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Abstract: Due to the specific characteristics and complicated contents of remote sensing (RS) images,
remote sensing image retrieval (RSIR) is always an open and tough research topic in the RS community.
There are two basic blocks in RSIR, including feature learning and similarity matching. In this paper,
we focus on developing an effective feature learning method for RSIR. With the help of the deep
learning technique, the proposed feature learning method is designed under the bag-of-words (BOW)
paradigm. Thus, we name the obtained feature deep BOW (DBOW). The learning process consists
of two parts, including image descriptor learning and feature construction. First, to explore the
complex contents within the RS image, we extract the image descriptor in the image patch level rather
than the whole image. In addition, instead of using the handcrafted feature to describe the patches,
we propose the deep convolutional auto-encoder (DCAE) model to deeply learn the discriminative
descriptor for the RS image. Second, the k-means algorithm is selected to generate the codebook
using the obtained deep descriptors. Then, the final histogrammic DBOW features are acquired by
counting the frequency of the single code word. When we get the DBOW features from the RS images,
the similarities between RS images are measured using L1-norm distance. Then, the retrieval results
can be acquired according to the similarity order. The encouraging experimental results counted
on four public RS image archives demonstrate that our DBOW feature is effective for the RSIR task.
Compared with the existing RS image features, our DBOW can achieve improved behavior on RSIR.

Keywords: feature learning; remote sensing image retrieval

1. Introduction

With the imaging technique developed, the number of remote sensing (RS) images collected from
earth observation (EO) satellites grows dramatically. Finding the specific region from a large number
of RS images becomes the basic step for many RS applications [1]. Therefore, developing the rapid and
accurate retrieval method to obtain the contents according to users’ demands has drawn increasing
attention recently. In the past, the metadata within the EO products (e.g., acquisition time, longitude,
latitude, etc.) was the key clue for content retrieval [2]. However, this text-based retrieval method
is not able to deal with the increasingly complex tasks since the information within the metadata
is limited. Thus, content-based image retrieval (CBIR) comes in the RS community. For a query
image, CBIR utilizes a series of image processing techniques, such as feature extraction and similarity
calculation, to retrieve the most similar target images from the image archive. Any approaches,
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focusing on organizing the image archive according to the images’ contents, can be regarded as the
CBIR methods [3]. An ocean of successful CBIR methods was presented, such as [4–6], etc.

As an important application of CBIR, remote sensing image retrieval (RSIR) is developed based
on the framework of CBIR. A basic flowchart of the RSIR method [7] is displayed in Figure 1, including
two indispensable blocks. The first block is feature learning/extraction, which maps the query and
target images into the feature space. The second block is similarity matching, which uses a proper
measure to weigh the similarities between query and targets images. Then, the retrieval results Υ of
query q can be obtained by the similarity order. The main target of the feature learning/extraction block
is obtaining the useful feature representation for RS images, while the primary goal of the similarity
matching block is acquiring the resemblance between RS images efficiently. According to the basic
framework, RSIR can be defined as follows. Assume that the RS image archive contains N images
{I1, · · · , IN}. For a query image q, its retrieval results Υ can be described as

Υ = sort
Ii∈I

(dist (q, Ii)) , (1)

where dist (q, Ii) indicates the distances between q and target images, which can be calculated in the
feature space using a proper similarity metric, and sort (·) denotes the ranking process.

Feature 

Learning/Extraction

RS Image 

Archive

Similarity

Matching
ResultsQuery q

Figure 1. Basic flowchart of the remote sensing image retrieval method.

Although the basic RSIR system exhibited in Figure 1 is simple, the implementation is not as easy
as as imaginary. For one RS scene, there are many specific characteristics that increase the difficulty
of RSIR [8–11]. For example, the objects within one RS scene are diverse in type and huge in volume;
the scales of the same objects may be different; and various thematic classes may be contained. There is
an RS image shown in Figure 2. From the observation of Figure 2, we can find there are at least five
kinds of objects, including “Freeway”, “Vehicle”, “Tree”, “Building”, and “Parking lot”. In addition,
the scales of the same object are different (e.g., “Vehicle”). These special properties make the RSIR is
an open and tough task.

Freeway

Red Rectangular Frame:  Vehicle

Green Rectangular Frame: Tree

Blue Rectangular Frame: Building

Purple Rectangular Frame: Parking Lot

Figure 2. Complex contents within one remote sensing image. The main body of this remote sensing
image is “Freeway”. Apart from “Freeway”, there are also “Vehicle”, “Tree”, “Building”, “Parking lot”,
etc. In addition, the scales of the same targets are different.
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As displayed in Figure 1, the first and crucial step of an RSIR method is the feature learning/extraction.
The ideal RS image representation can not only capture the complex contents within the RS image, but
also reflect the multi-scale characteristic of diverse objects [12]. Traditional features used for RS images
are always handcrafted features, including the low-level and mid-level features. The common low-level
features are the texture feature obtained from gray-level co-occurrence matrix (GLCM) [13], the energy of
sub-band of discrete wavelet transform [14], the homogeneous texture feature obtained by Gabor filters [15],
etc. The usual mid-level features are the Bag-of-Words (BOW) [16] feature and its extensions. Recently, with
the development of the deep learning, especially the convolutional neural network (CNN) [17,18], the great
changes have been placed in the RS image processing field. More and more successful applications [19–22]
prove that the features learned by CNNs are more effective for describing the RS images. These kinds of
features are named high-level features or deep features.

Although the aforementioned features provide the positive contributions to RSIR, their drawbacks
are also distinct. For low-level and mid-level features, their RSIR performance is stable but satisfactory
enough [1]. The deep feature achieves cracking behavior in RSIR; nevertheless, the learning process is
expensive since the most of the CNNs are supervised models, which need a tremendous amount of
labels. Therefore, it is necessary to develop an effective and cheap deep feature learning/extraction
method for RSIR.

In this paper, we present a new deep feature learning method for RSIR. Different from most
of the existing CNN based methods, our deep feature learning method is an unsupervised model.
It is developed in the BOW framework, so we name it deep bag of words (DBOW) in this paper.
Like the BOW feature, we can obtain the DBOW feature by the following two steps: (i) learning the
deep descriptors, and (ii) encoding the DBOW feature. For step (i), to decrease the difficulty of deep
descriptor learning, we divide an RS image into image patches. On the one hand, the sub-sampled
patches are less complex and more compact for exploring the diverse contents of RS image. On the
other hand, the multi-scale property can be fully captured though adjusting the size of patches, which is
an ordinary process. Moreover, we propose the deep convolutional auto-encoder (DCAE) model to
obtain the discriminative features from those patches, which are regarded as the deep descriptors of
the RS image. For step (ii), the k-means algorithm is used to cluster all of the deep descriptors to get
the codebook. Then, the DBOW feature corresponding to an RS image can be acquired by counting the
frequency of the single codewords. Finally, the retrieval results are obtained according to the distances
between DBOW features.

The main contributions of our work can be summarized as follows:

• Taking the properties of complex contents and multiple semantic classes into account, we use
image patches rather than the whole RS image to learn the descriptors. This is beneficial to capture
the information of diverse objects.

• Considering the multi-scale characteristic, we choose two patch generation schemes to generate
two kinds of patches with different scales. In addition, the different kinds of patches can capture
the complex contents within the RS image in a complementary manner.

• To deeply mine the inner information of image patches and obtain the effective representations,
rather than the handcrafted feature, we develop an unsupervised deep learning model to learn
the discriminative descriptors.

• Experiments are conducted on different RS image data sets, which cover different resolutions and
different types of RS images. The encouraging results prove that the deep feature obtained by our
method is effective for RSIR.

Before describing our RSIR method, there are two points we want to explain. The first is
the difference between the RS image classification and RSIR, which are two hot research topics
in the RS community. Image classification aims at grouping the images according to some common
characters, while RSIR focuses on finding the similar images from the archive in accordance with
the contents. We take three RS images exhibited in Figure 3 above as an example. All of them are
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labeled “Agricultural” in the UCMerced archive [23,24]. The goal of image classification is developing
a classifier to categorize them into same group. Nevertheless, the target of RSIR is finding the similar
ones. In other words, Figure 3b, rather than Figure 3c, should be ranked higher if Figure 3a is the query.
In short, the biggest difference between image classification and image retrieval is that the images
within the same class may not similar.

