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Abstract: The arid region of northwest China provides a unique terrestrial ecosystem to identify
the response of vegetation activities to natural and anthropogenic changes. To reveal the influences
of climate and anthropogenic factors on vegetation, the Normalized Difference Vegetation Index
(NDVI), climate data, and land use and land cover change (LUCC) maps were used for this study.
We analyzed the spatiotemporal change of NDVI during 2000–2015. A partial correlation analysis
suggested that the contribution of precipitation (PRE) and temperature (TEM) on 95.43% of observed
greening trends was 47% and 20%, respectively. The response of NDVI in the eastern section of the
Qilian Mountains (ESQM) and the western section of the Qilian Mountains (WSQM) to PRE and
TEM showed opposite trends. The multiple linear regressions used to quantify the contribution of
anthropogenic activity on the NDVI trend indicated that the ESQM and oasis areas were mainly
affected by anthropogenic activities (26%). The observed browning trend in the ESQM was attributed
to excessive consumption of natural resources. A buffer analysis and piecewise regression methods
were further applied to explore the influence of urbanization on NDVI and its change rate. The study
demonstrated that urbanization destroys the vegetation cover within the developed city areas and
extends about 4 km beyond the perimeter of urban areas and the NDVI of buffer cities (counties)
in the range of 0–4 km (0–3 km) increased significantly. In the range of 5–15 (4–10) km (except for
Jiayuguan), climate factors were the major drivers of a slight downtrend in the NDVI. The relationship
of land use change and NDVI trends showed that construction land, urban settlement, and farmland
expanded sharply by 171.43%, 60%, and 10.41%, respectively. It indicated that the rapid process of
urbanization and coordinated urban-rural development shrunk ecosystem services.

Keywords: growing season NDVI; climate factor; vegetation activities; anthropogenic disturbance;
land use change

1. Introduction

Vegetation, as an essential portion of terrestrial ecosystems, plays a pivotal role in regulating
the carbon cycle, climate change, and energy exchange through photosynthesis, evapotranspiration,
and surface albedo [1–4]. Changes in vegetation activity were mainly affected by biogeochemical effects
and socio-economic factors on a global scale [5,6]. Among them, the biogeochemical effects mainly
include the “fertilization effects” of CO2, regional climatic change, and nitrogen deposition [7,8].
Anthropogenic activities especially include land use change and socio-economic factors [9,10].
Thus, changes in vegetation activities often serve as powerful indicators of the response to climate
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variability and anthropogenic activities [4,11]. On a regional scale, changes in vegetation greenness are
affected by climate variability and anthropogenic factors [12,13]. Even anthropogenic disturbances
on a small-scale and at low intensity can induce long-term changes in vegetation patterns and land
use [14].

A Normalized Difference Vegetation Index (NDVI) could monitor and estimate vegetation
activities over different spatiotemporal scales without damaging or altering vegetation [15,16].
Therefore, it is widely used to study vegetation activities, such as greening and browning [8,17].
Considering the differences in responses of vegetation activities to climate variability under various
eco-environmental conditions [18,19], some authors have established correlations between an NDVI
and the main climate factors to study vegetation changes at global and regional scales, especially in
arid and semi-arid regions [12,20–23]. Recently, the disturbance of anthropogenic activities, such as
urbanization [24,25], agricultural activities [26], and implementation of ecological management
policies [27] in vegetation, is becoming increasingly prominent. The impact of socio-economic factors
on vegetation in small areas or even a wider range cannot be ignored [6,9,10,25]. Thus, the relationship
among the spatiotemporal distribution of vegetation, climate, and anthropogenic factors has
currently become a popular topic in the study of changes in vegetation trends [4,11,28].
Furthermore, vegetation trends are disturbed by the process of urbanization and industrialization,
where land use change has caused the degradation of vegetation that has caught the attention of the
scholars [14,24,29,30]. Relatively large-scale anthropogenic disturbances across major regions have
been caused by urbanization, while currently, most studies are focused on arctic regions [14,29,31,32].
The large-scale effects posed by anthropogenic disturbance on vegetation trends in China are still
poorly understood [24,30]. Hence, this study aimed to reveal the apparent vegetation trends in the
Hexi Corridor, which is disturbed by urbanization and industrialization.

The Hexi Corridor is located in the arid region of northwest China. The oasis only occupies 4–5%
of the total study area, but anthropogenic activities in this area are the most intensive. Due to the
population explosion, especially the accelerating process of urbanization and industrialization, the oasis
vegetation has been subjected to varying degrees of anthropogenic disturbance [33,34]. Anthropogenic
activities and climate variations have caused serious damage to the ecological environment, vegetation
growth, and land resources in the Hexi Corridor in recent years [35,36]. The government and
scholars have paid greater attention to understand the driving mechanisms deeply and control
degradation development [13,35–38]. The previous studies about vegetation in the arid region of
northwestern China focused on a larger scale (mostly at the global and national scales) [39,40] or
a local scale [35,36,41]. Several studies mainly focus on the single impact of climate change [13],
desertification [11], water management [41], and sparse alpine vegetation [36]. However, a spatial
analysis and quantitative research about the trends of inner vegetation change, its change rate,
and driver factors in the study area is relatively scarce.

Within this context, the main objective of this study was to determine the spatiotemporal changes
of vegetation activities and their response to climatic and anthropogenic drivers by using spatial
quantitative expressions of climate and anthropogenic factors and to verify whether arid areas
will experience a temporal shift in greening as temperature increases. In view of the disturbance
of urbanization and industrialization, further studies were conducted to research the influence of
anthropogenic disturbance on vegetation variations. In addition, this study aimed to provide the
scientific basis for determining future patterns of water availability and the ecological environment
of oases and to promote regional social-economic sustainable development. Based on the hypothesis
that the main contents of this article are as follows: (1) to investigate the spatiotemporal variation
characteristics of vegetation greening or browning trends in the Hexi Corridor from 2000 to 2015; (2) to
use the remote sensing and meteorological data of the growing season to explore the relationship
between climatic factors and NDVI, and then use the adjusted multiple coefficients of determination
(adj-R2) to quantitatively analyze the contribution of climate and anthropogenic factors to vegetation
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trends; and (3) to quantitatively study the effect of anthropogenic disturbance on vegetation activities
within the study area.

