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Abstract: Himalayan glacier changes in the context of global climate change have attracted
worldwide attention due to their profound cryo-hydrological ramifications. However, an integrated
understanding of the debris-free and debris-covered glacier evolution and its interaction with glacial
lake is still lacking. Using one case study in the Gyirong River Basin located in the central Himalayas,
this paper applied archival Landsat imagery and an automated mapping method to understand
how glaciers and glacial lakes interactively evolved between 1988 and 2015. Our analyses identified
467 glaciers in 1988, containing 435 debris-free and 32 debris-covered glaciers, with a total area of
614.09 ± 36.69 km2. These glaciers decreased by 16.45% in area from 1988 to 2015, with an accelerated
retreat rate after 1994. Debris-free glaciers retreated faster than debris-covered glaciers. As a result
of glacial downwasting, supraglacial debris coverage expanded upward by 17.79 km2 (24.44%).
Concurrent with glacial retreat, glacial lakes increased in both number (+41) and area (+54.11%).
Glacier-connected lakes likely accelerated the glacial retreat via thermal energy transmission and
contributed to over 15% of the area loss in their connected glaciers. On the other hand, significant
glacial retreats led to disconnections from their proglacial lakes, which appeared to stabilize the lake
areas. Continuous expansions in the lakes connected with debris-covered glaciers, therefore, need
additional attention due to their potential outbursts. In comparison with precipitation variation,
temperature increase was the primary driver of such glacier and glacial lake changes. In addition,
debris coverage, size, altitude, and connectivity with glacial lakes also affected the degree of glacial
changes and resulted in the spatial heterogeneity of glacial wastage across the Gyirong River Basin.

Keywords: debris cover; GLOFs; remote sensing; climate change; the Himalayas; Gyirong Pass

1. Introduction

Glaciers are an important component of the global water cycle and are highly sensitive to climate
change [1,2]. The Tibetan Plateau (TP), widely known as the “Third Pole”, hosts the largest coverage
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of glaciers except for the Antarctic and Arctic regions [3–5]. Under current global warming, glaciers on
the TP are losing their areas and masses through extensive retreats and downwasting [3,6]. Of them,
the Himalayan glaciers have exhibited the greatest deficit in mass balance during the recent decades and
have attracted worldwide attention from both scientific and public communities [1,3,7–9]. Changing
glaciers in the Himalayas affect not only regional water management [6,10] and chemical compositions
of surface fresh water [11–13] but also the occurrence of glacier-related disasters, such as glacial lake
outburst floods (GLOFs). Historical GLOFs result in catastrophic destructions and fatalities [14–17] in
the Himalayas, which is labeled as one of the major GLOF-vulnerable regions in the world [18–26].

Due to difficult access to frigid alpine environments, remote sensing is the most feasible method
for monitoring large-scale dynamics in glaciers and glacial lakes [27–32]. The freely available
Landsat imagery since 1972, owing to its multi-decadal record and relatively high spatial resolution
(30 m), has been widely used in inventorying and analyzing glacier and glacial lake changes [33–39].
Landsat imagery is also one of the primary data sources for many global and regional glacier products,
such as the global land ice measurements from space (GLIMS) glacier data [40], the Gamdam glacier
inventory (GGI) [41], the Randolph glacier inventory (RGI) [42], and the second China glacier inventory
(CGI) [43]. These glacier products improve our understanding of land glacial distributions and have
been widely applied in cryo-hydrological modeling. However, these existing products vary by data
source, acquisition time, mapping method, and accuracy, which may lead to secondary errors in
estimating glacier changes in a specific region. Case studies in the Xainza Xiegang Mountains and
Koshi River Basin, for instance, show that the second CGI [43] outperforms other glacier datasets in
terms of glacier outlines [5,44]. Such discrepancies often require the generation of new glacier datasets
with consistent data sources and methods in order to reduce the uncertainties in change analysis.

Debris covers contribute to the spatial heterogeneity of glacier changes across the
Himalayas [45–47]. However, existing glacier products, including GLIMS, GGI, RGI, and CGI, as well
as results from other relevant studies [48–50], did not distinguish between the debris-free portion
(thereafter C-part) and the debris-covered portion (D-part) of a debris-covered glacier (D-glacier).
It is difficult to automatically extract the extent of D-part glaciers using optical satellite images alone
because of the spectral mixture between supraglacial debris and other moraines [5,49,51–55]. Visual
delineation of D-part glaciers is extremely time-consuming. Although a recent study revealed that the
debris coverage over glaciers on the south slope of the Mount Everest increased by 17.6% between 1962
and 2011 [56], we know little about the development of glacier debris covers across the Himalayas.
Recently, a glacier inventory in the eastern Himalayas was completed using manual digitization on the
advanced land observing satellite (ALOS) images acquired between 2006 and 2011 [57]. In this regional
inventory, D-glaciers were divided into the C-part and D-part. Debris mantle has implications for the
glacier response to climate change and development of glacial lakes [46,58], which are also influenced
by the slope and flow velocity of ice in the glacier ablation zones [59]. Inversely, the dynamics
of supraglacial lakes on nine D-glaciers in the Everest region revealed the effect of glacial lakes
on promoting ablation via ice cliff calving [60]. Inter-conversion of glacial lake types caused by
continuous glacier retreat, such as from supraglacial lakes to moraine-dammed lakes, was observed
in the Himalayas in previous studies [22,48]. The integrated assessments for dynamic evolutions of
D-parts and the interplay between glacier and glacial lake changes at multiple spatio-temporal scales
are urgently required.