(a) (b) (c)

Figure 3. Three “Agricultural” remote sensing images selected from the UCMerced archive randomly:
(a) Agricultural02; (b) Agricultural03; (c) Agricultural04.

The second one is the difference between our retrieval method and another RSIR approach
proposed in the literature [25], which was developed on the basis of the BOW based CNN model.
Although both of us utilize the BOW and the deep neural network paradigm to complete RSIR, there
are still many differences between two methods.

• First, the retrieval scenario is different. The method proposed in [25] aims at text-based image
retrieval. The original query is the text (e.g., “Daisy Flower”). In addition, to obtain the accurate
retrieval results, the authors expand the input using the click through data. The final query is
the combination of the text and clicked images. Our method focuses on image-based retrieval,
i.e., the input is only an image without any text information.

• Second, the units for BOW construction is different. The basic units for constructing the BOW
feature in [25] are the text words. For example, the BOW feature of a “puppy dog” image is
{“small dog”, “white dog”, “dog chihuahua”}. The values of different elements can be represented
by the inverse document frequency (IDF) score [26]. The basic units for constructing the BOW
feature in our method are visual words, i.e., image patches. Since we use a deep neural network
to learn the representation of patches, we name the final BOW feature DBOW.

• Third, the framework is different. For the method in [25], the BOW features are used to train the
CNN model. As mentioned above, when user inputs a query text, a set of images can be obtained
according to the click through data. The function of the CNN model is ranking these images
based on their similarity relationships, which are decided by BOW and high-level visual features
simultaneously. For our method, the CNN model is used to generate the DBOW features. We use
the DCAE model to learn the latent features from the image patches. Then, the learned deep
features are integrated to construct the DBOW features. The retrieval results of a query image are
decided by a proper distance metric (e.g., L1-norm) in the feature space.

Apart from the differences discussed above, there is another important point we want to touch.
This is that the deep neural network in [25] should be trained in the supervised manner, while our
DCAE model can be trained in the unsupervised manner.

The rest of this paper is organized as follows. The published literature related RSIR are discussed
in Section 2. Section 3 presents the proposed deep feature learning method, including the preliminaries,
deep descriptor learning, and DBOW feature generation. The experimental results counted on different
RS data sets are displayed and discussed in Section 4. Section 5 provides the conclusions.
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2. Related Work

This section briefly reviews the published literature related to RSIR. As mentioned in Section 1,
there are two key techniques in a basic RSIR system. Thus, we broadly classify the existing RSIR
methods into two groups, i.e., feature representation based RSIR and similarity matching based RSIR.

2.1. Feature Representation Based RSIR

The methods categorized in this group emphasize the contribution of image feature to RSIR.
As early as 1998, two RSIR methods based on feature representation were proposed [27,28].
Two models, Bayesian and Gibbs–Markov random field (GMRF), were selected to capture the spatial
information from RS images, respectively. The feature extraction was transformed into the parameter
estimation issue in these two methods. The retrieval results were obtained under the Bayesian
paradigm. Then, Datcu et al. [2] introduced another information based RSIR method. The retrieval
results were obtained by the dyadic k-means algorithm [29] using the feature extracted by a hierarchical
Bayesian model. A comprehensive RSIR system named Geospatial Information Retrieval and Indexing
System (GeoIRIS) was proposed in the literature [30]. GeoIRIS integrated six modules to accomplish
diverse complex tasks related to RSIR. Among these modules, the fundamental and crucial module of
GeoIRIS was feature extraction. To describe the RS image accurately, diverse features were extracted,
including the spectral features, texture features, linear features, object-based features, etc. Yang and
Newsam [23] tried to deal with the RSIR task using the local invariant features. The scale invariant
feature transform (SIFT) descriptor [31,32] based BOW features were extracted from the RS images,
and the retrieval results were obtained by the L1-norm distance. Based on the Fourier power spectrum
of an image’s quasi-flat zones representation, Aptoula proposed the global morphological texture
descriptors for RSIR in the literature [33]. The behavior of new descriptors was verified using the
published image archive. To explore the local textural and structural information of RS images, the
local extrema descriptor was introduced in [34], in which the radiometric, geometric and gradient
properties of RS images can be captured. To enhance the retrieval efficiency, Demir and Bruzzone [12]
introduced the hashing code into RSIR. Compared with the dense features mentioned before, the
hashing feature accelerated the speed of retrieval obviously.

The features used in the RSIR methods mentioned above are all handcrafted. Although the
results are positive, their contributions to the RSIR are limited due to the complexity of RS images.
Recently, due to the strong representation capacity, the deep features learned by the deep neural
network model made the cracking contributions to RSIR. Zhou et al. [35] utilized the auto-encoder
to learn the sparse features from RS images, and the retrieval results were obtained by L1/L2 norm
distance. Li et al. [36] combined the deep features and low-level handcrafted features together to
represent RS images. The retrieval results were obtained by the collaborative affinity metric fusion.
Zhou et al. [37] presented a low dimensional CNN model to learn the representative features from the
RS images for RSIR. Since the novel framework of the introduced CNN model, the dimension of the
obtained features was lower than that of the traditional CNN. A deep hashing neural network was
proposed to learn the hashing code of RS images for large-scale RSIR [38]. The dual CNNs framework
was developed to learn the deep features and deep hashing code simultaneously. In addition, to train
the proposed network with the limited labeled RS images, the transfer learning theory was introduced.

2.2. Similarity Matching Based RSIR

The RSIR methods within this group aim at improving the RSIS behavior through the dedicated
similarity measures. Datta et al. [39] presented an RS image information mining system based on
the image classification and region-based similarity measure, i.e., integrated region matching (IRM)
similarity measure. To weight the similarities between RS images properly, IRM segmented the image
into several regions first, and then calculated the distances using discrete feature sets corresponding to
different regions. An improved IRM (IIRM) measure was introduced in [40] for dealing with synthetic
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aperture radar (SAR) image retrieval. Two kinds of segmented regions were obtained using different
features, and the similarity between two SAR images was computed by the weighted linear summation
of two IRM distances. To deal with the blurry boundaries and segmented uncertainty of segmented
regions, the region-based fuzzy matching (RFM) measure was proposed in [41] for SAR image content
retrieval. The fuzzy features were utilized to represent the gradual transition between adjacent regions.
The resemblance between two SAR images was calculated using the fuzzy theory.

Besides the RSIR methods displayed above, which directly design the similarity measure
according to the RS images’ properties, there are still many successful tool-based works have been
proposed. The entropy-balanced bitmap (EBB) tree was used in [42] to explore the similarities between
RS images using the shape features. A three-layer graph-based framework [43] was proposed to fuse
the contributions of diverse low-level features and query expansions for deciding the resemblance
between RS images. Tang and Jiao [44] introduced a fusion similarity measure and graph-based
reranking method to improve the performance of SAR image retrieval. The authors adopted several
SAR-oriented features to construct the modal-image matrix for the calculation of fusion similarities,
and then the preliminary SAR image retrieval results were refined under the graph theory. A two-step
reranking method was presented in [45]. Based on the initial retrieval results, the active learning based
edit scheme and multiple graph based reranking approach were integrated to re-define the similarities
between RS images for enhancing the RSIR’s behavior.

3. Methodology

Similar with the basic RSIR pipeline, the framework of RSIR based on the proposed feature
learning method is shown in Figure 4. When a user inputs the query image q, its DBOW feature is
learned by our feature learning method. Then, the similarities between the query and target RS images
are calculated in the feature space to obtain the retrieval results Υ. To ensure the obtained feature can
capture the complex contents of RS image, our feature learning algorithm is divided into two parts,
including “Patch-Based Deep Descriptor Learning” and “Deep Bag-of-Words Generation”. The first
part aims at finding the effective image descriptors with the help of deep learning, while the second
part focuses on integrating all deep descriptors together to generate the final DBOW.

RS Image 

Archive

ResultsQuery q
Unsupervised Deep Feature Learning

S
im

ila
rity

 

M
a

tch
in

g

. . .

. . .

. . .

Patch-Based Deep 

Descriptor Learning

Deep Bag-of-Words 

Feature Gerentation

Figure 4. Framework of RSIR based on the proposed feature learning method.

