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Abstract: Integrated crop-livestock (ICL) systems combine livestock and crop production in the
same area, increasing the efficiency of land use and machinery, while mitigating greenhouse gas
emissions, and reducing production risks, plant diseases and pests. ICL systems are primarily
divided into annual (ICLa) and multi-annual (ICLm) systems. Projects such as the “Integrated
crop-livestock-forest Network” and the “Livestock Rally” have estimated the ICL areas for Brazil on
a state or regional basis. However, it remains necessary to create methods for spatial identification of
ICL areas. Thus, we developed a framework for mapping ICL areas in Mato Grosso, Brazil using
the Enhanced Vegetation Index time-series of Moderate Resolution Imaging Spectroradiometer and
a Time-Weighted Dynamic Time Warping (TWDTW) classification method. The classification of
ICL areas occurred in three phases. Phase 1 corresponded to the classification of land use from
2008 to 2016. In Phase 2, the ICLa areas were identified. Finally, Phase 3 corresponded to the ICLm
identification. The framework showed overall accuracies of 86% and 92% for ICL areas. ICLm
accounted for 87% of the ICL areas. Considering only agricultural areas or only pasture areas, ICL
systems represented 5% and 15%, respectively.

Keywords: time series; enhanced vegetation index; land-use intensification; Time-Weighted Dynamic
Time Warping (TWDTW); temporal pattern

1. Introduction

The need to increase food production and the restriction of agricultural expansion by
environmental policies led to the adoption of production systems with higher productivity and
lower environmental impacts, such as integrated crop-livestock (ICL) systems [1–5]. These systems
employ strategies that aim to increase the land production such as, the integrated use of land as
pastures for livestock and crop activities in succession, rotation, or intercropping [6–8]. In Brazil,
ICL systems are associated with an improvement in pasture conditions and an intensification in land
use [3,9,10]. The Brazilian Agriculture Ministry is aiming for four million new ICL areas by 2020 as
part of the Brazilian Low Carbon Agriculture Plan—ABC Plan [11].

The interaction between crop and livestock makes the nutrient cycle more efficient, improves
soil quality, and increases overall productivity [12–14]. Thus, integrated systems increase land and
machinery efficiency, mitigate greenhouse gas emissions, and reduce production risks, plant diseases,
and pests [15,16]. The ICL systems can be divided into two groups, annual and multi-annual [6]. In the
annual group, land is used for grain cultivation in summer and pasture cultivation for livestock in
winter. In the multi-annual ICL systems, usually for pasture reform, crop and pasture are cultivated in
different years in rotation or succession.
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The “Integrated crop-livestock-forest network” project (“Rede Integração-Lavoura-Pecuária”)
conducted interviews to estimate the extent of the ICL system areas in Brazil on a state scale [17].
With the support of the “ABC Plan”, the “Livestock Rally” project performs fieldwork campaigns to
understand and quantify livestock production and ICL systems in select regions in Brazil. Gil et al. [10]
quantified farms with different ICL system combinations on a municipal scale in the Brazilian state of
Mato Grosso. Despite these efforts to quantify ICL areas throughout Brazil, it is necessary to develop a
framework to identify the spatial distribution of ICL areas within the municipalities. Remote sensing
is an alternative approach for the systematic identification of ICL areas.

Remote sensing time-series are widely used to map agricultural land use and dynamics [18–21].
Vegetation index time-series show consistent results in the classification of pasture and crop
areas [22–27]. It is also used to study land-use changes, detecting different land-use patterns in
the same year (e.g., summer-crop and winter-crop) and over several years [28–33].

Many time-series classification methods have been developed to identify land use through remote
sensing time-series [20,34–36]. Among these methods, Maus et al. [29] developed a Time-Weighted
Dynamic Time Warping (TWDTW) method that improves the land-use classification in different years.
To improve the land-use classification within the same year, they used a Moderate Resolution Imaging
Spectroradiometer (MODIS) vegetation index time-series. The TWDTW method involves comparing
two time-series, finding the optimal time-alignment, and then generating a measure of the dissimilarity
(TWDTW distance), in which lower values indicate a greater similarity in the time-series temporal
behavior. The use of a vegetation index times-series and a TWDTW classification method showed
effectiveness compared with other classification methods, such as random forests [37].

Therefore, this study aims to develop a framework for mapping ICL system areas in a region of
Brazil using vegetation index time-series from MODIS and a TWDTW classification method.

