3D-CNN is further improved, especially for the classification of asphalt and meadows.

The classification results obtained by different classification models are shown in Figure 10.
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HSI classification, and a 3D network as shown in Figure 10d performs better than 2D networks as 
shown in Figure 10c because a 3D-CNN can fully exploit spatial-spectral characteristics in each HSI. 
Both the introduction of transfer learning as shown in Figure 10e and virtual samples as shown in 
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pixels. Virtual samples are helpful for improving the classification performance for the part-PaviaU 
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It can be seen from Figure 10 that the classification results of SVM and DBN have more pixels
misclassified, especially in the lower part of the image. Our CNN shows superior performance in
HSI classification, and a 3D network as shown in Figure 10d performs better than 2D networks as
shown in Figure 10c because a 3D-CNN can fully exploit spatial-spectral characteristics in each HSI.
Both the introduction of transfer learning as shown in Figure 10e and virtual samples as shown in
Figure 10f can alleviate the problem of insufficient samples and reduce the number of misclassified
pixels. Virtual samples are helpful for improving the classification performance for the part-PaviaU HSI
and the introduction of transfer learning can reduce the computational burden. Therefore, the proposed
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PO-3DCNN-TV method combining the advantages of the PO-3DCNN-TL and PO-3DCNN-VS helps
to greatly improve the classification.

5. Conclusions

To solve the problem of insufficient samples and improve the classification of HSIs, an improved
3D-CNN classification method based on parameter optimization and combined with transfer learning
and virtual samples is proposed in this paper. Firstly, the parameters of the 3D-CNN could be adjusted
according to the single variable principle. Secondly, the initial weights in the bottom layers of the
parameter-optimized 3D-CNN of the target data can be transferred from another 3D-CNN which has
been well trained by the source data. Then, some virtual samples are generated from the original
samples in the target data. Finally, the parameter-optimized 3D-CNN with transfer learning can be
trained by the training samples mixing the original samples in the target data with the virtual samples.
Compared with other classification methods considered, the proposed PO-3DCNN-TV method is
suitable for the data structure of a HSI and can help to improve the classification.

In future, the residual network will be investigated to further overcome the overfitting problem
of a CNN.
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