3.1. Preliminaries

To describe our feature learning method more clearly, we first introduce some preliminaries in
this part.
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3.1.1. Convolutional Auto-Encoder

Convolutional Auto-Encoder (CAE) [46] is a popular and effective unsupervised feature learning
technology, which is developed based on Auto-Encoder (AE). Similar to AE, CAE is a hierarchical
feature extractor, aiming at discovering the inner information of images. Unlike AE, due to
the utilization of the two-dimensional convolution, CAE can preserve the images’ structure
(e.g., neighborhood relationship, spatial locality, etc.) during the feature learning, which is beneficial to
obtain the more discriminative features. A CAE model usually consists of an input layer, a hidden
layer, and an output layer [9]. The transformation from the input data to the hidden layer is named
“encode”, while the procedure from the hidden layer to the output data is recoded “decode”. The target
of encode is mining the inner information of the input data, and the goal of decode is re-constructing
the input data. The framework of common CAE is exhibited in Figure 5.

Input Output

Encode Decode

Convolution

Nonlinearity

Pooling

Unpooling

Trans-convolution
Hidden

Figure 5. Framework of a convolutional auto-encoder.

The basic operations within the encode section consist of convolution, nonlinearity and pooling,
which aim at extracting the detail information, increasing the nonlinear capacity, and avoiding
the overfitting, respectively [46]. Assume that we use I to represent the input image, and I is
a mono-channel image. Thus, the encode process of CAE can be formulated as

hk = σ
(

I ⊗Wk + bk
)

, (2)

where hk indicates the k-th feature map in the hidden layer,
(

Wk, bk
)

means the network parameters
related to the k-th feature map, ⊗ is the convolution, and σ (·) denotes the activation function.
The modules within the decode stage contain unpooling and trans-convolution, which focus on
up-sampling and reconstruction separately. We can formulate the decode process as

Î = σ

(
∑

k∈H
hk ⊗ W̃k + bd

)
, (3)

where H means the group of feature maps within the hidden layer, W̃k is the transposition of Wk, bd is
the bias, and Î denotes the re-constructed data. To update the parameters of CAE, the mean-squared
error loss function is always selected:

J
(
I , Î

)
=

1
2N

N

∑
i=1

(
Ii − Îi

)2
+

λ

2
‖W‖ , (4)

where I indicates the set of train samples consisted of N images {I1, · · · , IN}, Î means the set
of re-constructed samples

{
Î1, · · · , ÎN

}
corresponding to the train sample set, and W denotes the

parameters of CAE.
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3.1.2. Bag-of-Words Feature

BOW feature [47] is a popular histogrammic feature representation in the RS image processing
community. Its usefulness is proved by many successful applications [23,48]. The usual steps for
generating the BOW feature are: (i) collect the key points of the images; and (ii) transform the key
points into the histogrammic features. For step (i), the SIFT descriptor is often used to find the key
points. For step (ii), researchers always select the k-means algorithm to construct a codebook, and
then the BOW features can be obtained by counting the distances between key points and codewords.
The performance of the BOW feature is impacted by several factors, such as the type of key points,
the codebook size, etc. Among these factors, the key points extraction is the foundation, which restricts
the behavior of the BOW feature directly.

Although the normal BOW feature has been achieved successes in different RS applications,
its performance is always limited since the complex contents of RS images. In this paper, to capture
the diverse information of RS images, the DCAE is used to learn the deep descriptors for RS images.
Then, the more effective DBOW features can be generated using the learned descriptors.

3.2. Patch Based Deep Descriptor Learning

Due to the specific properties of RS image (e.g., contents are diverse in type and large in volume,
the scale of different objects is different, etc.), we propose a patch based deep descriptor learning
method to extract the effective image descriptors for DBOW. The framework of the proposed descriptor
learning method is shown in Figure 6. It consists of two parts, i.e., diverse visual words construction
and unsupervised deep feature learning. The visual words of an RS image are generated by different
region sampling schemes, in which both the diversity of objects and the multi-scale characteristic are
taken into account. The unsupervised feature learning is accomplished by DCAE models, which are
strong enough to learn the effective latent features from the patches. Finally, to grasp the information
from the global aspect, we stack the learned deep features corresponding to different patches together
to construct the deep descriptor.

DCAE1

DCAE2

. 
. 

.
. 

. 
.

. 
. 

.

Uniform

Visual Words

Superpixel

Visual Words

Diverse Patch Visual Words Construction

Unsupervised Deep Feature Learning

1 , ,
T

Un Un Un

m
   F f f

1 , ,
T

Su Su Su

n
   F f f

;Un Su   F F F

Figure 6. Framework of the proposed patch based deep descriptor learning.

3.2.1. Diverse Patch Visual Words Construction

To mine the RS image’s information comprehensively, we use different region sampling schemes
to generate diverse types of visual words.

First, the uniform grid-sampling scheme [49] is introduced. The scheme divides the RS image
into a number of regular rectangle regions with the same size. Then, the RS image can be represented



Remote Sens. 2018, 10, 1243 9 of 30

by a set uniform image patches. We record these patches uniform visual words here for short. The size
ω and spacing κ of the grid influence the uniform visual words directly in general. In this paper,
we divide the RS image into a series of non-overlapped patches, so that only the size of the grid ω

should be considered in the following experiments.
Second, the superpixel technique is selected to generate another set of visual words. We name

them superpixel visual words in this paper. A superpixel is an image over-segmented region obtained
by some constraints [50], such as pixel value, location, etc. The desirable superpixels can adhere well
to image boundaries, and group similar pixels together accurately. These advantages are beneficial for
exploring the complicated objects within the RS images. Thus, choosing a good superpixel algorithm
is important to superpixel visual words construction.

In this paper, the simple non-iterative clustering (SNIC) [51] algorithm is chosen to generate
the superpixels. The SNIC algorithm begins with the superpixels’ centroids initialization, which is
completed by sampling the pixels in the image plane. Then, the priority queue and online update
scheme are utilized to adjust the initial superpixels according to the distances between those superpixels
and their 4- or 8-connected pixels. To accurately weigh the distances between pixels and centroids, each
pixel is described using a 5-dimensional vector [x, y, l, a, b]T , where x = [x, y]T indicates the pixel’s
location, and c = [l, a, b]T denotes the pixel value in CIELAB color space. The formulation of distance
between pixels is

di,j =

√√√√∥∥xi − xj
∥∥2

2
s

+

∥∥ci − cj
∥∥2

2
ξ

, (5)

where s and ξ are the parameters for normalizing the spatial and color distances. The parameter
s can be decided by the expected number of superpixels K according to the formulation

√
Np/K ,

where Np indicates the number of pixels in an image. The parameter ξ should be provided by users.
SNIC is an improved version of the successful simple linear iterative clustering (SLIC) algorithm [52].
Compared with SLIC, SNIC can achieve higher performance with less time. More details can found in
the original literature [51].

The shape of superpixels is irregular, and the size of superpixels is not strictly uniform. To use
DCAE to learn their latent features, we should unify the shape and size of those superpixels.
Here, a simple scheme is used to normalize the shape and size of superpixels. First, we record
the locations (image plane) of all pixels within a superpixel. Then, the maxima and minima of the
x-axis and y-axis are selected, which are recorded xma, xmi, yma, and ymi. Next, a rectangle region can
be fixed, and the coordinates of the four vertices are (xmi, ymi), (xmi, yma), (xma, ymi), and (xma, yma).
Finally, all of the rectangle regions are re-sized to the same size. The set of normalized superpixels is
the superpixel visual words.

3.2.2. Unsupervised Deep Feature Learning

When we obtain the visual words of an image, the next step is learning their latent features using
the CAE. To mine the deep latent feature from the visual patches, we expand the single CAE to the
DCAE in this work. The framework of the utilized DCAE is shown in Figure 7. Note that we stipulate
that the size of different kinds of visual words is the same. In other words, the superpixels should be
normalized to the size of ω, which keeps pace with the uniform visual words.

. . . . . .

Encode Layers Decode Layers

f

Input Output

l layers l layers

Figure 7. Framework of the utilized deep convolutional auto-encoder.
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The DCAE model transforms the input image I into a latent feature vector f through l encode
layers. Symmetrically, there are also l decode layers to re-construct the input image. Like CAE, we also
use the mean-squared error loss function here to update the weights of our DCAE. The number of
encode/decode layers l could be valued according to the size of input data. Here, to speed up the
DCAE training and ensure the convergence of network, we initialize the parameters of DCAE in
greedy, layer-wise fashion [9,53]. In other words, l CAEs are pre-trained for the initialized parameters.