2. Materials and Methods

2.1. Study Area

The study area is located in the Sinop, Cláudia, and Santa Carmém municipalities in the Mato
Grosso state of Central-Western Brazil, shown in Figure 1. Mato Grosso is among the states that
have the largest ICL areas in Brazil [10,17]. Since 2001, intensification in land use has occurred in this
region, moving from low-production pasture for cattle ranching to crop production or higher livestock
production [38].

In order to understand the distribution and arrangements of ICL systems in the study area,
three fieldwork campaigns were conducted. We visited properties that had adopted ICL systems and
attended technical meetings at research institutes in order to understand the integration of grain and
livestock production in the region. We gathered information about land management, historical land
use, and ICL systems.

In addition, to develop and understand the production systems, ground truth information of ICL
systems, crops (summer and winter crops), pasture, forest, and other land-use types were collected for
the classification framework during the fieldwork campaigns. Information gathered in the first (April
2016) and second (December 2016) field campaigns was used for training the classifier and validation,
while information collected from the third (June 2017) campaign was used only for validation.
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Figure 1. Study area: Sinop, Cláudia, and Santa Carmém municipalities in Northern Mato Grosso, 
Brazil. 

2.2. MODIS Data 

We chose to use the Enhanced Vegetation Index (EVI) product of the MODIS/Terra sensor as it 
had images recorded throughout the study period and adequate time resolution for seasonal 
agricultural identification [39–41]. Among the MODIS products available, we selected EVI from 
MOD13Q1, with a 16-day composition and 250 m spatial resolution [42]. Despite the absence of a 
consensus regarding the best vegetation index for classification [43–45], an EVI time-series is more 
sensitive for high biomass than the NDVI  and had been used in previous studies for the temporal 
characterization and identification of pasture and crop [24,46]. 

In the ICL classification framework, we used a total of 210 EVI images, from 31 June 2007 to 31 
September 2016. The Savitzky–Golay filter was applied to reduce the time-series noise across all 
periods [47], as shown in Figure 2. 

 
Figure 2. Examples of annual integrated crop-livestock (ICLa) and multi-annual integrated crop-
livestock (ICLm) Enhanced Vegetation Index (EVI) temporal behavior, non-filtered, and filtered by 

Figure 1. Study area: Sinop, Cláudia, and Santa Carmém municipalities in Northern Mato
Grosso, Brazil.

2.2. MODIS Data

We chose to use the Enhanced Vegetation Index (EVI) product of the MODIS/Terra sensor as it had
images recorded throughout the study period and adequate time resolution for seasonal agricultural
identification [39–41]. Among the MODIS products available, we selected EVI from MOD13Q1, with a
16-day composition and 250 m spatial resolution [42]. Despite the absence of a consensus regarding
the best vegetation index for classification [43–45], an EVI time-series is more sensitive for high
biomass than the NDVI and had been used in previous studies for the temporal characterization and
identification of pasture and crop [24,46].

In the ICL classification framework, we used a total of 210 EVI images, from 31 June 2007 to
31 September 2016. The Savitzky–Golay filter was applied to reduce the time-series noise across all
periods [47], as shown in Figure 2.
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Figure 2. Examples of annual integrated crop-livestock (ICLa) and multi-annual integrated
crop-livestock (ICLm) Enhanced Vegetation Index (EVI) temporal behavior, non-filtered, and filtered
by Savitzky-Golay method. The brackets highlight land-use changes between crop and pasture
across multiple agricultural years, and within an agricultural year, represented by ICLm and
ICLa, respectively.
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2.3. Field Data

Two types of in situ data were collected across the study area. The first type of ground truth was
the history of agricultural practices for individual fields. The focus was to record the location and years
where ICLa and ICLm systems occurred. A data acquisition protocol in which farmers/farm managers
participated in an interview was established. The participants indicated the property fields by drawing
polygons over a Landsat 8 OLI image and described the previous year’s land use in each area. If at
least one pixel from MODIS-250 m fitted inside the polygon, a point in the region was created with an
unmixed MODIS-250 m pixel. Otherwise, the polygon and the field information was discarded. Thus,
during the three fieldwork campaigns, 185 fields in 22 properties were recorded and validated. In the
first fieldwork campaign, the field locations were indicated by local researchers and, in the second
and third campaigns, the randomly selected points in the classification validation step guided the
field visits.

