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Abstract: Soil moisture is a key component of the water cycle budget. Sensing soil moisture using
microwave sensors onboard satellites is an effective way to retrieve surface soil moisture (SSM)
at a global scale, but the retrieval accuracy in some regions is inadequate due to the complicated
factors influencing the general retrieval process. On the other hand, monitoring soil moisture
directly through in-situ devices is capable of providing high-accuracy SSM measurements, but the
distribution of such stations is sparse. Recently, the Global Navigation Satellite System interferometric
Reflectometry (GNSS-R) method was used to derive field-scale SSM, which can serve as a supplement
to contemporary sparse in-situ soil moisture networks. On this basis, it is of great research significance
to explore the fusion of these different kinds of SSM data, so as to improve the present satellite SSM
products with regard to their data accuracy. In this paper, a multi-source point-surface fusion
method based on the generalized regression neural network (GRNN) model is applied to fuse the
Soil Moisture Active Passive (SMAP) Level 3 radiometer SSM daily product with in-situ measured
and GNSS-R estimated SSM data from five soil moisture networks in the western continental U.S.
The results show that the GRNN model obtains a fairly good performance, with a cross-validation
R value of approximately 0.9 and a ubRMSE of 0.044 cm® cm 3. Furthermore, the fused SSM product
agrees well with the site-specific SSM data in terms of time and space, which demonstrates that
the proposed GRNN model is able to construct the non-linear relationship between the point- and
surface-scale SSM.

Keywords: soil moisture; multi-source data fusion; quality improvement; GRNN; microwave remote
sensing; SMAP mission; GNSS-R

1. Introduction

Soil moisture is one of the key variables in the global water budget and water cycle. In particular,
quantifying the magnitude and dynamics of surface soil moisture (S5SM, defined as the moisture
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content of the top ~5 cm depth of soil) storage is essential for many practical reasons [1]. SSM can affect
weather patterns [2], drought, and flooding [3,4], and plays an important role in climate change [2,5,6],
plant growth [7,8], crop yield [9], etc. As a consequence, monitoring the long-term changes in SSM at
large scales is crucial for hydrology, climatology, and agriculture.

Remote sensing using sensors onboard satellites is one of the most effective ways to derive a
regional and/or global SSM map. In particular, microwave remote sensing is the most commonly
used method for long-term and large-scale soil moisture monitoring due to its all-weather and all-time
sensing ability. It was not until the 1970s that Ref. [10] qualitatively demonstrated the sensitivity of
microwave brightness temperature to soil moisture variations. Since then, microwave remote sensing
approaches using radiometers and/or scatterometers for soil moisture monitoring have been widely
investigated, and a series of satellite-based microwave sensors operating at sub-optimal frequencies
for SSM sensing have been applied to generate global SSM products spanning the last few decades,
including both passive (e.g., SMMR, SSM /I, TRMM TMI, AMSR-E, WindSat, and AMSR?2) and active
(e.g., ERS-SCAT and MetOp ASCAT) microwave sensors. In 2009, the European Space Agency (ESA)
launched the first dedicated soil moisture mission, the Soil Moisture and Ocean Salinity (SMOS) Earth
Explorer, following which the National Aeronautics and Space Administration (NASA) launched the
Soil Moisture Active Passive (SMAP) mission in 2015. These two dedicated soil moisture missions
both carry instruments of the optimal L-band for sensing SSM, to produce long-term and large-scale
SSM products with the accuracy requirement of 0.04 cm® cm 2 volumetric soil moisture unbiased
root-mean-square error (ubRMSE) [11,12].

Microwave remote sensing soil moisture products have been shown to be generally useful
and accurate by extensive validation studies [13-17], either through direct comparison against
in-situ measurements, or inter-comparison among different remotely sensed products. In addition,
the applications of these products have also been widely explored in many fields like agriculture,
hydrology, and climate sciences [18-21]. However, the general soil moisture retrieval process is
significantly subject to uncertainties. First, because the emissive and scattering characteristics of
the soil surface not only depend on the soil moisture content, but also other attributes such as land
surface temperature, roughness, and vegetation characteristics, soil moisture retrievals from microwave
satellite remote sensing are vulnerable to errors arising from these ancillary (i.e., “non-soil-moisture”)
effects [22] and are also affected by other error sources including antenna noise and radio frequency
interference (RFI). Therefore, the nominal retrievals derived from microwave satellite remote sensing
have to be interpreted with caution as they contain pixels with surface/instrument conditions (e.g.,
mountainous terrain, dense vegetation, RFI, and frozen ground) that can lead to inaccurate soil
moisture retrievals [23]. Secondly, current retrieval algorithms often rely on the empirical models
originating from a few validation sites at a local scale, due to a lack of ancillary and heterogeneity
information. For example, several retrieval algorithms usually use vegetation models formulated and
calibrated from limited validation sites [24,25]. Therefore, they may have regional dependence and
experience significant uncertainties outside these regions. For this reason, it is important to improve
the quality of the satellite-derived SSM products to minimize the uncertainties.

On the other hand, monitoring soil moisture directly through in-situ devices is able to provide
high-accuracy ground-level soil moisture measurements at various depths, and numerous small-scale
(<100? km?) and large-scale (>100? km?) soil moisture networks [26,27] have been established at state
and national levels over the past few decades. Nevertheless, these networks primarily serve as the
calibration and validation of microwave remote sensing data, as the station distributions of these
networks are too sparse to produce soil moisture maps at regional to global scales. Recently, a new kind
of environmental sensing technique [28] in long-term soil moisture monitoring has emerged, which
makes use of the interference of the direct and reflected Global Navigation Satellite System (GNSS)
signals received by GNSS receivers mounted fairly close to the land surface. As such, the method
is often referred to as GNSS interferometric reflectometry (GNSS-R). Essentially, GNSS-R is also
within the category of microwave remote sensing as it detects the physical characteristics of an area
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by measuring its reflected radiation in the microwave wavelength region (L-band). The GNSS-R
technique is able to retrieve SSM at a field scale (~1000 m?), and the validation of GNSS-R soil moisture
retrievals (e.g., [29,30]) has demonstrated that the RMSE between GNSS-R-derived SSM and in-situ
measurements could be less than 0.04 cm® cm ™2 in both bare and vegetated soil when vegetation
effects were removed for vegetated soil. Because the GNSS-R technique is able to provide field-scale
SSM estimates instead of typical point-scale measurements, and the fact that GNSS signals belong to
the L-band, which is consistent with L-band microwave satellites, GNSS-R-based in-situ sites are being
employed as excellent support for satellite soil moisture validation (e.g., a SMAP calibration/validation
plan [31]). Therefore, the GNSS-R technique can serve as a supplement to contemporary sparse in-situ
soil moisture networks. As a matter of fact, the GNSS-R-based soil moisture network named PBO
H20O [32] was incorporated into the International Soil Moisture Network (ISMN) [33,34] in 2014.