The Gyirong River Basin (GRB), a total area of 4640 km2, is located between Gyirong County,
China and Bagmati, Nepal (Figure 1) within the central Himalayas. The GRB extends from the lowest
elevation of 590 m a.s.l. (above sea level) to the highest 7360 m a.s.l., and contained a total glacier area
of 614 km2 in 1988. The Gyirong Pass in this basin has been the only open trade port between China
and Nepal since the Nepal earthquake in 2015, which caused severe destruction and the closure of the
previous Nyalam Pass. Historically, GLOFs, such as those originating from Longda Tsho and Zanaco,
also destroyed downstream roads and villages in the GRB [23,61]. With the booming of Sino-Nepal
economic trade, infrastructures such as transboundary highways and railways are complete, under
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construction, or upcoming. The issues of water resource and glacier-related hazards at the watershed
scale have become increasingly important. However, the latest status, changes and, interplay between
glaciers and glacial lakes in the GRB during the past decades are not fully understood.

To this end, we aim to (1) investigate the latest distribution of glaciers and glacial lakes using
advanced mapping methods in the entire GRB; (2) reveal the changing characteristics for glaciers and
glacial lakes using consistent Landsat images at six discrete episodes (1988, 1994, 2001, 2006, 2010,
and 2015); and (3) improve the awareness of the interaction between glaciers and glacial lakes in the
central Himalayas at a river basin scale.
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Figure 1. Study area and distribution of glaciers and glacial lakes in 2015. The inset map is from ESRI’s
world basemap and the background image was acquired on 25 October 2015 from Landsat 8 OLI.
Rectangles 1 and 2 are the areas covered in Figures 2 and 3.
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2. Materials and Methods

2.1. Data

A total of 21 Landsat images were employed to map glacier and glacial lake extents in the studied
GRB (Table 1). These images with a spatial resolution of 30 m were acquired from Landsat Thematic
Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager
(OLI) in six discrete years (episodes) between 1988 and 2015. Because of frequent cloud contamination
over the Himalayas, it was practically difficult to obtain ideal-quality imageries during the exact
same month [49,62]. Based on existing hydrological observations, glacier ablation in the central
Himalayas mainly occurs during the summer (between June and August) [30,63], and the seasonal
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changes in glaciers and glacial lakes from September and December are relatively minor. Therefore,
we here acquired the best possible images during the latter period (between September and December).
In addition, another 9 images were also selected as auxiliary data in order to reduce the uncertainties
caused by sporadic noises such as seasonal snow, terrain shadow, and regional cloud covers.

Table 1. Landsat images applied for glacier and glacial lake mapping.

No. WRS-2 Path/Row Satellite/Sensor Acquisition Date (mm/dd/yyyy) Thematic Mapping

1 141/040 Landsat 5/TM 26 September 1988 Glacier/Lake
2 141/040 Landsat 5/TM 27 September 1994 Glacier/Lake
3 141/040 Landsat 5/TM 27 December 2001 Glacier/Lake
4 141/040 Landsat 5/TM 14 October 2006 Glacier/Lake
5 141/040 Landsat 5/TM 25 October 2010 Glacier/Lake
6 141/040 Landsat 8/OLI 7 October 2015 Glacier/Lake
7 141/041 Landsat 5/TM 12 October 1988 Lake
8 141/041 Landsat 5/TM 13 October 1994 Lake
9 141/041 Landsat 5/TM 27 December 2001 Lake

10 141/041 Landsat 5/TM 1 December 2006 Lake
11 141/041 Landsat 5/TM 25 October 2010 Lake
12 141/041 Landsat 8/OLI 7 October 2015 Lake
13 141/040 Landsat 5/TM 29 November 1988 † Glacier/Lake
14 141/040 Landsat 5/TM 3 January 1990 † Glacier/Lake
15 141/040 Landsat 5/TM 13 October 1994 † Glacier/Lake
16 141/040 Landsat 7/ETM+ 24 October 2001 † Glacier/Lake
17 141/040 Landsat 7/ETM+ 22 September 2001 † Glacier/Lake
18 141/040 Landsat 5/TM 4 March 2006 † Glacier/Lake
19 141/040 Landsat 5/TM 28 December 2010 † Glacier/Lake
20 141/040 Landsat 5/TM 25 October 2010 † Glacier/Lake
21 141/040 Landsat 8/OLI 26 September 2017 † Glacier/Lake

† Note: selected as auxiliary data.