The second type of ground truth was collected in the first fieldwork campaign (April 2016).
It was conducted by local field observation for double-crop, single-crop, pasture, and forest. With a
Geographic Information System software, Global Positioning System information, Landsat 8 OLI
image, and MODIS-250 m pixel grid, fields were visited, and the points were recorded in the center of
a homogeneous field which size fitted in one unmixed MODIS 250 m pixel. As the campaign was in
April, it was possible to differentiate between single- and double-crop by the observation of winter
crops or fallow in crop areas. In total, 280 points were recorded, see Table 1.

Table 1. Number of field data/points collected by interviews and field observation, for 2016.

Class Interview Field Observation Total

ICLa 55 0 55
ICLm 69 0 69

Single Crop 0 41 41
Double Crop 33 198 231

Pasture 28 9 37
Forest 0 32 32
Total 185 280 465

From the field points, ten points were selected for each class, creating the training data set.
The selection of training data set points for ICLa, ICLm, Double-Crop (DC), and Pasture, were from
the interview data. The rest of the points were allocated in the test data set.

2.4. TWDTW Method

We selected a Time-Weighted Dynamic Time Warping (TWDTW) method for time-series
identification [29]. This method is an adaptation of the Dynamic Time Warping (DTW) method, and the
R software in the “dtwSat” package were used. Bagnall et al. [48] studied time-series classification and
reported that DTW-based methods were among the best performing time-series classification methods.
The DTW method involves the comparison of two time-series and subsequent generation of a measure
of the dissimilarity, in which lower values indicate a greater similarity in the time-series temporal
behavior. However, the DTW method is sensitive to temporal seasonality. In the TWDTW method,
Maus et al. [29], adapted the DTW method to find the optimal time-alignment and then generate a
measure of dissimilarity (TWDTW distance). Time variations occur in phenological cycles of natural
or planted vegetation.

In land-use classification, the identification of time-series was accomplished by defining temporal
patterns of land-use classes and generating TWDTW distances through the comparison of temporal
patterns with the time-series for each pixel. Each pixel was classified using the temporal pattern
with the lowest TWDTW distance, k-Nearest Neighbor where k = 1. The classification method was
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sufficiently robust to classify single-crops, double-crops, forest, pasture, and certain winter crops using
an EVI/MODIS time-series over several years [29,49].

The temporal patterns definition for TWDTW distance generation was created from training
samples obtained in the field campaigns. For each class created, the EVI time-series from the training
samples were grouped and the Generalized Additive Models (GAM) time-series filter was applied,
generating one temporal pattern for each class. The GAM time-series filter was chosen as it was
able to generate one time-series from a data set and could be successfully applied to remote sensing
data [29,50].

2.5. Classification

The classification framework was designed to detect the two ICL systems, ICLa and ICLm, in the
study area of 2016. The ICLa systems had detectable characteristics in one year (crop and pasture
in the same agricultural year), requiring classification only for the 2016 agricultural year (September
2015 up to August 2016). The ICLm systems present multi-year characteristics, and for this reason,
classification was necessary for each year between 2008 and 2016, as shown in Figure 2.

The following thematic classes were established for all classification processes: Forest, Pasture,
SC, DC, ICLa, and ICLm. During the phases of classification, described below, the thematic classes
may have been grouped or divided into subclasses to achieve better ICL differentiation, see Table 2.

Table 2. Description of land cover classes.

Class Description

ICLa Integrated crop-livestock in succession in the same area and year
ICLm Integrated crop-livestock in rotation or succession in the same area and in different years

SC Exclusive summer crop in a season
DC Summer and winter crops in a season

Pasture Natural or planted pasture areas
Forest Natural or planted forest areas

The classification of ICL areas occurred in three phases, as shown in Figure 3. The first
corresponded to the classification from 2008 to 2016 of Forest, Pasture, SC, and DC classes, using
a temporal period of one agricultural year (September to August). In the second phase, ICLa was
identified in a new period of analysis (June to August). In the third phase, an ICLm-class was identified
through the land-use change analysis, based on Phase 1 classification. Based on the “Terrclass 2014
project” urban areas, bodies of water, and mining areas were grouped in the class, Others [19].
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In the previous analysis, ICLa and DC classification was tested in one step using the annual
pattern, which resulted in a great misclassification among these two classes. Therefore, we decided to
group all the crops for the two seasons (summer and winter crops) in one class in the first classification
phase, and then classify DC and ICLa in the second classification phase. This approach was taken in
other studies, where the two-seasons classes were classified separately [24,37,40,46].