As shown in Figure 6, there are two sets of visual words for an RS image I. Thus, we adopt
two DCAE models to extract their latent features, respectively. Assume that there are m patches
in the uniform visual words, and n patches in the superpixel visual words. Through two different
DCAEs, we can obtain the latent features FUn =

[
fUn

1 , · · · , fUn
m
]T and FSu =

[
fSu

1 , · · · , fSu
n
]T , where fUn

i
corresponds to the i-th patch within the uniform visual words and fSu

j relates to the j-th patch within the
superpixel visual words. After that, two sets of latent features will be stacked together for constructing
the deep descriptor F =

[
FUn; FSu] for I.

3.3. Deep Bag-of-Words Generation

Suppose there are N RS images {I1, · · · IN} in the archive. After the deep descriptor learning
procedure discussed in Section 3.2, we can obtain N deep descriptors {F1, · · · FN}. Since the number
of patches of different RS images is different, the size of the deep descriptors is not uniform. It is hard
to calculate the similarities between RS images using their deep descriptors directly. Consequently, we
imitate the BOW feature to transform deep descriptors into the histogrammic feature, and name the
final representation DBOW. The pipeline of DBOW generation is exhibited in Figure 8.
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Figure 8. Pipeline of deep bag-of-words generation.

Like BOW feature, the codebook should be constructed first. Here, we integrate all of the deep
descriptors together and use a k-means algorithm to group them into k clusters. The centers of different
clusters are regarded as the codebook. Then, the deep descriptors learned from each RS images are
mapped on the codebook and quantized by assigning the label of the nearest codeword. Finally, the
DBOW feature vi of the RS image Ii can be represented by the histogram of the codewords.

3.4. RSIR Formulation

When we get the DBOW features from the RS images, the retrieval results can be obtained
according to the proper histogram-based distance metrics, such as L1-norm distance, L2-norm
distance, cosine distance, etc. In more detail, for the query q and target RS images {I1, · · · , IN},
the retrieval process can be formulated as retrieval (q) = sort

Ii∈I
(dist (q, Ii)), where dist (q, Ii) indicates

the distances between q and target images, which can be calculated using the DBOW features vq and
{v1, · · · , vN}. For example, suppose we select L1-norm distance to measure the similarities between

images, the definition of dist (q, Ii) is dist (q, Ii) =
d
∑

j=1

∣∣vq,j − vi,j
∣∣, where d indicates the dimension
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of DBOW features, vq,j means the j-dimensional element of vq, and vi,j illustrates the j-dimensional
element of vi.

4. Experiment and Discussion

All of the experiments are completed using an HP Z840 workstation (Hewlett: Packard, Palo Alto,
CA, USA) with GeForce GTX Titan X GPU (NVIDIA: Santa Clara, CA, USA), Inter Xeon E5-2630 CPU
and 64G RAM (Intel: Santa Clara, CA, USA).

4.1. Experiment Settings

4.1.1. Test Dataset Introduction

To comprehensively verify the effectiveness of our method, we apply it on four published datasets.
The first data set is the UCMerced archive [23,24] (http://vision.ucmerced.edu/datasets/landuse.
html). There are 21 land-use/land-cover (LULC) categories in this data set, and the number of
high-resolution aerial images within each category is 100. The pixel resolution of these images is 0.3 m,
while the size of them is 256× 256. We name the UCMerced archive ImgDB1 in this paper for short,
and some examples are exhibited in Figure 9. The second one is a satellite optical RS image data set [45]
(https://sites.google.com/site/xutanghomepage/downloads). There are a total of 3000 RS images
with a ground sample distance (GSD) of 0.5 m in this archive. These RS images are manually labeled
into 20 land-cover categories, and the number of images within each category is 150. The size of these
RS images is also 256× 256. We record this archive ImgDB2 in this paper for convenience, and some
examples are displayed in Figure 10. The third one for testing our method is a 12-class Google image
data set [48,54,55] (http://www.lmars.whu.edu.cn/prof_web/zhongyanfei/e-code.html). For each
land-use category, there are 200 RS images with the spatial resolution of 2 m. The size of images
within this archive is 200× 200. We record Google image data set ImgDB3 here for short, and some
examples from different categories are shown in Figure 11. The last one is the NWPU-RESISC45
(http://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html) data set, which was proposed
in [56]. The NWPU-RESISC45 data set is a large-scale RS image archive, which consists of 31,500 images
and 45 semantic classes. All of the images are collected from Google Earth, covering more than
100 countries. The spatial resolution of those images varies from 30 to 0.2 m, and the size of each
image is 256× 256. We record NWPU-RESISC45 ImgDB4 here for conveniens, and some examples are
displayed in Figure 12.

(a)

1. Agricultural 2. Airplane
3. Baseball

Diamond
4. Beach 5. Buildings 6. Chaparral

7. Dense

Residential

8. Forest 9. Freeway
10. Golf

Course
11. Harbor 12. Intersection

13. Medium

Residential

14. Mobile

Home Park

15. Overpass
16. Parking

Lot
17. River 18. Runway

19. Sparse

Residential

20. Storage

Tanks

21. Tennis

Court

Figure 9. Examples of ImgDB1.

http://vision.ucmerced.edu/datasets/landuse.html
http://vision.ucmerced.edu/datasets/landuse.html
https://sites.google.com/site/xutanghomepage/downloads
http://www.lmars.whu.edu.cn/prof_web/zhongyanfei/e-code.html
http://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html
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9. Factory 10. Forest 11. Harbor
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Density Residential
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15. River 16. Road 17. Runway

18. Sparse

Residential

19. Storage

Tanks

1. Agricultural 2. Airplane
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Lawn
4. Beach 5. Buildings 6. Chaparral 7. Cloud

Figure 10. Examples of ImgDB2.

1. Agricultural 2. Commercial 3. Harbor 4. Idle land 5. Industrial 6. Meadow

7. Overpass 8. Park 9. Pond 10. Residential 11. River 12. Water

Figure 11. Examples of ImgDB3.
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20. Intersection 21. Island 22. Lake 23. Meadow
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36. Sea

Ice

37. Ship 38. Snowberg
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41. Storage
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42. Tennis

Court
43. Terrace

44. Thermal

Power Station
45. Wetland

Figure 12. Examples of ImgDB4.
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4.1.2. Experimental Settings

As displayed in Figure 4, the pipeline of the RSIR method in this paper consists of feature learning
and similarity matching. For feature learning, the proposed DBOW features are learned from each RS
image. Then, the similarity matching is completed using the simple distance metric.

To accomplish our unsupervised feature learning method for RSIR, there are some parameters that
should be set in advance. In the visual words construction stage, the size of uniform and superpixel
visual words ω is optimally set to be 16× 16 for ImgDB1, ImgDB2, and ImgDB3, and 12× 12 for
ImgDB4. In the descriptors learning stage, the configurations from our DCAE model are shown in
Table 1. The number of convolution kernels nk is optimally set 40, 36, 36, and 32 for ImgDB1, ImgDB2,
ImgDB3 and ImgDB4, respectively. In addition, 80% images are selected randomly from the archive to
train the DCAE model. In the DBOW generation stage, the size of codebook k is set to be 1500 uniformly
in the following experiments. The influence of different parameters is discussed in Section 4.5.

Table 1. Configuration of the deep convolutional auto encoder Model.

ImgDB1/ImgeDB2/ImgDB3 ImgDB4

Encode Decode Encode Decode

Conv Kernel Size 3× 3 - 3× 3 -
Max-pooling size 2× 2/2× 2/4× 4 - 2× 2/2× 2/3× 3 -

Up-sample - 4× 4/2× 2/2× 2 - 3× 3/2× 2/2× 2
Trans-Conv Kernel Size - 3× 3 - 3× 3

Learning Rate 0.0001
Batch Size 512

Note that the parameters mentioned above are empirical, which should be adjusted according to
the different image archives. In this paper, we tune these parameters through a fivefold cross-validation
method using training set. In addition, to speed the tuning process, the parameters are decided through
the two steps. First, only half of images within the archive are selected to tune the proper range of
the parameters. Second, the whole training set (80% images within the archive) is used to decide the
optimal values of parameters.