Since these different soil moisture monitoring methods possess complementary advantages, recent
studies have started to explore multi-source SSM data fusion between optical remote sensing soil
moisture and ground-based observations. For instance, Ref. [35] successfully reconstructed optical
satellite GF-1 soil moisture observations under full cloud contamination, based on satellite and in-situ
sensor collaboration, demonstrated that in-situ sensors can be regarded as an important data source
in effective environmental monitoring. On this basis, a subsequent study took an artificial neural
network (ANN) as a reconstruction model instead of the conventional model to reconstruct GF-1 soil
moisture observations under full cloud contamination [36]. The results indicated that the complex and
highly variable relationships between the in-situ observations and optical remote sensing soil moisture
were better projected using the ANN. However, to date, few works have looked into the study of
multi-source data fusion in terms of microwave satellite remote sensing SSM. To our knowledge,
Ref. [37] preliminarily proposed an algorithm using in-situ measurements from two sparse networks
for training a neural network to retrieve SSM from SMOS brightness temperature observations, which
did not give consideration to the GNSS-R-based soil moisture network. Therefore, it is of great research
significance to explore the fusion of the aforementioned different kinds of SSM datasets (i.e., microwave
satellite, in-situ, and GNSS-R), so as to improve the present satellite SSM products with regard to their
data accuracy.

In this paper, a multi-source point-surface fusion method based on the generalized regression
neural network (GRNN) model is applied to fuse microwave satellite SSM products with in-situ SSM
measurements, as well as GNSS-R SSM estimates. The core idea of this study is to use the GRNN
model to establish the non-linear relationship between the satellite-derived SSM and the “site-specific”
(both in-situ and GNSS-R) SSM data, taking the site-specific SSM data as the training target. Then,
after comprehensive evaluation of the fusion model performance, the trained GRNN model is applied
to correct the original satellite SSM product, to generate quality-improved SSM maps.

The rest of this paper is organized as follows. Section 2 introduces the study area in detail.
The SSM and other auxiliary data used for the fusion scheme and data pre-processing procedure are
also described. Section 3 expounds the GRNN model structure, the two phases of the GRNN fusion
approach, and the cross-validation technique. Section 4 comprehensively examines the GRNN model
performance and presents the quality-improved SSM maps. The merit of incorporating the GNSS-R
network in the fusion process is also discussed. Section 5 delivers the conclusion of the paper and
provides an outlook for future research.

2. Study Area and Data

2.1. Study Area

The study area of our research was the western part of the Continental U.S. (CONUS). Specifically,
we constrained the range of the latitude and longitude to 32°N—49°N and 125°W-102°W, as shown in
the red rectangle in Figure 1.
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There are several reasons why we restricted the study area to such a rigid range. First and most
importantly, while in-situ networks are spread across the whole of the CONUS, nearly all of the GNSS
sites used for soil moisture monitoring only belong to this region (Figure 1). To the best of the authors’
knowledge, to date, the PBO H2O network in the west of the CONUS is the only operational network
based on the GNSS-R principle to produce archived and publicly available SSM estimates. Second,
high-density in-situ soil moisture networks such as the Soil Climate Analysis Network (SCAN) network
and the SNOwpack TELemetry (SNOTEL) network are also deployed in this area (Figure 1). Third,
both GNSS and in-situ sites are distributed evenly in this region and have a sufficient operation time
overlap with the SSM estimated from satellite sensors, which builds the foundation for the microwave
satellite derived, in-situ measured, and GNSS-R estimated SSM data synergy scheme.
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Figure 1. Study area (red rectangle, 32°N—49°N, 125°W-102°W) and distribution of the soil moisture
networks including four in-situ networks (the Soil Climate Analysis Network (SCAN) network,
the SNOwpack TELemetry (SNOTEL) network, the Soil moisture Sensing Controller and oPtimal
Estimator (SoilSCAPE) network, and the U.S. Climate Reference Network (USCRN) network) and
one Global Navigation Satellite System interferometric Reflectometry (GNSS-R) network (the PBO
H20 network).

This region accounts for approximately one-third of the area of the CONUS. The dominant terrain
in this area is high mountains and plateaus, including the Coast Ranges lying along the Pacific Ocean
coast, the Sierra Nevada in the south, the Cascade Range in the north, and the Rocky Mountains lying
in the east part of the study area. Several long rivers such as the Colorado River and the Missouri
River are intertwined across this region. In addition, a large inland lake—the Great Salt Lake—lies
in the approximate geographical center of the study area. As regard to the climate of the study area,
it is known to be arid to semi-arid; however, the seasonal temperatures vary greatly throughout the
region, e.g., the west coast experiences warm to very hot summers and gets little to no snow, while
the desert southwest has very hot summers and mild winters. Meanwhile, the mountains in the
southwest receive large amounts of snow. According to the above-mentioned complicated geography
and climatology of the study area, it is apparent that retrieving SSM from satellite observations in this
region is a challenging task.
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2.2. SMAP SSM Product

The NASA’s SMAP mission was launched on 31 January 2015. SMAP carries both an L-band
(1.26 GHz) radar and an L-band (1.41 GHz) radiometer, dedicated to retrieving the moisture content
for the top ~5 cm depth of soil (i.e., SSM). SMAP remains in operation, although its radar sensor
experienced an abrupt failure on 7 July 2015, and ceased operation. The SMAP satellite operates on a
sun-synchronous, near-circular orbit with local equatorial overpass times of 6 AM for its descending
orbit and 6 PM for its ascending orbit, achieving global coverage every 2-3 days [11].

The SSM data of SMAP used for this analysis were the latest release (data version 4.0) of the
Level 3 Passive soil moisture product (SPL3SMP) posted on a 36-km Earth-fixed grid using the global
cylindrical Equal-Area Scalable Earth Grid projection version 2 (EASEv2). This product has been
available since 31 March 2015, through the NASA Distributed Active Archive Center (DAAC) at the
National Snow and Ice Data Center (NSIDC) (https:/ /nsidc.org/data/SPL3SMP) [38].