2.5.1. Phase 1

In this step, the classes, Forest, Pasture, SC, and DC + ICLa were classified from 2008 to 2016.
The class, DC + ICLa was created by grouping classes, DC and ICLa as they have similar EVI
temporal patterns, as shown in Figure 2. In both cases, cultivation of summer crops (usually soya) and
winter cultivation (grains for DC and pasture for ICLa) occur, generating a similar annual pattern of
vegetation index.

The annual temporal pattern for the classes, as shown in Figure 4a, was determined from the
training data collected in the field campaigns. The TWDTW distance was calculated for each class
from 2008 until 2016, as shown in Figure 4b. By comparison at the pixel level, the class with the lowest
value of TWDTW distance was assigned to the pixel.
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2.5.2. Phase 2

In Phase 2, the areas classified as DC + ICLa in 2016 were separated into DC and ICLa. The winter
crop season (June to August) was defined as the period of analysis. After the first tests with TWDTW
distance for DC and ICLa separation, the misclassification of cotton cultivation areas as ICLa was
observed. Therefore, another class, Cotton, was created at this stage and later reincorporated into DC.
Based on field training samples, the temporal patterns for the three classes in this stage (ICLa, Cotton,
and DC) were established, and the TWDTW distances for each pattern were generated, see Figure 5.
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In the areas classified as DC + ICLa in Phase 1 for the year 2016, the TWDTW distances for the
three thematic classes were compared. An area was considered to belong to the class ICLa when the
TWDTW distance of ICLa was lower than 2.2, and was the smallest among the other two classes (DC
and Cotton), see Figure 6. The definition of values lower than 2.2 occurred based on classification
tests. Areas classified as DC + ICLa in Phase 1 and not classified as ICLa in Phase 2 were considered to
belong to DC.
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2.5.3. Phase 3

In order to detect areas where ICLm occurred as either rotational systems or pasture reform
with crop integration, we analyzed changes in the land-use classification between crops and pasture,
during 2008–2016.

To be classified as ICLm, pixels were required to have had at least twice the land-use
changes–Pasture-Crop (DC or SC), Pasture or Crop (DC or SC), or Pasture-Crop (DC or SC). At least
two consecutive years of pasture permanence were also required to avoid including areas that were
mistakenly classified as pasture areas in Phase 1. Further, to exclude areas of recent conversion to
crop in ICLm, areas classified as crop (SC or DC) since 2014 were not regarded as ICLm, as shown in
Figure 6. The classification for the final year, 2016, was evaluated by merging the results generated in
Phases 2 and 3. If the same pixel was classified as ICLa and ICLm, the pixel was classified as ICLa.

2.6. Classification Validation

We validated the ICL classification and Phase 1 classification in two different manners;
on randomly selected control points and on field data. This was necessary because our field data does
not cover the entirety of the study area and is limited to the 2016 classification. The ICL ground truth
is difficult to record; therefore an interview protocol is necessary. The randomly selected control points
approach made the validation of all study areas over all time periods in Phase 1 possible.

2.6.1. Validation of the MODIS Classification on Randomly Selected Control Points

Phase 1 validation was carried out through analysis of 400 randomly distributed pixels for each
year from 2008 to 2016, generating the confusion matrix. The reference for each validation pixel was
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obtained based on the EVI time-series interpretation. For 2016 classification, 52 points from the test
data set were used for validation.

For ICL classification validation, 114 stratified pixels were generated randomly within the
area classified as ICL, and 86 stratified pixels were generated randomly outside this area. Pixels
in areas classified as ICLa were validated with a visit to the area to collect land-use information.
This was necessary, as areas of ICLa, Cotton, and DC are not clearly distinguishable using only
the visual interpretation of EVI time-series. For pixels in ICLm areas and outside the ICL areas,
verification was based on an EVI time-series visual interpretation and the conditions used in the Phase
3 classification. Visits were made for collecting information on the land-use history of 20 ICLm and
five double-crop areas.

2.6.2. Validation of the MODIS Classification on Field Data

The validation of field data was performed for ICL and Phase 1 classification for the year 2016,
using all 405 points of the test data set. For Phase 1 2016 classification, a test data set was reordered for
the four classes, DC + ICLa, SC, Pasture, and Forest. For ICL classification, the ICL classes merge into
one class with non-ICL classes in another.