4.1.3. Assessment Criteria

In this paper, the retrieval precision and recall are adopted to be the assessment criteria. For a query
image q, assume that the number of retrieved RS images is nr, the number of correct retrieval results
is nc, and the number of correct target images within the archive is nt. The definition of retrieval
precision is nc/nr , while the formulation of retrieval recall is nc/nt . Note that “correct” means that
the retrieved image belongs to the same semantic class with the query q. To provide the objective
numeric results, all of the images in the dataset are selected to be the queries, and the displayed results
are the average value. An acceptable RSIR method can rank the most similar target images in the
topper positions. Thus, only the top 20 retrieval results are used to count the assessment criteria in the
following experiments unless otherwise stated.

4.2. Distance Metric Selection

When we get DBOW features from the RS images, we should choose a distance metric to measure
the similarities between images for the retrieval results. Thus, the performance of the selected metric is
important for the RSIR task. To find a proper metric for our DBOW features, we select eight common
histogram-based distance metrics and study their performance on the retrieval. The metrics are
L1-norm, intersection, Bhattacharyya, chi-square, cosine, correlation, L2-norm, and inner products.
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For two RS images I1 and I2 with DBOW features v1 and v2 of dimension d, the definitions of different
histogram-based distance metrics are

dL1 =
d
∑

i=1
|v1,i − v2,i|,

dintersection =
d
∑

i=1
min (v1,i, v2,i),

dBhattacharyya =

√
1−

d
∑

i=1

√v1,iv2,i√
∑d

j=1 v1,j ∑d
j=1 v2,j

,

dchi−square =
d
∑

i=1

(v1,i−v2,i)
2

v1,i+v2,i
,

dcosine = 1− ∑d
i=1 v1,iv2,i√

∑d
j=1 v2

1,j

√
∑d

j=1 v2
2,j

,

dcorrelation = 1− ∑d
i=1 (v1,i−v̄1)(v2,i−v̄2)√

∑d
i=1 (v1,i−v̄1)

2
√

∑d
i=1 (v2,i−v̄2)

2 , v̄1 = 1
d

d
∑

i=1
v1,i, v̄2 = 1

d

d
∑

j=1
v2,i,

dL2 =

√
d
∑

i=1
(v1,i − v2,i)

2,

dinnerproduct =
d
∑

i=1
v1,iv2,i.

(6)

The retrieval results of different RS image archives counted on the top 20 retrieved images are
shown in Table 2. From the observation of the results, we can find that the behavior of L1-norm,
intersection, Bhattacharyya and chi-square is better than that of other four distance metrics, and
the best distance metric for our DBOW feature is L1-norm distance. In more detail, the weakest
distance metric is inner product, which means that the inner product is improper for weighing
the similarities between the images under the DBOW feature space. The behavior of L2-norm is
stronger than that of the inner product; however, its performance cannot reach the satisfactory level.
The performance of cosine and correlation is similar, which is better than that of inner product and
L2-norm. Bhattacharyya and chi-square outperform the metrics mentioned above, and their behavior
is similar to each other. Although the behavior of intersection is better than that of Bhattacharyya and
chi-square, and its performance is close to L1-norm, L1-norm still outperforms intersection slightly.
This indicates that L1-norm distance is the most suitable metric among eight metrics for DBOW
features. Therefore, L1-norm distance is used as the distance metric in the following experiments.

Table 2. Average retrieval precision of different histogram-based distance metrics on four test archives.
The values are counted using the top 20 retrieval results.

L1-Norm Intersection Bhattacharyya Chi-Square Cosine Correlation L2-Norm Inner Product

ImgDB1 0.8303 0.8301 0.8213 0.8169 0.7744 0.7728 0.7270 0.6304
ImgDB2 0.9331 0.9330 0.9164 0.9157 0.9065 0.9061 0.8483 0.8013
ImgDB3 0.9265 0.9265 0.9019 0.9057 0.8869 0.8818 0.8430 0.6604
ImgDB4 0.8215 0.8214 0.8156 0.8151 0.7637 0.7611 0.7606 0.4018

4.3. Feature Structure

Before providing the numerical assessment, we first study the structure of our DBOW features
to visually estimate if they are discriminative enough for RSIR tasks. In this paper, we choose the
t-distributed stochastic neighbor embedding (t-SNE) algorithm [57] to reduce the features’ dimension.
Then, the structure of features is displayed in the 2-dimensional space. Here, besides the DBOW
features, we also exhibit the other four common features’ structure as the reference, including
the homogeneous texture (HT) features [15] obtained by Gabor filters, the color histogram (CH)
features [45], the SIFT-based BOW (S-BOW) features [23], and the deep network features (DN)
extracted using the pre-trained Overfeat net [58]. Note that the DN features mentioned above are the
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outputs of the seventh and eighth fully connected layers, so that we record them DN-7 and DN-8.
The dimensions of six types of features are 1500 (DBOW/S-BOW), 60 (HT), 384 (CH), 4069 (DN-7/8),
respectively. To accomplish the t-SNE algorithm, the L1-norm distance is selected for histogrammic
features (i.e., DBOW, CH, and S-BOW), and Euclidean distance is adopted for others. The visual results
of different RS image archives are shown in Figures 13–16.

(a) (b) (c)

(d) (e) (f)

Figure 13. Two-dimensional scatterplots of different high-dimensional features obtained by t-SNE over
ImgDB1 with 21 semantic classes. The relationships between number ID and semantics can be found in
Figure 9. (a) HT; (b) CH; (c) S-BOW; (d) DN-7; (e) DN-8; (f) DBOW.

(a) (b) (c)

(d) (e) (f)

Figure 14. Two-dimensional scatterplots of different high-dimensional features obtained by t-SNE over
ImgDB2 with 20 semantic classes. The relationships between number ID and semantics can be found in
Figure 10. (a) HT; (b) CH; (c) S-BOW; (d) DN-7; (e) DN-8; (f) DBOW.
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(a) (b) (c)

(d) (e) (f)

Figure 15. Two-dimensional scatterplots of different high-dimensional features obtained by t-SNE over
ImgDB3 with 12 semantic classes. The relationships between number ID and semantics can be found in
Figure 11. (a) HT; (b) CH; (c) S-BOW; (d) DN-7; (e) DN-8; (f) DBOW.

(a) (b) (c)

(d) (e) (f)

Figure 16. Two-dimensional scatterplots of different high-dimensional features obtained by t-SNE over
ImgDB4 with 45 semantic classes. The relationships between number ID and semantics can be found in
Figure 12. (a) HT; (b) CH; (c) S-BOW; (d) DN-7; (e) DN-8; (f) DBOW.

From the observation of figures, we can find that clusters derived by the low-level features
(HT, CH) are mixed together (Figures 13a–b, 14a–b, 15a–b, and 16a–b), which cannot provide enough
discriminative information for RSIR. The mid-level features (S-BOW) perform better, which lead to the
initial separation among diverse classes (Figures 13c, 14c, 15c, and 16c). However, the information
provided by S-BOW features is not adequate to complete the RSIR task with satisfaction. The structure
of deep features (DN-7 and DN-8) is clearer than that of low-/mid-level features (Figures 13d–e, 14d–e,
15d–e, and 16d–e). Although the derived clusters reach separable stage, the relative distances between
diverse clusters are not distinct enough. This limits their performance on RSIR. Different from the other
five kinds of features, the clusters obtained by our DBOW features are separable obviously (Figures 13f,
14f, 15f, and 16f). In addition, the relative distances between different clusters are distinct. This is
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beneficial to process RS images to an effective content retrieval stage. The encouraging results indicate
that the DBOW feature is useful to the RSIR task. The following experiments also prove this point.

4.4. Retrieval Performance

The following RSIR methods are selected to assess the behavior of our DBOW feature on
RSIR objectively:

• The RSIR approach developed by the fuzzy similarity measure [41]. To explore useful information
of RS images, they are segmented into different regions first. Then, the regions are represented
by the fuzzy descriptors, which aims at overcoming the influence of uncertainty and blurry
boundaries between segmented regions. Finally, the similarities between RS images are converted
into the resemblance between fuzzy vectors, which is accomplished by the region-based fuzzy
matching (RFM) measure [41]. We record this method RSIR-RFM for convenience.