2. Study Area and Data Sources

2.1. Study Area

The Hexi Corridor (37◦15′–42◦49′N, 92◦44′–104◦14′E) is located in northwest Gansu province.
It starts from Wushao Mountain in the east and stretches to Jade Gate Pass to the west and is
surrounded by the Qilian Mountains, Mazong Mountain, Heli Mountain, and Longshou Mountain.
It is approximately 1000 km long from east to west, and the whole area is approximately 276,000 km2,
which includes the five prefecture-level cities of Wuwei, Jinchang, Zhangye, Jiuquan, and Jiayuguan
(Figure 1). The mean annual precipitation (PRE) of the Hexi Corridor is 111.0 mm (maximum 353.1
mm and minimum 15.1 mm); the mean annual temperature (TEM) is 14.7 ◦C (maximum 20.1 ◦C and
minimum 0.9 ◦C). The total annual solar radiation approximately is 5500–6400 MJ/m2. The elevation
of the study area ranges from 798 m to 5662 m (Figure 1). The vegetation of this area shows
unique vertically zonality characteristics because of the combined effects of complex topography
and atmospheric circulation (Figure 2b). The north of the Hexi Corridor is adjacent to the Badain
Jaran Desert and mainly consists of sparse desert and temperate grassland drought-tolerant vegetation.
The southern area, adjacent to the north piedmont of Qilian Mountains, is cold and damp and mainly
contains meadow and alpine vegetation; the western area, adjacent to Kumtag Desert, contains mainly
desert and meadow vegetation; the eastern area, adjacent to the Tengger Desert, mainly contains
desert, grassland, and cultivated plants (Figure 2b). There is 1334.75 km2 of alpine glaciers in the
southern high altitudes of the study area, and it is the source of three inland rivers, such as the Shiyang
River, Heihe River, and Shule River. There are also oasis areas with developed irrigation agriculture
(the area of farmland is approximately 6853.3 km2) in the midstream of those three inland rivers,
which make this area an important grain-base of northwestern China. The natural and social features
provide a distinct terrestrial ecosystem for exploring the responses of vegetation activities to the climate
variability and anthropogenic change.Remote Sens. 2018, 10, x FOR PEER REVIEW  4 of 21 

 

 

Figure 1. The study area in northwest China. White dots represent study sites (A–J in this study 

represent Jade Gate Pass, Akesai, Dunhuang, Subei, Jiayuguan, Jiuquan, Zhangye, Minle, Jinchang, 

and Wuwei, respectively). Black triangles represent mountains (K–N in this study represent Wushao 

Mountain, Mazong Mountain, Heli Mountain, and Longshou Mountain, respectively). 

 

Figure 2. Maps of population density (a) and vegetation types (b) of the Hexi Corridor in 2010. 

2.2. Data Sources and Processing 

2.2.1. NDVI Dataset 

A monthly maximum-value MODIS (MODerate Resolution Imaging Spectroradiometer) NDVI 

dataset at 500 m spatial resolution during the period of 2000–2015 was derived from the MODIS 

NDVI data set provided by the International Scientific & Technical Data Mirror Site, Computer 

Network Information Center, and Chinese Academy of Sciences (http://www.gscloud.cn). This study 

used MODIS datasets because several studies demonstrated that the differences and shifts of 

National Oceanic and Atmospheric Administration the Advanced Very High Resolution Radiometer 

(NOAA AVHRR) and Système Pour l'Observation de la Terre VEGETATION (SPOT-VGT) sensors 

caused temporal inconsistency and thus affecting the trend analysis [42,43]. Therefore, there are 

uncertainties in the analysis of vegetation trends based on these NDVI datasets. NDVImax is often 

applied in long-term and large-scale climate changes in environmental studies [29]. This study used 

the Maximum Value Composite (MVC) method to obtain time-series NDVImax data of the growing 

season (defined as April to October months), which could weaken the effect of residual clouds, 

atmospheric perturbations, shadows, the solar zenith angle, and aerosol scattering in the ENVI 

environment [44]. To avoid a spurious NDVI trend induced by winter snow and bare and sparsely 

vegetated grids, the pixels with growing season NDVImax < 0.1 were marked as non-vegetated area 

Figure 1. The study area in northwest China. White dots represent study sites (A–J in this study
represent Jade Gate Pass, Akesai, Dunhuang, Subei, Jiayuguan, Jiuquan, Zhangye, Minle, Jinchang,
and Wuwei, respectively). Black triangles represent mountains (K–N in this study represent Wushao
Mountain, Mazong Mountain, Heli Mountain, and Longshou Mountain, respectively).
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Figure 2. Maps of population density (a) and vegetation types (b) of the Hexi Corridor in 2010.

2.2. Data Sources and Processing

2.2.1. NDVI Dataset

A monthly maximum-value MODIS (MODerate Resolution Imaging Spectroradiometer) NDVI
dataset at 500 m spatial resolution during the period of 2000–2015 was derived from the MODIS NDVI
data set provided by the International Scientific & Technical Data Mirror Site, Computer Network
Information Center, and Chinese Academy of Sciences (http://www.gscloud.cn). This study used
MODIS datasets because several studies demonstrated that the differences and shifts of National
Oceanic and Atmospheric Administration the Advanced Very High Resolution Radiometer (NOAA
AVHRR) and Système Pour l’Observation de la Terre VEGETATION (SPOT-VGT) sensors caused
temporal inconsistency and thus affecting the trend analysis [42,43]. Therefore, there are uncertainties
in the analysis of vegetation trends based on these NDVI datasets. NDVImax is often applied in
long-term and large-scale climate changes in environmental studies [29]. This study used the Maximum
Value Composite (MVC) method to obtain time-series NDVImax data of the growing season (defined as
April to October months), which could weaken the effect of residual clouds, atmospheric perturbations,
shadows, the solar zenith angle, and aerosol scattering in the ENVI environment [44]. To avoid a
spurious NDVI trend induced by winter snow and bare and sparsely vegetated grids, the pixels with
growing season NDVImax < 0.1 were marked as non-vegetated area and masked out. Coded Python
scripts in the ArcGIS environment were used in the above NDVI extraction processes.