3. Results

3.1. Validation of the MODIS Classification on Randomly Selected Control Points

In Phase 1, the classifications for DC + ICLa, SC, Pasture, and Forest over the time range of
2008–2016 were generated, as shown in Figure 7. By analyzing the confusion matrix of the Phase 1
classification on randomly selected control points, shown in Table 3, it was found that the overall
classification accuracy varied between 86–91%. The crop classes, DC + ICLa and SC, presented a
user´s accuracy (UA) between 0.60–0.88, and a producer´s accuracy (PA) between 0.61–0.87. The higher
amount of errors observed for SC were in the DC + ICLa and Pasture, and for DC + ICLa, were in the
SC and Pasture classes. Apart from the year 2016, misclassification within DC + ICLa and SC did not
influence the ICLm classification. This is because, in the analysis on conversion between crop and
pasture in Phase 3, crop classes were grouped. The Pasture class had a UA of 0.65–0.81 and a PA of
0.68–0.84, and errors mainly occurred in classes, SC and Forest. Forest had the largest separation from
the other classes with a UA and PA ranging from 0.94–0.99. The classification of DC + ICLa for the year
2016 was made based on the ICLa identification and because the highest UA and PA values, 0.87 and
0.88, respectively, were recorded in this year.

Using the proposed ICL classification framework and validation on randomly selected control
points, an overall accuracy of 86% was achieved, as shown in Table 4. The UA and PA were 0.80 and 0.94,
respectively. Evaluation of the ICL-class classifications, ICLa and ICLm, showed that the crop classes
(SC and DC) generated the greatest errors in Phases 1 and 2 of the classification, see Table 5. For the
ICLa class, the greatest errors occurred in the differentiation of the targets in Phase 2, with difficulty in
the separation of ICLa and Cotton. As shown in Figure 5, these two classes had a similar temporal
pattern. The highest misclassification errors for ICLm arose when differentiating between Pasture and
SC. This led to errors in Phase 3 of the classification as the detection of a land-use change for ICLm
generation was compromised. Errors in differentiating between SC and DC occurred in the year 2016,
due to a long period of drought during the winter harvest season. However, such errors did not affect
the classification of ICL areas significantly.
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Table 3. Confusion matrices and accuracy statistics for Phase 1 classification, validation on randomly
selected control points. Note: P, pasture; F, forest; O, other uses; UA, user´s accuracy; PA, producer´s
accuracy; OA, overall accuracy.

2008 Reference 2009 Reference

Map DC + ICL SC P F O Total UA PA DC + ICL SC P F O Total UA PA

DC + ICL 52 8 2 0 1 63 0.83 0.88 55 5 2 1 0 63 0.87 0.73
SC 6 31 8 4 0 49 0.63 0.76 6 24 8 2 0 40 0.60 0.71
P 5 10 42 2 0 59 0.71 0.84 13 3 40 1 2 59 0.68 0.69
F 1 0 10 210 0 221 0.95 0.97 0 2 8 223 0 233 0.96 0.98
O 0 0 0 1 7 8 0.88 0.75 1 0 0 0 4 5 0.80 0.67

Total 64 49 62 217 8 OA: 0.86 75 34 58 227 6 OA: 0.87

2010 Reference 2011 Reference

Map DC + ICL SC P F O Total UA PA DC + ICL SC P F O Total UA PA

DC + ICL 43 12 5 2 0 62 0.69 0.75 40 14 4 6 0 64 0.63 0.74
SC 4 41 2 0 0 47 0.87 0.68 1 35 3 1 0 40 0.88 0.61
P 9 5 40 8 0 62 0.65 0.83 6 7 34 1 0 48 0.71 0.71
F 1 2 1 220 0 224 0.98 0.96 6 1 7 229 0 243 0.94 0.97
O 0 0 0 0 5 5 1.00 1.00 1 0 0 0 4 5 0.80 1.00

Total 57 60 48 230 5 OA: 0.87 54 57 48 237 4 OA: 0.86

2012 Reference 2013 Reference

Map DC + ICL SC P F O Total UA PA DC + ICL SC P F O Total UA PA

DC + ICL 49 3 3 2 0 57 0.86 0.71 64 3 5 3 0 75 0.85 0.77
SC 5 20 4 3 0 32 0.63 0.67 11 28 2 2 0 43 0.65 0.78
P 14 3 52 2 0 71 0.73 0.84 6 3 37 2 0 48 0.77 0.76
F 1 4 2 225 2 234 0.96 0.97 2 2 5 219 0 228 0.96 0.96
O 0 0 1 0 5 6 0.83 0.71 0 0 0 2 4 6 0.67 1.00