• The RSIR method presented in [23]. The S-BOW features are adopted to represent RS images, and
L1-norm distance is selected to decide the similarities between RS images. The RSIR results are
obtained in accordance with the distance order. Here, the dimension of SBOW features is 1500.
We name this method RSIR-SBOW for short.

• The RSIR method based on the hash features [12]. The successful kernel-based hashing
method [59] is introduced to encode the RS images. Then, the similarities between images
are obtained by hamming distance in the hash space. Here, we set the length of hash code to be
16 bits, and record this method RSIR-Hash for short.

• The RSIR method based on deep features obtained by the pre-trained CNNs [60]. The Overfeat
net [58], which is pre-trained using the imageNet dataset [61], is selected to extract the RS images’
features. The outputs of seventh and eighth layers are regarded as the deep features. The Euclidean
distance is selected to weigh the similarities between deep features. The RSIR methods based on
different deep features are recorded RSIR-DN7 and RSIR-DN8, respectively, and the dimensions
of two deep features are 4096.

The results of three archives counted on top 20 retrieval images are shown in Figure 17, where our
RSIR method is recorded RSIR-DBOW. Note that the parameters of different comparisons are set
according to the original literature. From the observation of figures, it is obvious that our RSIR method
outperforms other comparisons.

For ImgDB1, the performance of RSIR-RFM is the weakest among the six RSIR methods.
This indicates that the region-based representations cannot explore the complex contents within
the RS images, which limits their contributions on RSIR. RSIR-SBOW and RSIR-Hash perform better
than RSIR-RFM. Their performance is similar to each other. The reason behind this is that they all
use SBOW features to represent the RS images, resulting in the captured information from the RS
images is similar. Due to the strong capacity of information mining, the features extracted by the
pre-trained deep CNNs can describe the RS images clearly, which leads to the stronger performance
on RSIR. Compared with three RSIR methods mentioned above, we can easily find that the behavior
of RSIR-DN7 and RSIR-DN8 is enhanced to a large degree. An interesting observation is that the
performance of RSIR-DN7 and RSIR-DN8 is almost the same, which means that the last two fully
connected layers have the similar capacity for feature learning. Although the retrieval results of deep
based methods are positive, the performance of them is still weaker than that of our RSIR-DBOW.
Moreover, there is a distinct performance gap between our RSIR-DBOW and other comparisons,
and the gap becomes larger with the number of retrieval images increases. This proves that the
representations learned by our feature learning method can fully explore the complex contents within
the RS images, which is beneficial to RSIR tasks. For retrieval precision, comparing with other
comparisons, the highest improvements obtained by our method are 43.75% (RSIR-RFM), 29.66%
(RSIR-SBOW), 29.30% (RSIR-Hash), 12.46% (RSIR-DN7), and 12.34% (RSIR-DN8). For retrieval recall,
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the biggest enhancements generated by our method are 8.75% (RSIR-RFM), 5.93% (RSIR-SBOW), 5.86%
(RSIR-Hash), 2.49% (RSIR-DN7), and 2.47% (RSIR-DN8).

(a) (b)

(c) (d)

(f)(e)

(g) (h)

Figure 17. Retrieval performance of different RSIR methods on four RS image sets. (a) average retrieval
precision on ImgDB1; (b) average retrieval recall on ImgDB1; (c) average retrieval precision on ImgDB2;
(d) average retrieval recall on ImgDB2; (e) average retrieval precision on ImgDB3; (f) average retrieval
recall on ImgDB3; (g) average retrieval precision on ImgDB4; (h) average retrieval recall on ImgDB4.
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For the other three image archives, we can find the similar results, i.e., our RSIR-DBOW achieve
the best performance compared with all of the comparisons. For ImgDB2, the highest enhancements
on retrieval precision/recall generated by our method are 49.93%/6.66% (RSIR-RFM), 29.13%/3.88%
(RSIR-SBOW), 28.93%/3.86% (RSIR-Hash), 19.28%/2.57% (RSIR-DN7), and 19.29%/2.58% (RSIR-DN8).
For ImgDB3, the biggest improvements on retrieval precision/recall obtained by our method are
51.95%/5.19% (RSIR-RFM), 39.35%/3.93% (RSIR-SBOW), 40.28%/4.03% (RSIR-Hash), 22.66%/2.27%
(RSIR-DN7), and 23.06%/2.31% (RSIR-DN8). For ImgDB4, the biggest improvements on retrieval
precision/recall obtained by our method are 56.25%/1.61% (RSIR-RFM), 45.13%/1.29% (RSIR-SBOW),
47.66%/1.36% (RSIR-Hash), 21.61%/0.62% (RSIR-DN7), and 22.68%/0.65% (RSIR-DN8).

To further study the retrieval performance of our method, we add the recall–precision curve to
observe the retrieval behavior with the number of retrieval images increasing. The comparisons’ results
are also counted as reference. The results are exhibited in Figure 18. From the observation of curves,
we can easily find that our method achieves the best performance on four data sets. These encouraging
results illustrate the effectiveness of our RSIR method again.

(a) (b)

(c) (d)

Figure 18. Recall–precision curve of different RSIR methods on four RS image sets. (a) the results on
ImgDB1; (b) the results on ImgDB2; (c) the results on ImgDB3; (d) the results on ImgDB4.

The retrieval behavior across the different semantic categories is summarized in Tables 3–6.
The results are counted using the top 20 retrieval images. From the observation of these tables, it is obvious
that our method performs best in most of the semantic categories. In addition, an encouraging observation
is that our RSIR method enhances the retrieval performance to a large degree for many categories, for
which other approaches’ behavior is not satisfactory. For example, the retrieval precision of different
comparisons for “Dense Residential” within ImgDB1 is less than 0.5, but our method can achieve 0.9595.
Furthermore, ImgDB4 is a large-scale RS image data set, no matter on the scene classes or on the total
number of images. Our method can still achieve the superior performance on ImgDB4, which proves that
our unsupervised feature learning method is useful to RSIR.
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Table 3. Retrieval precision of different remote sensing image retrieval methods across 21 semantic
categories in ImgDB1 counted by the top 20 results.

RSIR-RFM RSIR-SBOW RSIR-Hash RSIR-DN7 RSIR-DN8 RSIR-DBOW

Agriculture 0.5145 0.8505 0.8900 0.9430 0.9300 0.9185
Airplane 0.4125 0.4650 0.4590 0.7365 0.7535 0.9460
Baseball Diamond 0.2180 0.2975 0.2975 0.7755 0.7665 0.8685
Beach 0.6310 0.5060 0.4965 0.9440 0.9705 0.8790
Buildings 0.3120 0.3545 0.3825 0.5145 0.4690 0.9320
Chaparral 0.7760 0.9790 0.9795 0.9824 0.9825 0.9420
Dense Residential 0.2630 0.4630 0.4170 0.3575 0.3305 0.9595
Forest 0.6205 0.9525 0.9235 0.9825 0.9780 0.9870
Freeway 0.1960 0.5885 0.5525 0.7190 0.7120 0.7785
Golf Course 0.2730 0.3040 0.3825 0.6345 0.6525 0.8520
Harbor 0.7825 0.8605 0.8585 0.8535 0.8350 0.9510
Intersection 0.2210 0.4720 0.3540 0.6450 0.6055 0.7740
Medium-density Residential 0.2835 0.3390 0.3525 0.6605 0.5950 0.7410
Mobile Home Park 0.4710 0.6350 0.6705 0.6615 0.6460 0.7610
Overpass 0.2735 0.4935 0.5155 0.5730 0.5895 0.8580
Parking Lot 0.5155 0.8595 0.8320 0.9200 0.8970 0.6650
River 0.2510 0.2300 0.3080 0.4780 0.5145 0.7390
Runway 0.4545 0.7110 0.7435 0.8655 0.8265 0.6565
Sparse Residential 0.3075 0.2140 0.2475 0.6655 0.7785 0.7855
Storage Tanks 0.2330 0.2515 0.2545 0.3980 0.4505 0.4975
Tennis Courts 0.2085 0.3495 0.3355 0.4790 0.5315 0.9440

Average 0.3913 0.5322 0.5358 0.7042 0.7055 0.8303

Table 4. Retrieval precision of different RSIR methods across 20 semantic categories in ImgDB2 counted
by the top 20 results.