In this study, we employed the SMAP SSM product for the 31 March 2015, to 31 August 2017,
period (885 days in total). In addition, we only utilized retrievals from the 6 AM overpass, in order to
minimize observation errors due to Faraday rotation and the difference between the soil and canopy
temperatures [11,39]. Note that, unlike previous studies of SMAP (e.g., [23,40]) that only used the
data points flagged as having the “recommended” retrieval quality, we adopted all the data points as
long as they had a retrieved SSM value. That is to say, we did not apply any screening to the original
SMAP SSM product. This is due to the objective of our research being to improve the quality of the
whole satellite-derived SSM product, including those data points that do not have the “recommended”
retrieval quality. Yet we also take the quality controlled SMAP SSM product that only has SSM values
flagged as having the “recommended” retrieval quality into consideration in the following experiments
to allow a more realistic comparison analysis.

2.3. In-Situ SSM Measurements

The in-situ soil moisture measurements used for fusion with the SMAP SSM product included
observations from four networks distributed across the CONUS: the SCAN network [41], the SNOTEL
network [42], the Soil moisture Sensing Controller and oPtimal Estimator (SoilSCAPE) network [43,44],
and the U.S. Climate Reference Network (USCRN) [45]. All the data were downloaded from the
ISMN website (http:/ /ismn.geo.tuwien.ac.at/). All the in-situ sites in the study area were taken into
consideration, while only the shallowest measurements representing approximately the upper 5 cm of
soil were adopted for this analysis, to ensure their compatibility with the SSM estimates derived from
the L-band satellite observations. Finally, 584 in-situ sites remained in total (Table 1). The in-situ SSM
data were recorded every hour.

Table 1. Characteristics of the four in-situ networks (the Soil Climate Analysis Network (SCAN)
network, the SNOwpack TELemetry (SNOTEL) network, the Soil moisture Sensing Controller and
oPtimal Estimator (SoilSCAPE) network, and the U.S. Climate Reference Network (USCRN) network)
and one Global Navigation Satellite System interferometric Reflectometry (GNSS-R) network (the PBO

H20 network).
. Avail.
Name # of Stations X Depth (cm) Temp. Resol. Sensor
Time
1996/01- Hydra Probe Digital SDI-12 (2.5 volt)
SCAN 81 present 508 Hourly Hydra Probe Analog (2.5 volt)
1980/10— Hydra Probe Analog (5.0 volt)
SNOTEL 381 resent 5 Hourly Hydra Probe Analog (2.5 volt)
prese Hydra Probe Digital SDI-12 (2.5 volt)
SoilSCAPE 78 2011/08- 5 Hourly EC5
present
USCRN 44 2000/11- 5 Hourly Stevens Hydra Probe II SDI-12
present
PBO H20 135 2004/09~ 0-5 Daily Gps

present
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2.4. GNSS-R SSM Estimates

Estimating soil moisture using reflected GNSS signals is a new and promising method, which
is often referred to as GNSS-R. Geodetic GNSS equipment has been found to be able to retrieve
SSM, based on the nearly linear relationship with respect to the phase offset caused by multipath
oscillation in signal-to-noise ratio (SNR) observations recorded by GNSS receivers/antennas [46,47].
Because signals transmitted by GNSS satellites also belong to the L-band (wavelengths of 19 cm for
the L1 signal and 24.4 cm for the L2 signal), the SSM data estimated by the GNSS-R method thus
represent the top ~5 cm depth of soil, which is comparable to the L-band satellite-based microwave
SSM estimates. Furthermore, the sensing footprint of the GNSS-R technique is field scale (~1000 m?),
which is better than the typical point-scale (<1 m?) in-situ measurements when compared to the scale
of satellite SSM data derived from coarse-resolution microwave sensors (tens of km?).

To date, the PBO H20O network [32] established and maintained by the National Science
Foundation’s EarthScope Plate Boundary Observatory and University NAVigation satellite time and
ranging COnsortium (UNAVCO) in the west of the CONUS is the only operational network based
on the GNSS-R principle that produces an archived and publicly available SSM product, as well as
other water cycle products. This fact also leads to the most significant reason why we constrained the
study area to the western part of the CONUS, as mentioned in Section 2.1. The SSM data of the PBO
H20 network were downloaded from the ISMN website, while the data are also available on the PBO
H20 data portal (http://xenon.colorado.edu/portal). All 135 sites of the PBO H20O network in the
study area were included in the analysis (Table 1). Note that, unlike the in-situ SSM measurements,
a GNSS-R site only has one SSM estimate per day (recorded at 12:00 UTC).

In this paper, in order to emphasize the role of the GNSS-R method, we use two separate terms to
identify the SSM data obtained through direct measurement using in-situ soil moisture sensors and
those based on the GNSS-R method, respectively. When describing the SSM from both the in-situ and
GNSS-R sites, we refer to this as “site-specific” SSM.

2.5. Auxiliary Data

To ensure the comprehensiveness of the fusion model, we additionally incorporated auxiliary
data related to soil moisture contributions into our synergy scheme. These data were: (1) land
cover class (LCC) data based on the Moderate Resolution Imaging Spectroradiometer (MODIS)
International Geosphere-Biosphere Program (IGBP) [48] land-cover map; (2) surface soil temperature
(SST) data (0-10 cm soil layer), which is generated using the NASA Goddard Earth Observing System
Model version 5 (GEOS-5) Catchment land surface model [49,50]; and (3) vegetation water content
(VWC) data, which is estimated from a climatology of the Normalized Difference Vegetation Index
based on MODIS observations using an empirical relationship established from prior investigations.
These data originally served as dynamic ancillary data to the official SMAP Level 2 and 3 SSM retrieval
algorithm. The algorithm is based on a physical tau-omega model [39,51] and requires the reflectivity,
temperature, and vegetation information contained in these three auxiliary data sets to account for
their contributions to the retrieved SMAP SSM data. For a detailed description of the three data sets,
please refer to the SMAP Algorithm Theoretical Basis Document (ATBD) [39] for the SMAP passive
soil moisture products.

These three auxiliary data sets had already been included into the files of official SMAP Level 3
SSM product and mapped to the 36-km EASEv2 grid, and therefore no additional downloads or
pre-processing were required. Moreover, note that the LCC data are actually a three-dimensional
array which lists the first three most dominant land-cover classes according to the MODIS IGBP
land-cover map.