Total 69 30 62 232 7 OA: 0.88 83 36 49 228 4 OA: 0.88

2014 Reference 2015 Reference

Map DC + ICL SC P F O Total UA PA DC + ICL SC P F O Total UA PA

DC + ICL 52 7 8 0 0 67 0.87 0.75 66 3 3 4 1 77 0.86 0.81
SC 5 27 5 3 1 41 0.71 0.71 10 22 4 0 0 36 0.61 0.76
P 10 4 36 4 0 54 0.81 0.72 3 3 39 6 0 51 0.76 0.80
F 1 0 1 229 1 232 0.99 0.97 2 1 3 226 0 232 0.97 0.95
O 1 0 0 0 5 6 1.00 0.71 0 0 0 1 3 4 0.75 0.75

Total 69 38 50 236 7 OA: 0.87 81 29 49 237 4 OA: 0.86

2016 Reference

Map DC + ICL SC P F O Total UA PA

DC + ICL 58 6 2 1 0 67 0.87 0.88
SC 4 32 6 2 1 45 0.71 0.76
P 3 4 46 4 0 57 0.81 0.84
F 1 0 1 222 1 225 0.99 0.97
O 0 0 0 0 6 6 1.00 0.75

Total 66 42 55 229 8 OA: 0.91

Table 4. Confusion matrices and accuracy statistics for integrated crop-livestock classification,
validation on randomly selected control points.

Reference

Map ICL Others Total UA PA

ICL 91 6 97 0.94 0.80
Others 23 80 103 0.78 0.93
Total 114 86 OA: 0.86
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Table 5. Integrated crop–livestock classification errors origins.

Errors
ICLa ICLm

%

Classification Phase 1—pasture inclusion error 8 32
Classification Phase 1—SC or DC inclusion error 4 40

Classification Phase 1—other classes inclusion error 1 0
Classification Phase 2—DC inclusion or omission error 6 -

Classification Phase 2—Cotton inclusion error 9 -

Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 18 

 

Table 4. Confusion matrices and accuracy statistics for integrated crop-livestock classification, 
validation on randomly selected control points.  

 Reference    

Map ICL Others Total UA PA 
ICL 91 6 97 0.94 0.80 

Others 23 80 103 0.78 0.93 
Total 114 86  OA: 0.86 

Table 5. Integrated crop–livestock classification errors origins.  

Errors 
ICLa ICLm 

% 
Classification Phase 1—pasture inclusion error 8 32 

Classification Phase 1—SC or DC inclusion error 4 40 
Classification Phase 1—other classes inclusion error 1 0 

Classification Phase 2—DC inclusion or omission error 6 - 
Classification Phase 2—Cotton inclusion error 9 - 

 
Figure 7. Phase 1 classification for the years 2008–2016. 

3.2. Validation of the MODIS Classification on Field Data 

The confusion matrix generated from the classification validation on field data for the Phase 1 
2016 classification had an accuracy of 0.93, see Table 6. The classes, DC + ICLa, Pasture, and SC 
presented a UA between 0.79–0.97 and PA between 0.84–0.94. A larger quantity of errors was found 
in the misclassification of DC + ICLa and Pasture, and DC + ICLa and SC. The ICL classification for 

Figure 7. Phase 1 classification for the years 2008–2016.

3.2. Validation of the MODIS Classification on Field Data

The confusion matrix generated from the classification validation on field data for the Phase
1 2016 classification had an accuracy of 0.93, see Table 6. The classes, DC + ICLa, Pasture, and SC
presented a UA between 0.79–0.97 and PA between 0.84–0.94. A larger quantity of errors was found in
the misclassification of DC + ICLa and Pasture, and DC + ICLa and SC. The ICL classification for the
year 2016, achieved an overall accuracy of 92%, as shown in Table 7. The UA and PA were 0.80 and
0.94, respectively.
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Table 6. Confusion matrices and accuracy statistics for Phase 1 classification, validation on field data.

2016 Reference

Map DC + ICL SC P F Total UA PA

DC + ICL 273 2 7 0 282 0.97 0.94
SC 7 26 0 0 33 0.79 0.84
P 9 3 55 0 67 0.82 0.87
F 0 0 1 22 23 0.96 1.00

Total 289 31 63 22 OA: 0.93

Table 7. Confusion matrices and accuracy statistics for integrated crop-livestock classification,
validation on field data.