RSIR-RFM RSIR-SBOW RSIR-Hash RSIR-DN7 RSIR-DN8 RSIR-DBOW

Agricultural 0.2930 0.5626 0.5830 0.8470 0.8480 0.9656
Airplane 0.4746 0.4870 0.5733 0.6350 0.6390 0.9613
Artificial Lawn 0.4886 0.4616 0.4723 0.7356 0.7803 0.9703
Beach 0.4746 0.6690 0.6583 0.6793 0.6610 0.9473
Building 0.4556 0.5320 0.5573 0.7396 0.7076 0.9690
Chaparral 0.3976 0.8176 0.7790 0.7120 0.6883 0.9633
Cloud 0.9040 0.9500 0.9573 1.0000 1.0000 0.9940
Container 0.2783 0.7786 0.7903 0.7213 0.7406 0.9556
Dense Residential 0.5843 0.8293 0.7760 0.8660 0.8536 1.0000
Factory 0.2573 0.3326 0.2830 0.5926 0.5826 0.9050
Forest 0.4986 0.9696 0.9180 0.9443 0.9270 0.9600
Harbor 0.7040 0.6186 0.6546 0.6000 0.6486 0.9800
Medium-Density Residential 0.3636 0.5413 0.5296 0.6826 0.6583 0.9963
Ocean 0.4313 0.9166 0.9290 0.9533 0.9413 0.9246
Parking lot 0.3883 0.5806 0.5700 0.6923 0.6260 0.9463
River 0.2493 0.2776 0.3376 0.6056 0.6276 0.7066
Road 0.2106 0.7133 0.6426 0.6423 0.6003 0.8233
Runway 0.5383 0.7336 0.8176 0.8383 0.8200 0.8613
Sparse Residential 0.3470 0.4436 0.4603 0.6910 0.7546 0.9190
Storage Tanks 0.3366 0.6200 0.5863 0.6276 0.6993 0.9126

Average 0.4338 0.6418 0.6438 0.7403 0.7402 0.9331

Table 5. Retrieval precision of different RSIR methods across 12 semantic categories in ImgDB3 counted
by the top 20 results.

RSIR-RFM RSIR-SBOW RSIR-Hash RSIR-DN7 RSIR-DN8 RSIR-DBOW

Agriculture 0.4237 0.6810 0.6477 0.8152 0.7932 0.9925
Commercial 0.5595 0.6010 0.6402 0.8040 0.7967 0.9920
Harbor 0.4232 0.1807 0.2007 0.5500 0.5597 0.8917
Idle land 0.3932 0.4110 0.3747 0.5760 0.6035 0.9725
Industrial 0.3400 0.5282 0.4625 0.7205 0.6980 0.9015
Meadow 0.3477 0.6275 0.6217 0.7077 0.6295 0.9290
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Table 5. Cont.

RSIR-RFM RSIR-SBOW RSIR-Hash RSIR-DN7 RSIR-DN8 RSIR-DBOW

Overpass 0.2470 0.7652 0.5905 0.7102 0.7595 0.8882
Park 0.2700 0.3905 0.4870 0.6655 0.6660 0.8730
Pond 0.2822 0.3315 0.2825 0.4660 0.5047 0.9695
Residential 0.4492 0.7705 0.7305 0.8072 0.7795 0.9657
River 0.2895 0.2435 0.2740 0.5867 0.5682 0.8867
Water 0.8585 0.8649 0.9722 0.9895 0.9910 0.8550

Average 0.4070 0.5330 0.5237 0.6999 0.6958 0.9265

Table 6. Retrieval precision of different RSIR methods across 45 semantic categories in ImgDB4 counted
by the top 20 results.

RSIR-RFM RSIR-SBOW RSIR-Hash RSIR-DN7 RSIR-DN8 RSIR-DBOW

Airplane 0.4108 0.1870 0.2337 0.5602 0.5742 0.9805
Airport 0.1219 0.3150 0.2478 0.4980 0.4695 0.9462
Baseball Diamond 0.1923 0.1289 0.1305 0.4318 0.4495 0.8638
Basketball Court 0.1267 0.1702 0.1318 0.3300 0.3215 0.8252
Beach 0.2348 0.1911 0.1937 0.5567 0.5754 0.8483
Bridge 0.1926 0.1051 0.1210 0.6688 0.6627 0.9462
Chaparral 0.7215 0.9108 0.9183 0.9252 0.9257 0.9611
Church 0.1876 0.1841 0.1515 0.2466 0.2590 0.8021
Circular Farmland 0.2752 0.6442 0.6400 0.8255 0.8360 0.9416
Cloud 0.4297 0.7432 0.7568 0.9130 0.9069 0.9791
Commercial Area 0.2447 0.3022 0.2281 0.5270 0.4531 0.7893
Dense Residential 0.2871 0.4434 0.4380 0.6206 0.5817 0.9022
Desert 0.4841 0.4169 0.3767 0.8545 0.8311 0.9666
Forest 0.5463 0.7726 0.7842 0.9136 0.8877 0.9500
Freeway 0.1075 0.2412 0.2057 0.5459 0.5194 0.6363
Golf Course 0.2782 0.3647 0.3255 0.6278 0.5976 0.8208
Ground Track Field 0.1827 0.1161 0.1095 0.5872 0.6097 0.7976
Harbor 0.5866 0.4158 0.5562 0.6427 0.6547 0.8830
Industrial Area 0.1540 0.3770 0.2790 0.5712 0.5157 0.8537
Intersection 0.1808 0.2880 0.1932 0.5736 0.5095 0.8022
Island 0.2291 0.1678 0.1988 0.7813 0.7285 0.8751
Lake 0.1877 0.2302 0.2017 0.6909 0.6893 0.8547
Meadow 0.4612 0.6895 0.6803 0.8159 0.8165 0.8992
Medium Residential 0.2100 0.3128 0.2373 0.5650 0.5133 0.9382
Mobile Home Park 0.2787 0.4266 0.3569 0.5223 0.5158 0.8287
Mountain 0.2213 0.5584 0.4337 0.7447 0.7147 0.9468
Overpass 0.1237 0.4697 0.4272 0.5070 0.5250 0.7435
Palace 0.1242 0.1787 0.1335 0.2467 0.2345 0.8032
Parking Lot 0.3996 0.5292 0.4774 0.7143 0.6814 0.6962
Railway 0.1661 0.4801 0.4800 0.6032 0.5814 0.8363
Railway Station 0.1521 0.3410 0.3508 0.4827 0.4557 0.8639
Rectangular Farmland 0.1252 0.5087 0.5140 0.7137 0.6636 0.6610
River 0.1488 0.2566 0.1779 0.5020 0.4959 0.7566
Roundabout 0.1370 0.1202 0.1152 0.6115 0.6127 0.8280
Runway 0.1718 0.3830 0.4014 0.6267 0.5849 0.7786
Sea Ice 0.5666 0.9138 0.9042 0.9069 0.8935 0.8951
Ship 0.2390 0.1104 0.1289 0.4263 0.4617 0.6529
Snowberg 0.5156 0.5262 0.4941 0.7786 0.7944 0.8284
Sparse Residential 0.2172 0.1595 0.1552 0.5826 0.6201 0.8370
Stadium 0.1575 0.1827 0.1390 0.5945 0.5749 0.5660
Storage Tank 0.1840 0.3376 0.3218 0.6058 0.6177 0.4757
Tennis Court 0.1715 0.1121 0.1384 0.3361 0.3705 0.7242
Terrace 0.1347 0.6255 0.4766 0.5360 0.5427 0.7607
Thermal Power Station 0.1459 0.3628 0.2293 0.4298 0.4475 0.7187
Wetland 0.1202 0.3577 0.3267 0.4991 0.4851 0.7024

Average 0.2563 0.3702 0.3449 0.6054 0.5947 0.8215

4.5. Retrieval Example

Apart from the numerical assessment, we provide some retrieval examples in this section.
Four queries are selected from different RS image archives randomly. Then, different RSIR methods
are adopted to acquire the retrieval results. Due to space limitations, only top 10 retrieval images are
exhibited in Figures 19–22. The incorrect results are tagged in red, and the number of correct retrieval
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images within top 35 results is provided for reference. From the observation of visual exhibition,
we can find that the retrieval performance of our method is the best compared with other approaches.
These encouraging experimental results prove the effectiveness of our method again.