2.2.2. Climate Datasets

The climate data sets from 38 meteorological stations in and around the Hexi Corridor (including
15 in the study area and 23 in surrounding areas) during 2000–2015 were provided by the China
meteorological data sharing service system (http://cdc.cma.gov.cn). We hypothesized that the effect
of climate factors (TEM, PRE, solar radiation, relative humidity, wind speed, and so on) on vegetation
activities is stronger. The Pearson’s correlation analysis was applied to analyze the correlations between
NDVI, TEM, PRE, solar radiation, relative humidity, wind speed, and so on. The results showed that
the cumulative precipitation and mean temperature in the growing season had a significant effect
on vegetation dynamics. A co-kriging interpolation method based on the Geostatistical Analyst
module in arcGIS 10.3 was applied to obtain the monthly interpolated PRE and TEM data sets.
The elevation and latitude, significantly correlated with PRE and TEM in meteorological elements
respectively, were introduced into the climate data interpolation to improve the interpolation accuracy.
After cross-validation, the precision of spatial interpolation basically met the analysis requirements (the
root mean squared error of interpolated PRE and TEM data sets was 1.05 mm and 0.85 ◦C, respectively).
To maintain consistency with the temporal and spatial resolution of the NDVI data, this study applied
an accumulate algorithm and average algorithm for growing season PRE and TEM, respectively.
The PRE and TEM datasets for the growing season with 500 m spatial resolution in the Hexi Corridor
were obtained to spatial match the growing season NDVI datasets.

http://www.gscloud.cn
http://cdc.cma.gov.cn
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2.2.3. Other Geospatial Ancillary Data

The digital elevation model (DEM) data set with a spatial resolution of 30 m was provided by
the International Scientific & Technical Data Mirror Site, Computer Network Information Center,
and Chinese Academy of Sciences (http://www.gscloud.cn). Land use and land cover change
(LUCC) maps (digitized 1:100,000) in 2000, 2010, and 2015, vegetation types (scale: 1:1,000,000),
and population datasets were provided by the Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn), and LUCC, vegetation
type, and population datasets in 2010 were considered as the average state in 2000–2015 (Figure 2).
The originally LUCC datasets were made by visual interpretation based on a Landsat-8 remote sensing
image and were divided into six major types (including farmland, forested land, grassland, water area,
unused land, and urban and rural settlement) and 25 sub-classes. To describe the land use change of
the Hexi Corridor better and emphasis on land use types derived by urbanization, this study added
several sub-classes such as urban settlement, rural settlement, and other construction land. The LUCC
was reclassified into eight types on the raster maps accordingly based on the physical-geographical
conditions and land use status of the study area: (1) farmland, (2) forested land, (3) grassland, (4) water
area, (5) urban settlement, (6) rural settlement, (7) other construction land, and (8) unused land (mainly
includes Gobi, bare rocky land and sandy land) (Figure 3).Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 21 
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3. Methods

3.1. Time-Series Analysis Method

The least squares linear regression model was used in this study to obtain the spatial change trend
of the growing season NDVImax during 2000–2015 (Formula (1)). A positive slope value indicates
an increasing trend of NDVI. A negative slope value indicates a decreasing trend of NDVI, and a
slope of zero shows that NDVI is steady and has no change trend. Simultaneously, the significance
of the NDVImax trend was examined by an F test at a confidence level of 95%, which was divided
into an insignificant trend (p > 0.05), a significant trend (p ≤ 0.05), and a highly significant trend
(p ≤ 0.001) accordingly. For evaluating the state of vegetation better, the slope was divided into five
levels: a significantly negative trend (slope < 0, p ≤ 0.05), a slightly negative trend (slope < 0, p > 0.05),

http://www.gscloud.cn
http://www.resdc.cn
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slightly positive trend (slope > 0, p > 0.05), a significant positive trend (slope > 0, 0.001 < p ≤ 0.05),
and a highly positive trend (slope > 0, p ≤ 0.001). To detect the long-term change in vegetation trends,
the change rate (Si) was used to describe the relative change in NDVI pixel-by-pixel, as calculated by
Formula (2).

Slope =
n× Σn

i=1(i× NDVIi)− Σn
i=1i× Σn

i=1NDVIi

n× Σn
i=1i2 −

(
Σn

i=1i
)2 (1)

Si =
slopei

(1/n)× Σn
i=1NDVIi

(2)

where Slope is the trend in vegetation changes, n is equal to 16, i is the order of the year from 1 to 16 in
the study period, and NDVIi is the mean growing season NDVI in the ith year.

3.2. Relationship Analysis of Climate Factors and NDVI

A partial correlation analysis is an effective method to study the sensitivity of vegetation greenness
to TEM and PRE [4]. It can exclude the influence of a third factor and only estimate the correlation
between the two variables when the two variables are associated with the third variable at the same
time [45]. The significance level of the correlations of NDVI with PRE and TEM was examined by a
t-test. Based on the results of the significance test and the partial correlation analysis, the correlations
were classified according to values of r and p: significantly positive correlation (r ≥ 0 and p ≤ 0.05),
insignificantly correlation (r > 0 or r < 0 and p > 0.05), and significantly negative correlation (r < 0 and
p ≤ 0.05).

3.3. Multiple Regression Analysis of Anthropogenic Factors and NDVI

To quantify the impact of anthropogenic factors on the NDVI trend, the multiple linear regression
analysis of climate factors and NDVI was first used to evaluate the total effects of PRE and TEM
on NDVI activities. Because it is usually interpreted as the percentage of the total variation of the
dependent variable (herein, NDVI), adj-R2 could be explained by all independent variables (herein,
PRE and TEM) adjusted to the number of variables used [45]. Thus, adj-R2

climate was used to show
the effect of total climate factors on NDVI trends in this study. The remaining fraction (i.e., subtract
adj-R2

climate from one) was preliminarily applied to explore the impacts of anthropogenic factors
on NDVI trends [4]. The smaller adj-R2 means that more NDVI trends can be interpreted with
anthropogenic factors and vice versa. An F-test at the confidence level of 95% was introduced to
examine the significance of the adj-R2.