2.6. Data Pre-Processing

First, for both the in-situ and GNSS-R SSM data, the observations beyond their overlapping period
with the SMAP SSM data ranging from 31 March 2015, to 31 August 2017, were excluded. In addition,
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according to the ISMN quality flags [34] that work as an indicator for the reliability of the data, only
measurements flagged as “G” representing “good” quality were adopted for the in-situ and GNSS-R
SSM data, and hence the high quality of the site-specific SSM time series was guaranteed.

Secondly, in order to account for the hourly recorded in-situ SSM data, the in-situ measurement
closest in time and within a 3-h window of the SMAP 6 AM overpass for each day was used.

Finally, for the development of the fusion model, all the data sets needed to be matched spatially
and temporally to obtain a coupled input—output training data pair, taking the SMAP SSM data as a
reference. To be exact, the site-specific SSM data were associated with the pixels of the SMAP SSM
data map as well as the three auxiliary data (LCC, SST, and VWC) maps covering the station. It should
be noted that, although the GNSS-R sites have a sensing footprint of ~1000 m?, this is insignificant
compared to the scale of the SMAP SSM data (36-km EASEv2 grid). Furthermore, if a pixel had more
than one corresponding site, then all the values for each station and for each day were averaged, i.e.,
one corresponding pixel of SMAP SSM coupled with only one averaged site-specific SSM time series.
Eventually, we obtained 440 corresponding grid pixels. The data and pre-processing procedure are
summarized in Figure 2.

Again, as mentioned in Section 2.2, we want to stress that no pre-processing was applied to the
original SMAP SSM product due to the objective of our study being to improve the quality of all the
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Figure 2. Data and flow chart of point-surface fusion scheme for satellite SSM quality improvement.

3. Methodology
3.1. Generalized Regression Neural Network (GRNN) Model for SSM Quality Improvement

The entire flow of the point-surface fusion for satellite SSM quality improvement is illustrated in
Figure 2. Considering that the satellite-derived SSM product and the site-specific SSM data are both
affected by complicated factors, the relationship between them is generally non-linear. Consequently,
we introduce the GRNN model [52,53] into our fusion scheme.

3.1.1. GRNN Model Structure

GRNN is a variation of the radial basis neural networks that is often used for function
approximation [54]. A common GRNN consists of four layers: an input layer, a pattern layer,
a summation layer, and an output layer (Figure 3). The pattern layer is fully connected with the
input layer based on the radial basis function (RBF) kernel and owns the same amount of neurons as
the input layer. The summation layer contains two types of summation neurons. One has only one
neuron that sums up the estimates from the pattern neurons, while the other computes the weighted
sum of the pattern neuron estimates weighted by the elements of the learning samples. After this,
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a dot function is performed by simply dividing the estimate of the second type of summation neuron
by the first one to produce the output estimate.

The reasons for employing the GRNN model instead of other models lie in the following four
aspects. Firstly, it is a relatively simple architecture with only two hidden layers, one pattern layer,
and one summation layer. Meanwhile, the amount of neurons in the pattern layer is the same as the
input layer, so there is no need to estimate the number of neurons in the hidden layers. Secondly,
it is a single-pass learning method with no back-propagation required. Once the learning samples
pass through the hidden layers, the training process of GRNN is accomplished. Therefore, the time
cost and the computational expense of GRNN training are low. Thirdly, since GRNN is a variation of
the radial basis neural networks based on the RBF kernel, it requires only one free parameter called
the “spread” parameter. This parameter represents the width of the RBF kernel, and the larger the
spread, the smoother the function approximation. It can be tuned by the cross-validation technique
to an optimal value where the error reaches the minimum. Finally, unlike standard feedforward
networks, GRNN estimation is always able to converge to a global solution and will not be trapped
by a local minimum. That is to say, GRNN can serve our objective of improving the quality of the
SSM product in the whole study area. In fact, the GRNN model has been successfully applied to
generate regional-scale PM, 5 over China from satellite-derived aerosol optical depth (AOD) products
and ground-level fine particulate matter (PM, 5, particulate matters with an aerodynamic diameter
of 2.5 um or less) measurements, and it performed much better than the conventional models (linear
regression, multiple linear regression, and a semi-empirical model), as well as the more advanced
models (geographically weighted regression and the back-propagation neural network (BPNN)) [55].
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Figure 3. Schematic of the GRNN model used for SSM improvement and the two steps of the GRNN
fusion approach: (a) GRNN training; and (b) soil moisture correction using the trained network.

3.1.2. GRNN Model Fusion Procedure for SSM Quality Improvement

The procedure of the GRNN model for the point-surface SSM fusion is divided into two steps
(Figure 3).
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Step 1: GRNN training. The GRNN model was first trained on the coupled input-output
training data pair (440 matched grid pixels, see Section 2.6) for the entire period (31 March 2015,
to 31 August 2017). The SMAP SSM product combined with the LCC, SST, and VWC data was used as
the input to the GRNN, while the site-specific (both in-situ and GNSS-R) SSM data were taken as the
training targets. In addition, another three ancillary variables were also input into the GRNN model:
the coincident month, the central latitude, and the central longitude of the SMAP 36-km EASEv2 grid
pixels. Considering that the LCC data are actually a three-dimensional array, this resulted in a total of
nine neurons for the input layers and only one neuron for the output layer of GRNN.

Step 2: Soil moisture correction. Once trained, the trained GRNN model was used to correct the
original SMAP SSM data for the whole study area, and for each day, to produce quality-improved
SSM maps.

The main function of GRNN is to determine the non-linear statistical relationship between the
SMAP SSM and the relatively high quality site-specific SSM data. The LCC, SST, and VWC data
containing the reflectivity, temperature, and vegetation information, respectively, were incorporated to
account for their contribution to the retrieved SMAP SSM data. In particular, in order to allow for the
temporal and spatial variation of soil moisture, the month, latitude, and longitude were also included.
On the other hand, all the site-specific SSM data from both the in-situ and GNSS-R sites were taken
as targets to enrich the quantity of sites and diversify the representativeness of the site-specific SSM.
As for the “spread” parameter of GRNN, a value of 0.1 was set where the cross-validation RMSE was
the minimum.

3.2. Conventional Methods for Comparison

In order to make a comprehensive assessment of the GRNN model employed in this study, another
two classical regression analysis methods—multiple linear regression (MLR) and the Back-Propagation
Neural Network (BPNN)—were selected for comparison, and underwent the same point-surface
fusion process as GRNN.