Reference

Map ICL Others Total UA PA

ICL 89 9 98 0.91 0.86
Others 15 282 297 0.95 0.94
Total 104 301 OA: 0.92

3.3. Integrated Crop–Livestock Systems Area

The ICL area in 2016 was 219.18 km2, see Table 8, with ICLa and ICLm areas accounting for
28.28 km2 and 190.90 km2, respectively. Multi-year systems (ICLm) accounted for 87% of the ICL areas.
The area covered by forests is the largest in this region, followed by agriculture and pasture. The ICL
systems represented 5% of the total agricultural area found within the study area. If only the pasture
is considered, the ICL areas represent 15% of the total area. Indicating that a significant number of
livestock producers in the region intensified production by using integrated systems.

Table 8. Classification area, percentage of total agricultural areas and percentage of pasture area.

Area (km2)
Agriculture Pasture

Class Area (%) Area (%)

ICL 219.18 5 15
ICLa 28.28
ICLm 190.90

Crop 3293.99 69 -

Pasture 1241.17 26 85

Forest 6817.76 - -

4. Discussion and Conclusions

The framework presented herein provided a good accuracy overall in land-use classification
and ICL classification, shown in Figure 8. The largest errors for the classes ICLm and ICLa, were
distinguishing cotton cultivation and the misclassification between pasture and crop, respectively.
The classification techniques proved to be efficient for the characteristics of the land uses in the region.
The ICL systems made up 5% of the total agricultural area and 15% of the total pasture area in the
study area.
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The proposed framework could detect ICL areas within the Sinop, Mato Grosso region.
The detection of ICL areas in other regions of Mato Grosso or Brazil will require methodological
adjustments due to the possible presence of other land uses, such as sugarcane, natural pastures,
and double-crop combinations. However, in regions with the exclusive presence of forest, grains,
pasture, and similar ICL systems, only a few adjustments related to the locality may be necessary,
such as different periods for establishing the EVI temporal patterns and the creation of new classes in
classification Phases 1 and 2.

The overall ICL classification accuracies, in the two validations, were similar to those reported by
previous studies that classified summer and winter crops in Mato Grosso using a MODIS vegetation
index. Using MODIS/NDVI, Chen et al. [40] classified six crop arrangements; the soya-pasture
(ICLm) class had a UA of 0.81 and PA of 0.74. Maus et al. [29] demonstrated the functionality of the
TWDTW method for property-scale classification with an overall accuracy of 90%. The classification by
Arvor et al. [46] was in two phases; first, the land uses of Cerrado, forest, agriculture, and pasture in
the state of Mato Grosso, obtaining an accuracy rate of 86%; second, five crop arrangements obtaining
an accuracy rate of 74%.

The most difficult step in this study was the validation step. The reference data obtained from the
collected field information was fundamental for validating the accuracy of the classification. However,
in ICL areas, the process for obtaining reference information was more complex. This is because,
in most cases, it was not possible to determine whether ICL systems were adopted with a single visit
to the study area; therefore, either more than one visit was required during the study period or it was
necessary to determine the land-use history by interviewing the landowners.

Despite the differences in the two validation methods, the results for the Phase 1 2016 classification
did not have large differences and obtained similar values of UA and PA. For ICL classification the
validation on field data had a higher accuracy and consequently, more accurate UA and PA values.
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The choice of MODIS/Terra in this study was due to the temporal resolution and images
available from 2007 to 2016. However, satellite-derived products, such as Landsat-8 OLI, Sentinel-2A,
and Sentinel-2B are not sufficiently long-lasting to cover an ICL period of analysis. In the next few years,
there is the potential for integrated systems to use these products individually or with fusion techniques,
as several studies have shown good results for mapping and monitoring agriculture [20,37,51,52].
Despite the different characteristics of the products, a united source of Landsat-8 and Sentinel-2
data can provide 10–30 m information and produce more frequent observations for monitoring [20].
The TWDTW method had certain applications with Landsat-8 OLI and Sentinel-2 products [37,49,53].
The exploration of the TWDTW method with other classification techniques offers an opportunity
for future studies. Belgiu and Csillik [49] showed good results when they combined object-oriented
classification and the TWDTW method.
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