3.4. Buffer Analysis Method

Anthropogenic activities have the characteristics of uncertainty and complexity. Therefore,
screening some reasonable indices and then forming a system is the premise and is pivotal for the study
of influence of anthropogenic factors on vegetation. The selection method of the buffer zone is the
same as the one applied in Zhang et al. [31] and Esau et al. [29]. To make the selection of the buffer zone
more reasonable, based on population, two new indices of urban inhabitants and rural population and
population density were introduced into the article. The specific selected principles were: (1) buffer
zone was distinguished by city (county), where each city (county) buffer zone was broken into 15
(10) rings of 1-km width centered at the city (county) center zone; (2) the areas of urban settlement,
rural settlement, other construction land ≥ 20 km2; (3) population quantity ≥ 6000 inhabitations; and
(4) population density ≥ 200 people per km2. According to the above principles, Jiuquan, Zhangye,
and Wuwei were extracted as city buffer zones, and the county buffer zones were Dunhuang, Minle,
and Jiayuguan (Figure 3). Jiayuguan, as a prefecture-level city in terms of its administrative divisions,
has relatively advanced industrial and economic development. While considering the small population
and the population is mainly concentrated within a distance of 4 km range from the city center, it was
classified as a county-level buffer zone. This study intuitively hypothesized that the city core (the ring
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i = 1) with the strongest disturbance to vegetation cover and hypothesized that the rings i = 2. . . 15 (10)
where the area of disturbances progressively decreased with the distance from the city (county) center.

A piecewise regression model [46] was used to detect the potential turning points of the distance
and magnitude of the NDVI trend and the change rate in buffer cities and counties. Considering its
ability to detect a turning point in noisy time-series data, it has been generally used in the relationship
between NDVI changes and climate [47,48].

y = β0+β1t + ε (3)

y =

{
β0+β1t + ε(t ≤ α)

β0+β1t + β2(t− α) + ε(t > α)
(4)

where y is growing season NDVI, t is the buffer distance, α is the turning point (TP) of the NDVI
time-series, β0, β1, and β2 are regression coefficients (β0: intercept; β1: magnitude of the NDVI trend
before the TP; and β1 + β2: magnitude of NDVI trend after the TP), and ε is the residual random error.
The NDVI and its change rate were extracted in different buffer distances to discuss the change trends
of vegetation with increased distance from the city (county) center.

3.5. Transition Matrix for Land Cover Change Detection

A transition matrix, as the most classical method of detecting the land use change, has been
widely used to study the dynamics of LUCC. The basic method and calculation of the transition matrix
used were consistent with those published by Li et al. [49]. This study overlaid the land cover maps of
2000 and 2015 in ArcGIS 10.3 to produce a matrix that provided the categorical transition of land use
areas. The units of transition areas in land use are calculated by the number of pixels measuring 1 km
× 1 km. The extended transitional matrix (Table 1), wherein the rows (columns) mean the results of the
LUCC categories of 2000 (2015); the on-diagonal entries (in bold) display a persistence of categories.
The Loss column and the Gain row indicate the gross loss and gross gain by category in each land type
during 2000–2015, respectively. Meanwhile, this study used an approach proposed by Braimoh [50],
the loss-to-persistence ratio (lp = loss

persistence ) and gain-to-persistence ratio (gp =
gain

persistence ) were also
applied to evaluate the trend of each LUCC category to lose to and to gain from other categories.
The net change-to-persistence ratios (np, np = gp − lp) was applied to assess the net transition trend of
each LUCC category.

Table 1. Transitions in percentages of the total LUCC observed during 2000–2015 (%).

Year 2000
2015

Total (2000) Loss Net gain in 2015 Change in 2015
FaL FoL GL WL UL US RS CL

FaL 6.08 0.00 0.03 0.01 0.01 0.01 0.01 0.00 6.15 0.07 0.64 10.41
FoL 0.02 3.55 0.00 0.00 0.00 0.00 0.00 0.00 3.57 0.02 0.00 0.00
GL 0.21 0.01 22.07 0.01 0.02 0.01 0.00 0.01 22.34 0.27 -0.06 -0.27
WL 0.01 0.00 0.01 0.75 0.01 0.00 0.00 0.00 0.78 0.03 0.03 3.85
UL 0.47 0.01 0.17 0.04 65.88 0.01 0.01 0.11 66.70 0.82 -0.78 -1.17
US 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.03 60.00
RS 0.00 0.00 0.00 0.00 0.00 0.00 0.35 0.00 0.35 0.00 0.02 5.71
CL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.07 0.00 0.12 171.43

Total
(2015) 6.79 3.57 22.28 0.81 65.92 0.08 0.37 0.19 100 1.21

Gain 0.71 0.02 0.21 0.06 0.04 0.03 0.02 0.12 1.21

Notes: FaL, Farmland; FoL, Forested land; GL, Grassland; WL, Water area; US, Urban settlement; RS, Rural
settlement; CL, Other construction land; UL, Unused land (mainly Gobi, bare rocky land and sandy land).
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4. Results

4.1. Spatial and Temporal Variations in the Growing Season NDVImax Trend

The interannual variation of the NDVI in the Hexi Corridor showed an overall increased trend
and obvious fluctuation during 2000–2015 (slope = 0.001/yr, Figure 4). Meanwhile, the interannual
variation of PRE and TEM also showed increased trends (1.98 mm/yr and 0.23 ◦C/yr, respectively)
from 2000 to 2015. The result demonstrated that more arid area’s vegetation experienced a temporal
shift in greening as temperature significantly increased (Figure 4). The spatial distributions of the
NDVI trend changes and change rates in the growing season were analyzed for each pixel during
2000–2015 (Figures 5 and 6). The overall trend of the growing season NDVI was upward in the Hexi
Corridor and accounted for 95.43% (only the area of NDVI > 0.1 were considered, the same below).
Among them, the areas of highly (p < 0.001) and significantly (p < 0.05) greening occupied 49.30% and
24.56%, respectively (Figure 5). The trend primarily occurred in the oasis in the central and eastern of
study area and the WSQM, and the main land types were farmland, urban settlement, unused land,
and grassland (Figures 1 and 3). The areas of slight greening (slope > 0, p > 0.05) and slight browning
(slope < 0, p > 0.05) in the growing season NDVI were found in the ESQM (forested land and bare
rocky land), Mazong Mountain and the oasis districts of Wuwei and Minqin were occupied 21.57%
and 4.56%, respectively (Figures 1, 3 and 5). The fluctuation states of slight change areas could be
summarized as two cases. One was the areas with sparse vegetation (desert and Gobi near Mazong
Mountain), grassland, and higher vegetation cover areas (mainly ESQM). The vegetation cover did not
change clearly (the change rate fluctuated at −0.02–0.01/year, Figures 2b and 6). The other was urban
settlement, rural settlement, other construction land, and farmland within the oasis of Wuwei, Minqin,
and other oases in the central and eastern of study area that were directly affected by anthropogenic
activities. The vegetation cover in these areas fluctuated drastically around the cities and counties
(the change rate was fluctuated at 0.04–0.146/a, Figures 3 and 6).
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4.2. Relationships between NDVImax and Climate Factors