The MLR is a classic statistical approach for modeling the relationship between a scalar dependent
variable and more than one explanatory variable using the linear predictor functions. In this study,
through incorporating auxiliary data related to SSM, it can be expressed as:

SSMcorr = Bo + B1 X SST + 2 X VWC + 3 X SSMsig @D

where (3¢ is the intercept for SM prediction and (3;—B3 are regression coefficients for the
predictor variables. SSMyyjg and SSMcorr denote the original and MLR-corrected satellite SSM
values, respectively.

The BPNN is the most commonly used multi-layer feedforward artificial neural network, which
uses back-propagation as the training algorithm and has the potential to solve the multi-variable and
nonlinear regression problems. In this study, a BPNN model with three layers (input layer, hidden
layer, and output layer) was constructed. In order to be in agreement with the GRNN model, the input
parameters of BPNN model were identical with those of the GRNN model. According to other works
in the literature [56,57], the number of nodes in the hidden layer ranges from 2,/n +  to 2n + 1, where
n and p are the number of nodes in the input layer and output layer, respectively; therefore, in this
study, the number of nodes in the hidden layer was varied from 7 to 19, and 18 nodes were found to
constitute the lowest number of neurons that was able to derive the best performance (the minimum
cross-validation RMSE), and were therefore selected in this paper.

3.3. Model Evaluation

The 10-fold cross-validation technique [58] was applied to test the model overfitting and predictive
power. To start with, the dataset was first randomly divided into ten equal sized folds. Next, nine folds
of the dataset were used as training data for fitting the model, and the remaining one fold was retained
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as the validation data for testing the model. Finally, we repeated this step a further nine times until
every fold was tested. The ten results could then be averaged to produce a single estimation called the
“cross-validation results”, whereas the model with the maximum correlation coefficient was selected
as the best fitting model whose results are denoted as the “model fitting results”. It was then checked
whether the model had been over-fitted, in which case the model performs drastically worse in the
testing, i.e., the cross-validation results are much worse than the model fitting results.

The statistical metrics of the correlation coefficient (R, unit less), RMSE (cm® cm™3), bias
(cm® cm™3), and unbiased RMSE (ubRMSE, cm® ecm™3) [59] were computed to quantify the level
of agreement between the site-specific and satellite datasets, thereby providing an indication of the
performance of the fusion model. The R describes of the temporal agreement between the datasets.
It has a value between +1 and —1, where +1 is total positive linear correlation, 0 is no linear correlation,
and —1 is total negative linear correlation. Absolute deviations between the site-specific and satellite
data were expressed by the bias and the RMSE. Bias = 0 indicates an unbiased estimation, whereas
bias <0 and bias >0 indicate underestimation and overestimation, respectively. RMSE is always
non-negative, and a value of 0 (never achieved in practice) would indicate a perfect fit to the data.
In general, a lower RMSE is better than a higher one. However, RMSE can be severely compromised if
there are biases in the datasets. For this reason, the ubRMSE is also included to describe differences in
data levels, which corrects for the mean biases, expressed as:

ubRMSE? = \/RMSE? — bias? )

4. Results and Discussion
4.1. Assessment of the Model

4.1.1. Overall Performance of the Model

Table 2 lists the model fitting and cross-validation results to evaluate the overall performance
of the GRNN model, as well as the MLR model and BPNN model which underwent the same
training and testing procedure as the GRNN using the 10-fold cross-validation technique for a fair
comparison. Note the model fitting results are the results from the best fitting model, whereas the
cross-validation results are the averaged results from the ten-round cross-validation. Besides, in order
to allow a more realistic analysis between the SSM from the SMAP product and SSM from the fusion
model, the experiments using only SMAP SSM values flagged as having the “recommended” retrieval
quality were also carried out for comparison. For clarity, the original SMAP product including all
SSM values denotes “sm_sat-whole”, whereas the quality controlled SMAP product including only
“recommended” SSM values denotes “sm_sat-rcmd” hereinafter, i.e., the “sm_sat-whole” values consist
of the “sm_sat-rcmd” values and those do not have the “recommended” retrieval quality.

Table 2. Performance of the proposed GRNN model compared with MLR and BPNN.

Model Fitting Cross-Validation
Used SMAP Method b b
SSM Val : u . u

alues R RMSE bias RMSE R RMSE bias RMSE
MLR 0.50 0.086 0.000 0.086 0.50 0.086 0.000 0.086
sm_sat-whole BPNN 0.76 0.065 0.000 0.065 0.75 0.066 0.000 0.065
GRNN 0.90 0.045 0.001 0.044 0.87 0.050 0.001 0.050
MLR 0.58 0.074 0.000 0.074 0.58 0.074 0.000 0.074
sm_sat-remd BPNN 0.78 0.057 0.000 0.058 0.77 0.059 0.000 0.059
GRNN 0.91 0.038 0.000 0.037 0.87 0.045 0.001 0.045

In the model fitting, for “sm_sat-whole” (“sm_sat-rcmd”), the R values range from 0.50 (0.58)
to 0.90 (0.91), and the ubRMSE values vary from 0.044 (0.037) to 0.086 (0.074) cm® cm~3. In the
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cross-validation results, a similar trend can be seen. When comparing between the results using
“sm_sat-whole” and “sm_sat-rcmd”, it can be found that the MLR model benefits a lot from using
“sm_sat-rcmd”, the R value of which increased by 0.08 and ubRMSE decreased by 0.012 cm?® em 3.
The performances of the BPNN and GRNN models, however, improve a little using “sm_sat-remd”.
This demonstrates that the non-linear regression method depends little on the quality of the input
variables. In other words, the BPNN and GRNN model can correct the “non-recommended” SSM
values in “sm_sat-whole” to obtain equivalent performances compared to that using “sm_sat-rcmd”.

Among the different methods, the MLR model performs the worst. There is a large improvement
from the MLR model to the BPNN model, which makes sense because the relationship between SSM
and input variables is generally non-linear and can be well constructed by the non-linear neural
network. Moreover, the GRNN model outperforms the BPNN model, with further improvements in
all the evaluation metrics. The superiority of the GRNN model compared to the BPNN model can be
attributed to its high accuracy in the estimation, since it uses Gaussian functions, and the fact that it
can handle noise in the inputs while converging rapidly. From the above, it can be suggested that the
GRNN model is superior in assessing the non-linear relationship between the point- and surface-scale
soil moisture datasets. Moreover, the fact that the cross-validated results are comparable to the model
fitting results shows the GRNN model only results in slight overfitting.