Query Retrieval Results

(a)      RSIR-RFM      18 matches out 35

(b)      RSIR-SBOW      25 matches out 35

(c)      RSIR-Hash      23 matches out 35

(d)      RSIR-DN7      16 matches out 35

(e)      RSIR-DN8      13 matches out 35

(f)      RSIR-DBOW      35 matches out 35

Figure 19. Retrieval examples of “Harbor” within ImgDB1 using different RSIR methods. The first
images on the left in each row are the queries. The rest of the images in each row are the top 10 retrieval
results. The incorrect results are tagged in red, and the number of correct results among the top
35 retrieval images is also provided.

Query Retrieval Results

(a)      RSIR-RFM      20 matches out 35

(b)      RSIR-SBOW      17 matches out 35

(c)      RSIR-Hash      19 matches out 35

(d)      RSIR-DN7      19 matches out 35

(e)      RSIR-DN8      22 matches out 35

(f)      RSIR-DBOW      35 matches out 35

Figure 20. Retrieval examples of “Beach” within ImgDB2 using different RSIR methods. The first
images on the left in each row are the queries. The rest of the images in each row are the top 10 retrieval
results. The incorrect results are tagged in red, and the number of correct results among the top
35 retrieval images is also provided.
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Query Retrieval Results

(a)      RSIR-RFM      17 matches out 35

(b)      RSIR-SBOW      21 matches out 35

(c)      RSIR-Hash      26 matches out 35

(d)      RSIR-DN7      34 matches out 35

(e)      RSIR-DN8      34 matches out 35

(f)      RSIR-DBOW      35 matches out 35

Figure 21. Retrieval examples of “Commercial” within ImgDB3 using different RSIR methods. The first
images on the left in each row are the queries. The rest of the images in each row are the top 10 retrieval
results. The incorrect results are tagged in red, and the number of correct results among the top
35 retrieval images is also provided.

Query Retrieval Results

(a)      RSIR-RFM      19 matches out 35

(b)      RSIR-SBOW      6 matches out 35

(c)      RSIR-Hash      16 matches out 35

(d)      RSIR-DN7      28 matches out 35

(e)      RSIR-DN8      31 matches out 35

(f)      RSIR-DBOW      35 matches out 35

Figure 22. Retrieval examples of “Forest” within ImgDB4 using different RSIR methods. The first
images on the left in each row are the queries. The rest of the images in each row are the top 10 retrieval
results. The incorrect results are tagged in red, and the number of correct results among the top
35 retrieval images is also provided.
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4.6. Parameter Analysis

As mentioned in Section 4.1.2, there are four parameters that impact the performance of our DBOW
directly, including the size of uniform and superpixel visual words ω, the number of convolution
kernels nk and the percentage of training set nT for DCAE training, and the size of codebook k
for DBOW generation. In this section, we study the influence of those four parameters in detail
through changing their values. The size of visual words ω is tuned from 8× 8 to 16× 16 with the
interval of 2× 2, the number of convolution kernels nk is changed from 24 to 40 with the interval of 4,
the percentage of training set nT is varied from 50% to 90% with the interval of 10%, and the size of
codebook k is set 50, 150, 500, 1000, 1500, and 1500, respectively. The results of three archives counted
using the top-20 retrieval images are exhibited in Figures 23–26.

For ω, the performance of our method is fluctuated within an acceptable range, and the peak
values are reached when ω = 16× 16 (ImgDB1, ImgDB2, and ImgDB3) and ω = 12× 12 (ImgDB4).
For nk, the whole trend of our method’s behavior is rising with nk increases. For different archives,
the highest retrieval performance appears at nk = 40 for ImgDB1, nk = 36 for ImgDB2 and ImgDB3,
and nk = 32 for ImgDB4. For nT , more training samples lead to more accurate retrieval results.
Nevertheless, more training samples results in longer training time. In addition, the performance
is enhanced slightly when nT ≥ 80% for both of the data sets. Thus, we set nT = 80% in this paper.
For k, it is obvious that the performance of our method is getting better when the value of k increases.
However, the computational complexity will be increased dramatically when k > 1500. Therefore, we
set k = 1500 in this paper to balance the performance and the computational complexity.

(c)

(b)(a)

(d)

Figure 23. Influence of different parameters for ImgDB1. (a) ω; (b) nk; (c) nT ; (d) k.
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(c)

(b)(a)

(d)

Figure 24. Influence of different parameters for ImgDB2. (a) ω; (b) nk; (c) nT ; (d) k.

(c)

(b)(a)

(d)

Figure 25. Influence of different parameters for ImgDB3. (a) ω; (b) nk; (c) nT ; (d) k.
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(c)

(b)(a)

(d)

Figure 26. Influence of different parameters for ImgDB4. (a) ω; (b) nk; (c) nT ; (d) k.

4.7. Computational Cost

Apart from the average retrieval precision and recall, the computation cost is another important
assessment criteria for the RSIR methods. In this section, we discuss the computational cost of our
method. As mentioned in Section 3, the RSIR method proposed in this paper consists of two parts,
including DBOW feature learning and similarity matching. Therefore, we study the computational
cost from those two aspects.

The process of DBOW feature learning can be split into offline training and online feature learning.
The offline training process is time consuming. Taking ImgDB1 as an example, when the proportion
of the training set equals 80% (more than 600,000 image patches with size of 16 × 16), we need
almost 40 min to train our DCAE models and generate the codebook using different kinds of visual
words. After the model training, the offline feature extraction process is fast, which just needs around
300 milliseconds for a 256× 256 RS image.

For similarity matching, the common distance metric is used to measure the similarities between
query and target images, and the exhaustive search through linear scan is used to obtain the retrieval
results. The time cost of this part is impacted by the size of image archive and the dimension of
image feature directly. Here, we further study the computational cost of similarity matching through
changing the size of target archive. The time cost of different comparisons is also counted as the
reference. The experimental results are shown in Table 7. From the observation of the values, we can
find that the most time-consuming method is RSIR-RFM. The reason is that the feature used in RFM
measure is discrete distribution rather than the single vector. The fastest method is RSIR-Hash since
the hashing code is the binary feature, and the similarities between hashing features can be calculated
by the bit operation. For other RSIR methods, the similarity matching time cost is proportional to the
feature dimension.
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Table 7. Computational cost of similarity matching based on different RSIR methods. (Unit: Millisecond)

Target Image Size RSIR-RFM RSIR-SBOW RSIR-Hash RSIR-DN7 RSIR-DN8 RSIR-DBOW

50 63.10 2.200 0.921 5.800 5.700 2.300
100 81.90 6.300 2.200 17.10 17.30 6.100
200 118.1 21.60 6.200 58.70 58.40 21.40
300 356.6 46.00 13.30 127.4 127.8 45.90
400 396.3 79.60 19.60 223.1 224.3 79.60
500 440.5 124.2 29.90 346.0 344.9 123.9

5. Conclusions

This paper presents an unsupervised deep feature learning method for the RSIR task. First, we use
the image patches rather than the whole image to explore the diverse contents within the RS
image. In addition, considering the multi-scale property of objects, two region sampling schemes are
adopted for generating the patches with different sizes. Second, instead of using the low-/mid-level
representations, the DCAE model is introduced to learn the latent features from the patches.
This guarantees that the acquired features are discriminative enough to be the image descriptors.
Third, all of the deep descriptors are used to generate the codebook using the k-means algorithm.
Finally, the histogrammic DBOW features are constructed by counting the frequency of the single
codewords. The RSIR results can be obtained according to the L1-norm distances between DBOW
features directly. The encouraging experimental results of four RS image archives prove that our deep
feature is effective for the RSIR task.

Although the proposed feature learning method performs positively for RSIR tasks, its
shortcomings are obvious enough that we cannot neglect them. Since there are two sets of patches for
an RS image, the contents within the patches belonging to different sets may be overlapped. Thus, the
convolution operation is performed several times on some overlapping patches from one image, which
is redundant in computation. How to overcome this limitation for reducing the computation cost is
one of our future focuses.
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