To trace the sensitivity of vegetation to climate variability, a partial correlation coefficient between
the main climate factors (PRE and TEM) and NDVI was determined. PRE and TEM had significantly
positive effects on the interannual variation of NDVI in the Hexi Corridor, and the distribution was
spatially heterogeneous (Figure 7a,b). PRE (held 51% of the total study area), as the most important
climate factor, significantly and positively (0.6–1.0) impacted NDVI changes in 2000–2015, followed by
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TEM (held 23% of the total study area) (Figure 7a,b). A significantly positive correlation (occupied
47% of the total study area) between NDVI and PRE was observed in the oasis areas (farmland was
the main land use type) and WSQM (mainly grassland, Gobi, and bare rocky land). Four percent
of significantly negative correlation between NDVI and TEM was found in forested land of ESQM
(Figures 3 and 7a). Twenty percent of the pixels showed significant positive correlations between TEM
and NDVI in the high coverage grassland and alpine desert of the WSQM, forested land, and alpine
desert of ESQM and oasis in the eastern part of the study areas. In contrast, only the minimum area
fraction (3%) showed a significant negative correlation in the low coverage grassland of Akesai and
Subei of WSQM and few farmlands in oases (Figures 3 and 7b). Overall, the insignificant effects of
PRE and TEM on NDVI were mainly observed in the northwestern, central, and eastern regions of
the study areas (mainly grassland and farmland). Nevertheless, the areas of NDVI that were both
significantly and positively influenced by PRE and TEM were detected at the WSQM and the central
and eastern oasis of the Hexi Corridor. The impact of PRE and TEM on NDVI trends of forested land
in the ESQM and the low coverage grassland that adjoined the Akesai and Subei areas in the WSQM
were opposite of each other (Figures 3 and 7a,b).Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 21 
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climate (red).

4.3. Analysis of Anthropogenic Factors Impact on NDVI Trends

The relative contribution of anthropogenic activity on NDVI trends was quantified by using
multiple linear regression (MLR). The spatial distribution of adj-R2 showed a remarkable spatial
heterogeneity, indicating the interactive effect of the impact of climate variability and anthropogenic
activities on vegetation activities. Only 3.5% of the adj-R2 did not pass the test at a significance level of
0.05 (Figure 7c). The adj-R2 distributed over the range of 0.4–0.8 (accounted for 74% of the total study
area), indicating that NDVI changes were mainly induced by climate factors (Figure 7c). Those areas
were far away from town areas, located in the northern (mainly Gobi and sandy land) and eastern
parts (mainly bare rocky land) of the Hexi Corridor, WSQM, and Mazong Mountain (Figures 1 and 3).
The adj-R2 driven by anthropogenic factors mainly distributed over the range of 0.6–0.8 and 0.8–1.0



Remote Sens. 2018, 10, 1270 11 of 20

(occupied 26% of the total area). It was mainly observed in central and eastern of study area and
ESQM. Among them, the adj-R2 of the oasis and forested land and grassland of the ESQM were more
significant, demonstrating that the NDVI of those areas was disturbed by stronger anthropogenic
influence (Figures 2b, 3 and 7c).

Urbanization and industrialization would generate relatively large-scale anthropogenic
disturbances to the vegetation greening trends. Therefore, this study analyzed the spatial distributions
of the growing season NDVI and its change rate in the anthropogenic active zone of selected cities and
counties during 2000–2015 (Figure 7a–f). This study found that NDVImax at 15 km (10 km) around
the city’s (county’s) center still showed spatial heterogeneity (Figure 7a–f). Among them, the NDVI
value in Jiayuguan was relative low (mainly in 0.2–0.3), and the fluctuation of the vegetation in the
closest 3 km range was the largest due to anthropogenic disturbance (0.05–0.1/yr, occupied 36%;
Figures 3f and 7f). The NDVI high-value (0.6–0.9) areas in other cities (counties) are dominated by
farmland, urban settlement, rural settlement, and other construction land, which were mainly affected
by anthropogenic activities (Figures 3a–e and 7a–f). There was a small fluctuation in the high vegetation
cover areas of Jiuquan, Zhangye, Wuwei, Dunhuang, and Minle (change rate mainly focused at
0–0.02/year, occupied 55%, 69%, 41%, 88%, and 89% of each buffer zone area, respectively). The slight
downtrend of NDVI (change rate was-0.02–0/year, occupied 5%, 5%, 47%, 12%, and 3% of each buffer
zone area, respectively), and was only observed in vicinity areas within the city (county) center (the
land types mainly urban settlement, rural settlement, and other construction land), especially in
Wuwei, which exhibited the largest browning trend within the closest 15 km range from the city
center, followed by Jiayuguan (Figure 7a–e). The vegetation in low vegetation cover areas of Jiuquan,
Zhangye, and Wuwei fluctuated greatly (change rate from 0.04 to 0.15/yr), whereas the vegetation
change in Dunhuang and Minle was insignificant (change rate mainly in range of 0–0.02/yr).