4.1.2. Model Performance for Each Station/Network

To make a further evaluation of the spatial performance of the GRNN model, the R values
between the site-specific SSM with the matched pixel values of both the original (before fusion) and
model-estimated (after fusion) SMAP SSM over each site were calculated, respectively, and are depicted
in the form of a spatial distribution diagram (Figure 4). The same thing was done for the ubRMSE
(Figure 5). For the reliability of calculated evaluation metrics at each site, a prior requirement of at
least 30 coupled data points was set, thereby leaving 650 sites for “sm_sat-whole” to be considered.
However, as for the “sm_sat-remd”, there were just 469 sites left, indicating that quite a number of
“non-recommended” SSM values had been flagged out.
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Figure 4. Spatial distribution of R between the site-specific SSM and original (a,c) and fused (b,d)
SMAP SSM over each station using “sm_sat-whole” (a,b) and “sm_sat-rcmd” (c,d).
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Figure 5. Spatial distribution of ubRMSE between the site-specific SSM and original (a,c) and fused (b,d)
SMAP SSM over each station using “sm_sat-whole” (a,b) and “sm_sat-rcmd” (c,d).

From Figures 4 and 5, a general increase in R value and a decline in ubRMSE can be seen, with
nearly all points for R becoming red (better) and nearly half the points for ubRMSE turning red (better)
as well. According to the statistics, for “sm_sat-whole”, the number of sites with an R value greater
than 0.6 is increased from 318 to 590, accounting for about 91% of the 650 sites, while the number
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of sites with ubRMSE values smaller than 0.04 cm® cm 3 is tripled from 102 to 289 out of the total
650 stations under consideration. As for “sm_sat-rcmd”, the number of sites with an R value greater
than 0.6 rises from 251 to 420, accounting for about 90% of the 469 sites, which is comparable to that
for “sm_sat-whole”. Meanwhile, the number of sites with ubRMSE values smaller than 0.04 cm® cm—3
is also largely increased from 106 to 264 out of the total 469 stations. Note that, due to the presence of
the “non-recommended” SSM values in the “sm_sat-whole”, the “sm_sat-whole” values should have
lower accuracy than the “sm_sat-remd” with respect to the site-specfic SSM data. This explains why
the number of sites with ubRMSE values smaller than 0.04 cm® cm—3 for “sm_sat-whole” is less than
that for “sm_sat-remd” before fusion. However, this quantity becomes comparable after fusion, which
demonstrates that the GRNN fusion model is able to correct the “non-recommended” SSM values
from the satellite product.

As for spatial distribution, the higher R values before fusion (Figure 4a,c) are mainly clustered in
the northern part and southwestern coast of the study area, where the form of the landscape in these
regions is mainly plain terrain, while the lower R values are probably caused by the loss of accuracy of
SMAP SSM retrieval due to the land surface environment being high mountain or desert. The same
spatial distribution characteristic is apparent for ubRMSE as well (Figure 5a,c). Then, after fusion,
the sites that previously had low R values or high ubRMSE values are much improved, and those
whose R or ubRMSE values were already very good before fusion are further improved (compare
Figure 4b,d with Figure 5b,d), respectively).

In addition, we calculated the average evaluation metrics both before and after fusion for each
network (four in-situ networks and one GNSS-R network) to find out whether or not the point-surface
synergy scheme works well on the different networks (Table 3). For simplicity, only the cross-validation
results using “sm_sat-whole” are listed in the table. What needs to be stressed is that the mean R value
of the SoilSCAPE network with respect to the original SMAP SSM is comparatively high (0.82 before
fusion). This is because all 78 sites from the SoilSCAPE network correspond with only two pixels of
the SMAP 36-km EASEv2 grid, resulting in its fairly good representativeness for the pixels.

Table 3. Performance of the GRNN model on each network using “sm_sat-whole”.

Before Fusion After Fusion
Network . ub . ub

R RMSE bias RMSE R RMSE bias RMSE

SCAN 0.57 0.076 —0.004 0.050 0.77 0.046 0.011 0.036
SNOTEL 0.50 0.129 —0.027 0.079 0.80 0.071 —0.004 0.053
S0ilSCAPE 0.82 0.082 0.019 0.048 0.88 0.052 0.003 0.037
USCRN 0.67 0.101 0.033 0.050 0.87 0.033 0.003 0.029
PBO H20 0.69 0.081 —0.006 0.053 0.82 0.042 0.002 0.038

From the table it can be noted that nearly all the mean evaluation metrics on each network
experience large improvements after fusion. The mean R value of the SNOTEL network increases
the most by 0.30, while its mean ubRMSE value decreases the most as well, from 0.079 to
0.053 cm® cm 3. Furthermore, the mean ubRMSE values of all the networks except the SNOTEL
network become less than 0.04 cm® cm 3, thereby meeting the accuracy requirement of the SMAP
mission. The unsatisfactory results for the SNOTEL network may be due to the fact that a number
of sites in the SNOTEL network are concentrated along the mountain ranges, where the satellite soil
moisture retrieval algorithm works poorly. From the metrics before fusion, we can also see that the
relationship between the SNOTEL network and the original SMAP SSM is the worst of all, which
may explain its environmental difficulty for the SMAP SSM retrieval algorithm. Another point to
note is that because all the available pixel values of the SMAP SSM data, regardless of whether they
had the “recommended” quality or not, were taken into consideration, as mentioned in Section 2.2,
this would have exacerbated the results before fusion. On the other hand, it is undeniable that the
results after fusion are much better than the original, and are close to the accuracy requirement of the
SMAP mission.
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4.2. Generation of the Quality-Improved SMAP SSM Product

4.2.1. GRNN-Estimated SSM Time Series over Pixels

Based on the above results, which demonstrate that GRNN can be used to improve the quality
of the SMAP SSM data, we applied the trained GRNN model to the original SMAP SSM product to
produce quality-improved SSM maps. Before this, we compared the site-specific SSM time series with
the coincident original, as well as the fused SMAP SSM time series for each pixel, in order to obtain
an in-depth understanding of the temporal performance of the GRNN model. Figure 6 shows three
examples of pixels. The SSM time series from ground sites within the pixel are drawn as lines. When
one pixel of the SMAP EASEv2 grid includes more than one site, we use different colored-lines to
indicate SSM values from different sites, and further use the average SSM from all the sites within
the pixel (drawn as a wider line in gray color) to represent the site-specific SSM for the pixel. Besides,
the sequences of black hollow diamonds and red solid circles denote the satellite SSM time series
before and after fusion, respectively. Note that we use the dark cyan color to highlight the diamonds
that have “recommended” SMAP SSM values. In other words, the black hollow diamonds actually
represent the “non-recommended” SMAP SSM values.