To step towards a better exploration of the influence of anthropogenic activities on vegetation
greenness, this study analyzed the relationship between the growing season NDVI and its change rate
within the range of anthropogenic activities during 2000–2015 (Figure 8). The NDVI and its change
rate in the selected cities (counties) can be divided into two sections: 0–4 (0–3) km and 5–15 (4–10)
km (Figure 8). In the range of 0–4 (0–3) km, except for the vegetation of Jiayuguan, which showed
a significantly declining trend, other cities (counties) showed significantly increasing trends with
increasing buffer distance. Furthermore, we observed that buffer counties (Dunhuang and Minle
were rapidly increased by 0.108/km and 0.104/km, respectively) had slightly higher trends than
those of buffer cities (Jiuquan, Zhangye, and Wuwei increased by 0.068/km, 0.079/km, and 0.086/km,
respectively). For the NDVI change rate, there were entirely different linear trends of buffer cities and
counties, and the degree of fluctuation of vegetation cover of the former was weaker than that of the
latter with increasing buffer distance. The variation amplitude of NDVI and its change rate within the
scope of 0–4 (0–3) km were greater than in the range of 5–15 (4–10) km. In the range of 5–15 (4–10) km,
a slight downtrend of NDVI with increasing distance was observed in the selected cities and counties
(except Jiayuguan), but the change rate showed a significantly (p < 0.05) increasing trend. The trend of
the change of vegetation of the scope of 5–15 (4–10) km was small with increasing distance (increasing
rate was mainly between-0.001/km and 0.001/km) relative to the scope of 0–4 (0–3) km. The change
trend of the NDVI in Jiayuguan was insignificant in the range of 4–10 km, while fluctuations of the
NDVI increased as the distance increased.
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4.4. Combined Analysis of the Influence of Land Cover Change on NDVI Trends

To better understand the relationship of the regional land cover change and NDVI trends in
the Hexi Corridor, a combined analysis of NDVI trends and land cover was carried out further.
The extended transitional matrix for 2000 and 2015 showed that the largest category was unused
land, followed by grassland at both points in time (Table 1). Land use change mainly occurred in the
inner of the oasis area. Unused land and grassland accounted for 65.88% and 22.07% respectively
of study area in 2000 and 65.92% and 22.28% in 2015 (Table 1). The land cover of the Hexi Corridor
experienced moderate conversion of 1.21% during 2000–2015. In other words, landscapes were
dominated by persistent forms of vegetation (98.79%). From 2000 to 2015, forested land showed
no conversion, while unused land and grassland decreased by 1.17% and 0.27%, respectively.
In contrast, other construction land, urban settlement and farmland expanded sharply by 171.43%, 60%,
and 10.41%, respectively, followed by rural settlement and water area (5.71% and 3.85%, respectively)
(Table 1). The scale of agriculture in arid regions is developing rapidly.

This study used an approach proposed by Braimoh [50], which was applied to evaluate the trend
of each LUCC category to lose to and to gain from other categories and assess the net transition trend
of each LUCC category. In Table 2, the loss-to-persistence ratio (lp) for all land types was less than 1,
which means that all the land types had a higher trend to persist than transition to other land types.
The gain-to-persistence ratio (gp) for all the land types was less than 1 (except other construction land),
indicating that the land types had a higher tendency to persist than to gain from other land types.
The urban settlement, rural settlement, and other construction land only experienced an expanding
trend, and the lp were all zero. The gp of 1.71 for other construction land indicates that the expanded
area was much more (approximately 171%) than that of persistence. The gp of farmland was almost
12 times than its lp, whereas the lp of forested land and grassland was about equal to its gp. The np of
unused land was negative, indicating a decreased trend of unused land (Table 2).



Remote Sens. 2018, 10, 1270 13 of 20

Table 2. Gain-to-persistence, loss-to-persistence, and net change-to-persistence ratios of the land types.

gp lp np

Farmland 0.12 0.01 0.11
Forested land 0.01 0.01 0.00
Grassland 0.01 0.01 0.00
Water land 0.08 0.04 0.05
Urban settlements 0.60 0.00 0.60
Rural settlements 0.06 0.00 0.06
Other construction land 1.71 0.00 1.71
Unused land 0.00 0.01 -0.01

5. Discussion

5.1. NDVI and Climate Variability at the Pixel Scale

A significant greening trend was observed over the arid areas of northwest China, which includes
the Hexi Corridor since 2000 (Figure 5) and PRE and TEM have also exhibited significant increasing
trends over the same period [13,39,40,51]. PRE (47%) and TEM (20%) are important driving factors
of the significant greening trend in the Hexi Corridor during 2000–2015 (Figures 5 and 7a,b).
PRE played a crucial role in vegetation growth in arid and semi-arid areas by regulating soil moisture,
which affected the root’s vigor and the water status of vegetation [47,52]. The rising TEM could
slow the degradation velocity of leaf chlorophyll, thereby prolonging the vegetation growth season
and enhancing photosynthesis in temperature-limited regions [53]. Based on the partial correlation
analysis, the research found that PRE (TEM) and NDVI exhibited a significant positive (negative)
correlation over the areas of Akesai and Subei of the WSQM. This is because the alpine grassland
is more sensitive to climate variability than artificial vegetation in arid and semi-arid areas [16].
Due to the lack of water resources (average annual precipitation is 83–116 mm), PRE became the
main limiting factor for the growth of alpine grassland ecosystems in this region. The significant
greening trend is directly attributed to increasing PRE with global warming, while rising TEM can
reduce leaf conductance and enhance vegetation dark respiration and expedite evapotranspiration,
thereby inhibiting grassland vegetation growth [54,55]. In fact, the growth of vegetation interacted
with multiple factors. The NDVI in the low coverage grassland of the Akesai and Subei district
showed a significant greening trend (Figures 3 and 5), revealing that PRE as the dominant factor
had stronger positive effects than TEM on vegetation growth. Li et al. [56] also confirmed that
accumulated precipitation in the growing season was a dominant factor affecting grass growth.
Meanwhile, in addition to direct PRE, the melt of permanent glaciers and snow induced by increasing
temperatures in alpine grasslands also replenish additional water for vegetation growth [57]. All of
those jointly promote vegetation growth. A significant negative (positive) correlation between the
NDVI and PRE (TEM) was detected in the ESQM (Figure 1, Figure 2b, and Figure 7a,b). It is shown
that the results are highly consistent with that of the findings of Zeng et al. [36] in alpine sparsely
vegetated areas over the eastern Qilian Mountains. Vegetation showed slight browning (mainly
forested land), which is mainly attributed to the combined effects of climate and anthropogenic factors
(Figure 7c). Forested land with massive root systems can use groundwater that is 0.5–3 m below
the surface to ensure its normal growth [58]. Meanwhile, the ESQM has abundant rainfall (annual
mean rainfall is 247–350 mm). Furthermore, the response of vegetation to PRE has a threshold, so
excessive PRE is not conducive to vegetation growth. The reason why there is a positive correlation
between the NDVI and TEM is mainly due to the stronger photosynthesis of forest ecosystems than
grassland and the intermittently plowed agricultural ecosystem [59]. In addition, the warming climate
enhances photosynthesis in temperature-limited regions, thereby promoting vegetation growth [53].
Several studies also found that the higher summer temperature and a mass of snow cover favor tundra
and forest-tundra vegetation growth [60–62].
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Multiple natural characteristics, including the arid environment, insufficient rainfall,
strong evaporation, and impoverished soil co-impact the sparse vegetation condition in the Mazong
Mountain area, in the northwest Hexi Corridor. The insignificant positive correlation relationship
of NDVI and PRE in the oasis area was mainly a result of anthropogenic irrigation (Figure 7a),
which provided most of the water for vegetation growth, causing it be insensitive to natural
rainfall [57]. The correlation of the NDVI and TEM was insignificant and possessed great spatial
heterogeneity (Figure 7b). This was mainly because the rising TEM was unfavorable for the
growth of rain-fed agriculture, but it was beneficial to the growth of irrigated agriculture [63].
The cultivated vegetation in the oasis area showed a significant increasing trend, which might have
been due to anthropogenic factors (e.g., fertilization, irrigation) that contributed more to the greenness
trend [26]. Therefore, although vegetation in the oasis areas had the combined effects of natural and
anthropogenic factors, the latter was the dominant factor (Figure 7c).