The variations of the fused SSM (“sm_sat-after fusion”) over time are much more consistent with
the site-specific SSM time series than the original (“sm_sat-original”), which means that the original
SMAP SSM time series are well modified by the point-surface fusion process. In particular, outliers
in the original SMAP SSM data are commendably corrected. For example, in Figure 6b the original
SMAP SSM time series oscillate irregularly around the soil moisture value of 0.25 cm® cm 3, which
disagree significantly with the site-specific SSM variations; therefore, almost all of them are flagged as
“non-recommended” values in the SMAP product. However, after applying the GRNN fusion model
to these outlier values, they are well modified to approach the value of the site-specific SSM. Besides,
the “recommended” SMAP SSM values in Figure 6¢c are also changed to be more consistent with
the site-specific SSM time series. These results demonstrate that the proposed GRNN fusion model
has the capacity to improve the quality of the whole satellite-derived SSM product, including both
the “non-recommended” and “recommended” SSM values. Nevertheless, over- and under-estimates
in the fused SSM time series do exist, which suggests the proposed fusion method needs further
refinement. Moreover, the sharp rise in SSM data commonly following precipitation events can also be
characterized by the fused SMAP SSM, to a certain degree.
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Figure 6. Site-specific SSM time series compared with the coincident SMAP SSM time series before
and after fusion for three examples of 36-km EASEv?2 pixels, which include (a) one site (Tucson_11_W),
(b) three sites (ANGUS_PROP, GLRS_SCGN, IMPERIALSP), and (c) two sites (ANTIMONYFL,
BUTTERBRED), respectively. The central latitude and longitude of each pixel are (a) (32.2881°N,
111.0996°W), (b) (33.2921°N, 115.5809°W), and (c) (35.3352°N, 118.1950°W), respectively. Note that the
dark cyan hollow diamonds denote “recommended” SSM values from SMAP product whereas the
black hollow diamonds denote “non-recommended” SMAP SSM values.

4.2.2. Mapping of the Quality-Improved SMAP SSM Product

Based on the established non-linear and non-localized relationship between the SMAP SSM and
site-specific SSM, the original SMAP SSM product of the whole study area was then input into the
trained GRNN model, and the outputs were generated as the quality-improved SSM maps of each day.
For the sake of simplicity and clarity, we calculated the annual mean SSM map of the year 2016 both
before and after fusion, respectively (Figure 7a,b). In addition, the annual mean SSM map from both
the in-situ and GNSS-R sites was also calculated and is provided as a reference (Figure 7c).
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Figure 7. Annual mean SSM map of the year 2016 for (a) the original SMAP SSM, (b) the
GRNN-estimated SSM, and (c) the site-specific SSM.

As can be seen, the site-specific annual mean SSM values are more consistent with the fused
annual mean SSM values than the original. Furthermore, the fused SSM map shows similar regional
patterns to the topography, with higher soil moisture found along the rivers and plains and lower
soil moisture concentrating around the deserts. In addition, the suspicious pixels neighboring the sea,
where extremely high values exist in the original SMAP annual mean SSM map, are also well corrected.

4.3. Discussion

In this study, both in-situ and GNSS-R sites were used as targets for the GRNN model, which
resulted in a satisfactory model performance and served our goal of improving the quality of the
SMAP SSM product. However, it is important to note that the measurement scale of the GNSS-R
technique (~1000 m?) is quite different from that of the in-situ measurements (<1 m?), which means
that data inconsistency exists between the GNSS-R estimated and in-situ measured SSM. In addition,
the temporal resolutions of these two SSM datasets are also different (daily for GNSS-R and hourly for
in-situ), and the sampling time of GNSS-R SSM (at 12:00 UTC) is not coincident with that of SMAP
SSM (at 6:00 a.m. local solar time) and the in-situ SSM data (closest in time and within a 3-h window of
the SMAP 6:00 a.m. overpass) used in this study. This raises the question of whether the incorporation
of the GNSS-R sites is beneficial for the GRNN training process. In order to answer this question,
we undertook a separate comparison test.
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We removed the GNSS-R SSM data of the PBO H20 network from the test and conducted the
same point-surface fusion experiment using the GNSS-R model, as described in the previous sections,
but for the SSM data from the in-situ sites only. Note that, we still used the same in-situ measurements
that are closest in time and within a 3-h window of the SMAP 6 AM overpass for each day as previous
sections did. We then calculated the difference between the R and ubRMSE values of the fusion results
without the GNSS-R SSM data and the previous fusion results obtained with the GNSS-R SSM data
for each in-situ site. The spatial distribution diagrams of R (Figure 8a) and ubRMSE (Figure 8b) are
depicted in order to explore the consequences of the incorporation of the GNSS-R sites. Note that
there were only 524 in-situ sites with available R and ubRMSE values out of the total 584 in-situ sites.
In both Figure 8a,b, the red points indicate sites where the metrics (R or ubRMSE) improved after the
addition of the GNSS-R sites, while the green points represent the sites where there was a decline.
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Figure 8. Spatial distribution of the difference values of (a) R and (b) ubRMSE between the fusion
results with and without the GNSS-R SSM data (the former minus the latter) over each in-situ site.

In general, the sites that show positive R difference values are nearly identical in number to those
that show negative ubRMSE difference values. The maximum increase in R value is 0.11, while the
maximum decrease in ubRMSE value is 0.012 cm® cm 3. However, less than half of the in-situ sites
show an improvement after incorporating the GNSS-R network in the fusion scheme. The statistics
indicate that the number of sites with a positive R difference is 205, and the number of sites with a
negative ubRMSE difference is 195 out of the total 524 in-situ stations under consideration.