5.2. Disturbance of Anthropogenic Factors on Vegetation Greening Trends

In addition to the influence of climate change on the distribution status of vegetation,
anthropogenic activities (urbanization and industrialization) could also change the distribution and
induced disturbance [29]. The spatial pattern of the greening and browning driven by climatic change
and anthropogenic disturbance made it pretty difficult to quantify the contributions of each driving
factor [64]. Previous studies used MLR to detect the influence of anthropogenic factors on vegetation [4].
Therefore, the method was applied in the Hexi Corridor and it was observed that the response of the
NDVI on long-term anthropogenic activities had a great spatial heterogeneity (Figure 7c). The effect
of anthropogenic factors of oasis areas in central and eastern of study area and the ESQM was more
obvious (Figures 1, 3 and 7c).

Urbanization and industrialization can impose considerable anthropogenic disturbances on
vegetation trends. The vegetation growth within the range of the closest 1 km from the buffer zone
center suffered the largest anthropogenic disturbance (the NDVI was mainly distributed between
0.3–0.4 and changed stably, except for Jiayuguan; Figure 6a–f). This was to some extent different from
the Arctic area findings where the NDVI is the highest in the closest 5 km where the area of disturbances
is the largest [29]. Because town areas have less green space and are mostly ornamental plants,
anthropogenic supplements of water and nutrients could prolong the vegetation growing season.
It causes the growth of vegetation to be relatively stable [65]. Meanwhile, several studies demonstrated
that anthropogenic disturbances can assist in the selection of more productive ecosystems [32].
Jiayuguan is an important industrial city in the Hexi Corridor, with rapid socioeconomic growth, and a
considerable portion of the rural population moves to the city and primarily focuses on the range of
0–4 km from the city center (Figures 2a and 3f). Hence, the immigration of the rural population caused
great vacancies in rural areas (Figures 3 and 5) [66]. In addition, the transformation of unused land to
urban settlement and rural settlement induced by urbanization and industrialization generated strong
anthropogenic disturbance on vegetation, and the NDVI fluctuated drastically (0.05–0.1/yr; Table 1;
Figure 6f). Similar results were obtained by Easul et al. [29] that cities and industrial installations
were built in unused land. The higher vegetation-cover area of farmland in buffer cities (counties)
has strong adaptability to climate change, because of the measures such as anthropogenic reasonable
fertilization, irrigation, etc. Hence, the vegetation growth is high and stable.

The breaking point of the disturbance range of anthropogenic activities in buffer cities (counties)
is 4 km (3 km). The effective disturbance range that anthropogenic activity impacts on vegetation is
different. It is primarily controlled by the level of economic development, infrastructure construction,
and agricultural production, and the population size and the degree of concentration of its distribution.
Anthropogenic disturbance proportionally decreases with the distance to city (county) center within
the effective radiation range of anthropogenic activities [67–69]. Therefore, the NDVI was improved
with the increasing buffer distance (Figure 8a). The change rate of the NDVI in buffer cities decreased
with the increasing buffer distance (Figure 8c). It mainly decreased because the intensity and patterns
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of anthropogenic disturbance were affected by the population size of the adjacent buffer zones [70,71].
Meanwhile, the disturbance of anthropogenic activities proportionally weakened with the increasing
distance and the decreasing population density. Therefore, vegetation growth was prone to be stable.
The vegetation showed a slight decrease trend in the range of 5–15 km (4–10 km), while the change rate
showed a significant increasing trend (except for Jiayuguan). This was chiefly because of the limited
irrigation condition and the vegetation transition from irrigation agriculture to rain-fed agriculture.
The land types affected by climate factors were mainly dominated by unused land (mainly Gobi
rare rocky land and sandy land), grassland, and rain-fed agriculture in this range. The intensity of
the anthropogenic activity’s disturbance on vegetation growth was extremely weak in this range,
and vegetation was basically in a natural growth state. However, Jiayuguan’s population is distributed
within the circle at a range of 4 km, and there is mainly Gobi, bare land, and rarely distributed
vegetation in the range of 5–10 km (only occupied 22% of the buffer area). Therefore, the strong
adaptation and tolerance to the growth environment weakened the vegetation fluctuation.

The objective reason that results in vegetation browning in the ESQM is climate warming.
This result is highly consistent with that of Zeng et al. [36] found alpine sparsely vegetated areas in the
eastern Qilian Mountains shrank with climate warming. However, anthropogenic disturbance may
have a deeper effect on it. As the population grows, anthropogenic activities are enhanced and more
frequent. A host of new mining and hydropower facilities was created in protected areas, coupled
with the failure of the local government to exercise supervision effectively on the Qilian Mountain
National Nature Reserve ecological environment monitoring. Over-exploitation and utilization of
natural resources, dam building reservoir to artificially change the flow direction of inland rivers,
and hydropower stations ignore Chinese environmental laws and regulations and require no discharge
of eco-water, which leads to the deterioration of the local ecological environment [38]. In July 2017,
the Chinese central government announced the establishment of an integrated ecological monitoring
system through integrated policy implementation to tackle both the symptoms and root causes. In
addition, the policy will carry out research on the demarcation of ecologic red lines, accelerate the
improvement of ecological compensation mechanisms, and strengthen the application of ecologic
restoration technologies. The aim above is to comprehensively promote the ecological restoration and
protection of the Qilian Mountains District.