From the perspective of the spatial distribution, the stations that show an improvement are mainly
concentrated around the regions where GNSS-R sites are distributed nearby, and there are more sites
showing improvements in the areas with densely distributed in-situ stations. However, it should be
noted that, in the southwest part of the study area, where there are quite a few GNSS-R sites along the
coast, the R and ubRMSE values for the in-situ sites in this area have become worse. The main reason
for this phenomenon may be the different resolutions of the two types of data. Not only that, but
the land terrain fluctuation in this region may result in low-accuracy GNSS-R SSM estimates, which
affect the subsequent training process. In conclusion, the results obtained in this study demonstrate
that the incorporation of the GNSS-R sites plays a limited but non-negligible part in the point-surface
fusion scheme.

Furthermore, an additional difficulty of using in-situ and GNSS-R measurements is the scale
mismatch issue. Although the sensing footprint of the GNSS-R technique is field scale (~1000 m?),
which is better than the typical point-scale (<1 m?) in-situ measurements, it is also different from the
coarse-scale (tens of km?) of the microwave satellite observation. To date, various upscaling strategies
have been developed to upscale point-scale soil moisture for the validation of coarse-resolution satellite
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soil moisture products as elaborated in Ref. [27]. Among them, the Triple Collocation (TC) [60], or
Extended Triple Collocation (ETC) [61] method is deemed the most reliable. However, the ability of TC
can be limited due to violations in the underlying assumptions [62], and it is just an evaluation method
which cannot serve well the purpose of our study. Therefore, we decided to do the minimal effort by
simply using the site-averaged soil moisture within each satellite pixel, and the results in the previous
sections came out satisfactory for our goal in general. For many sites, the GRNN model manages
to find a good non-linear mapping from SMAP SSM to the site-specific measurements. In contrast,
there are sites for which the GRNN model does not provide a good estimation of the site-specific.
Those in-situ sites are probably not representative of the satellite observation scale. Since our work is a
preliminary study on the point-surface fusion of soil moisture using in-situ and GNSS-R measurements
based on machine learning, there is still space for exploration in the future work. We will continue to
work on this issue in the future.

What is more, an additional concern in this study is the use of time (month) and location (latitude
and longitude) as input information into the proposed fusion model. Considering soil moisture
is a highly temporal and spatial varying variable, it is very important to characterize its temporal
and spatial variations since the main function of the model is to determine the non-linear statistical
relationship between soil moisture data sets. To this end, we intended to use time and location to
account for the seasonal variability and spatial heterogeneity of soil moisture. However, many other
works using neural networks for soil moisture retrieval do not use time or location as input information
(e.g., [63—66]). Therefore, to make a comprehensive analysis, we also conducted the same point-surface
fusion experiments as in Section 4.1.1 but without time and location data (Table 4). Note that the MLR
model itself does not include the time and location variables; therefore, the performance of MLR model
(the same as in Table 2) is not shown.

Table 4. Performance of the fusion models without time and location input information.

Model Fitting Cross-Validation
Used SMAP Method b b
SSM Val i u i u
alues R RMSE bias RMSE R RMSE bias RMSE
MLR - - - - - - - -
sm_sat-whole BPNN 0.67 0.074 0.000 0.074 0.67 0.074 0.000 0.074
GRNN 0.69 0.072 0.001 0.071 0.69 0.073 0.001 0.073
MLR - - - - - - - -
sm_sat-remd BPNN 0.69 0.066 0.000 0.066 0.69 0.066 0.000 0.066
GRNN 0.72 0.064 0.001 0.063 0.70 0.065 0.001 0.065

Compared to the evaluation results that used time and location as input information (see Table 2),
it can be seen from Table 4 that no matter whether for “sm_sat-whole” or “sm_sat-rcnd”, all the
evaluation metrics of both the BPNN and GRNN models experience great deteriorations when the
time and location data are excluded. For example, as for “sm_sat-whole”, the cross-validated R value
decreased by 0.08 and 0.18 for the BPNN and GRNN models, respectively, whereas for “sm_sat-remd”,
the cross-validated R value also decreased a lot by 0.08 and 0.17 for the BPNN and GRNN models,
respectively. These results show that the performance of the fusion models indeed became promoted
after incorporating the time and location data. In addition, it should be noticed that when using the
time and location as input information, the GRNN model performs much better than the BPNN model
(see Table 2), whereas after excluding the time and location data, the performance of the BPNN model
becomes competitive to the GRNN model. This indicates that the time and location data play a much
more important role in the proposed GRNN fusion model than in the BPNN model.

5. Conclusions and Future Work

This study innovatively introduced the GRNN method to improve the quality of the SMAP
SSM product by fusing it with the site-specific SSM data from four in-situ networks and one GNSS-R
network. The evaluation results obtained using a 10-fold cross-validation technique showed that the
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GRNN model outperformed the two other classical regression analysis methods (MLR and BPNN),
with a cross-validation R value of approximately 0.9 and a ubRMSE value of 0.044 cm® cm 3 using the
whole SMAP product, which demonstrated that GRNN can accurately describe the non-linear and
non-localized relationship between the site-specific SSM and SMAP SSM data. The further analysis of
the spatio-temporal performance of the GRNN model indicated that the point-surface fusion approach
has the capacity to provide reasonable information for improving the quality of the SMAP SSM product.
Besides, the comparisons between the results using the whole SMAP product and the quality controlled
SMAP product (only “recommended” SSM values) show that the proposed GRNN fusion model has
the capacity to improve the quality of both “non-recommended” and “recommended” SSM values,
which further suggests the added-value of our approach. Finally, quality-improved SSM maps were
produced based on the trained GRNN model, and they showed spatial patterns consistent with the
site-specific SSM values, as well as the topography of the land surface. The fusion test comparing the
results obtained with and without the GNSS-R sites showed that the incorporation of the GNSS-R
sites was beneficial for the synergy scheme, to a certain degree, and it was suggested that not only
the in-situ sensors but also the GNSS-R equipment can be regarded as important soil moisture data
sources in effective environmental monitoring.

Our future work with regard to the ideology proposed in this paper will focus on the following
three aspects: First, because the proposed multi-source point-surface data fusion method is not just
applicable to the SMAP mission, it could also serve to improve the quality of other satellite-derived soil
moisture products. Therefore, other satellite missions such as SMOS and ASCAT will be considered
in our experimental plan. Second, an in-depth investigation needs to be undertaken to explore the
contribution of auxiliary data to the satellite-derived SSM data and to the GRNN model performance.
Finally, in addition to the GRNN method used to construct the non-linear relationship between the
SMAP SSM and the site-specific SSM data, employing a state-of-the-art deep learning technique in our
synergy scheme may rival the performance of the GRNN model.
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