5.3. Response of the Growing Season NDVI to Land Use Change

LUCC is the most direct interaction between anthropogenic activities and the natural environment,
and it is closely connected with the active degree of anthropogenic socio-economic activities [72].
Humans could directly interact with ecosystems surrounding them, having a profound influence on
ecosystem changes [73]. Other construction land and farmland of the Hexi Corridor sharply expanded,
and unused land and grassland remained on a decreasing trend (especially the former), while forested
land and water area turned from decreasing to increasing trends during 1988–2015 (Table 1) [74].
Other construction land, urban settlement, rural settlement, and farmland expanded rapidly during
2000–2015 (Table 1). Among them, the expansion rate of other construction land and farmland during
2000–2015 reached 17-fold and 10-fold greater, respectively, than that in 1988–2000 (expanded 10.53%
and 1.61%, respectively; Table 1) [74]. The influence of urbanization and reclamation of farmland is
considerable. Other construction land only constitutes 0.19% of the total area in 2015, but it almost
tripled the area of other construction land in 2000 and contributes a substantial ecological footprint [75].
Land conversion areas of other construction land, urban settlement, and rural settlement increased at
the expense of farmland, unused land, and grassland, indicating the rapid process of urbanization
and the coordinated urban-rural development, while shrinking ecosystem services [72]. The farmer
prefers to translate grassland and unused land into farmland because grassland and unused land
have stronger operations and clear more easily than forested land [50], which is also the more reason
the newly reclaimed farmland is mainly converted from unused land and grassland (0.47% and
0.21%, respectively), while forested land only occupied 0.02% (Table 1). The area of forested land
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and water area decreased 0.56% and 2.37% respectively in 1988–2000, while forested land showed
no substantial change in 2000–2015; on the contrary, water area increased by 3.85% (Table 1) [74].
The trends of grassland and unused land during 2000–2015 have improved slightly compared with
those in 1988–2000 (decreased by 0.91% and 0.14% during 1988–2000; decreased by 0.27% and 1.17%
during 2000–2015, respectively). With the explosive urbanization and economic development, unused
land has accumulated losses (mainly Gobi, bare rocky land, and sandy land), which directly resulted
in this expansion in built-up area and the reclamation of farmland. The vegetation of each land
type within the study area basically shows a significantly increasing trend (Figure 5). This illustrates
that under the combination of optimum climatic conditions and a series of implemented ecological
restoration projects since 2000, the ecological environment and vegetation growth of the Hexi Corridor
have improved [27,76]. The utilization of water resources is the basis for the development of land
resources and social economy in arid regions. The scale of agriculture in arid areas is developing
rapidly, and land use change mainly occurs in the inner of oasis area. Large-scale development and
utilization of surface water and groundwater are generally used in various basins in arid regions.
The artificial oases in inland watersheds are developing rapidly, thereby the area of irrigated cultivated
land has mushroomed [13]. The development of oases is also based on the large-scale development and
utilization of water resources. Therefore, the sustainable coordination of the economic and ecological
environment in arid regions of northwest China is a reasonable way to seek the transformation of
natural oases in the arid regions into efficient artificial oases.

6. Conclusions

The vegetation of the Hexi Corridor showed an overall significant uptrend of about 95.43% in
2000–2015. Furthermore, more arid area’s vegetation experienced a temporal shift in greening as
temperature significantly increased. Spatially, only a small fraction of browning areas occurred on
Mazong Mountain, Wuwei oasis, and the ESQM regions. There was no obvious characteristic change
in those sparse vegetation areas (mainly desert and Gobi) and the higher vegetation-cover area of the
Qilian Mountains. However, anthropogenic activities have a great effect on vegetation of the inner
oasis area.

The significantly positive contribution of PRE and TEM on NDVI greening trend occupied 47%
and 20% of the total study area respectively and there was a large spatial-temporal heterogeneity.
Due to the massive root system of forest vegetation in the ESQM, it can not only gain the deeper
groundwater, but also absorb the abundant natural rainfall. It could be that vegetation growth was
suppressed by excessive water. Increasing TEM enhanced the forest vegetation photosynthesis. Hence,
the NDVI was significantly negatively (positive) correlated with PRE (TEM) in this region. In contrast,
there were significant and positive (negative) correlations between the NDVI and PRE (TEM) in the
low coverage grassland of the WSQM. PRE is one of the main limiting factors on the growth of alpine
grasslands, which is conducive to the growth of grassland vegetation. The rising TEM could enhance
the dark respiration of vegetation and expedite evapotranspiration. The climate factors were the
main variables controlling the vegetation of those far away town areas in the north, central, eastern,
and WSQM of the study area.

The vegetation activities of ESQM and oasis regions experienced a significant disturbance from
anthropogenic activities. Over-exploitation of natural resources was a fundamental reason for the
observed browning of vegetation in the ESQM. Urbanization and industrialization created more
considerable anthropogenic disturbances on NDVI trends in development cities than in counties.
Urbanization destroyed the vegetation cover within the developed city areas and extended about
4 km beyond the perimeter of urban areas. In the range of 5–15 km (4–10 km) of the buffer zone,
the vegetation growth was mainly affected by climate factors.

The land cover of the Hexi Corridor experienced slight conversion during 2000–2015. All the
land types had a higher trend to persist than to decrease. Unused land, forested land, and water
area improved slightly, which suggested that a restoration ecology project has obtained some positive
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results. Urban settlement, rural settlement, and other construction land experienced sharp expansion at
the expense of farmland, unused land, and grassland, which indicated the rapid process of urbanization
and coordinated urban-rural development and shrank ecosystem services. The scale of agriculture
in arid areas is developing rapidly. This should determine future patterns of water availability and
ecological environment of oases and to promote regional social-economic sustainable development.
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