Other datasets used in this study include the second CGI data set [43], high-resolution images
from Google Earth, the ASTER Global Digital Elevation Model (ASTER GDEM, 30 m) version 2 [64–66],
and the annual mean air temperature and precipitation data from the nearest two meteorological
stations (Tingri County and Nyalam County) between 1988 and 2015 provided by the China
Meteorological Administration (http://www.cma.gov.cn/).

2.2. Methods

We mapped the extents of glaciers and glacier lakes using an object-oriented automated algorithm
followed by a rigorous visual quality assurance and manual inspection. Specifically, the normalized
difference snow/ice index (NDSII) [67,68] was employed for extracting glaciers while the normalized
difference water index (NDWI) [69,70] was used for mapping glacial lakes. The detailed procedure
of the automated algorithm was described previously for both glacier mapping [5,49] and lake
mapping [22,71–73]. Both the automatically mapping methods contain pre-processing of Landsat
images, object segmentation, setting the threshold and converting from raster data into vector format.
Outputs of the automated mapping in the format of shapefile were then meticulously inspected
against their source Landsat imagery and, when necessary, modified with assistance of a graphical
user interface (GUI) as developed by Wang et al. [71]. The GUI-based mapping tool was originally
developed for mapping open surface water only [71,72,74]. Here we further extended this tool by
adding the function of delineating and revising glacier extents using NDSII. As we described previously,
mapped glaciers were classified into debris-free glaciers (C-glaciers) and D-glaciers, with the latter
further classified into C-part and D-part areas using NDSII with aid of the interactive mapping tool.
The C-glacier and C-part areas were well mapped by NDSII and separated individually by drainage
divides while debris cover was arduous to be automatically extracted. The D-part area in this study
was digitized manually with reference to the CGI data in China and GGI in Nepal, the source Landsat
images, and high-resolution Google Earth images. The C-part and D-part layers were saved as single
layers and were also merged to generate the new D-glacier data (approximate 1-month processing).

http://www.cma.gov.cn/
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Glacial lakes were classified into five groups based on their spatial relationships with ‘mother’ glaciers
at the same acquisition time, namely (1) supraglacial lake; (2) C-glacier connected lake; (3) D-glacier
connected lake; (4) glacier-fed but unconnected lake; and (5) non-glacier-fed lake. Our minimum
mapping unit is five Landsat pixels (~0.005 km2) and polygons smaller than this threshold were
removed. Quality assurance procedures includes three steps: (1) inspecting each lake and glacier at
one time point with reference to Landsat source image and Google Earth high-resolution images and
correcting the extent of lake and glacier if an error was found; (2) multi-temporal cross-checking for
glacier and glacial lake data over the six episodes between 1988 and 2015 to remove unreasonable
changes; and (3) validating the topology for glacier and glacial lake data, including deletion of
small silver polygons, repeated polygon removal et al. The margins of D-part glaciers were visually
identified and modified with the aid of multi-temporal high-resolution images from Google Earth
and Landsat images. The misclassification of glaciers and glacial lakes because of seasonal snow or
cloud cover, topographic shadows and cloud shadows was corrected by auxiliary images acquired in
the same or adjacent years and cross-check from multi-temporal images. Although the chronological
cross-validation is a time-consuming post-editing (approximate 2-month processing), this is essential
to generate high quality data with removal of remnant noises and to improve the reliability of
change detections.

The uncertainties in mapped glaciers and glacier lake areas were calculated using an error
of ±0.5 pixels and the perimeter of each mapped glacier or glacial lake as the method described
in previous studies [5,22,59,75]. Hypsometric and topographic characteristics were estimated for
individual glaciers and glacial lakes in association with DEM, DEM-derived slopes and aspect data.

3. Results

3.1. Glacier Distribution and Changes

Table 2 shows the statistics of our mapped glaciers between 1988 and 2015 across the GRB. During
the past three decades, glaciers in the GRB exhibited a declining trend in both number and area:
from 467 and 614.09 ± 36.69 km2 in 1988 to 434 and 513.07 ± 35.11 km2 in 2015. Glaciers in the GRB
were dominated by type C in number, but type D in area, implying that D-glaciers tend to have a
greater average area than C-glaciers. Within D-glaciers, the C-part area is predominant in each of the
6 studied episodes. However, the total C-part area shows a decreasing trend while the D-part area
increased. Of the total areas of D-glaciers in 1988 (308.58 km2) and in 2015 (282.13 km2), the C-part
accounts for 235.80 km2 (76.42%) and 191.56 km2 (67.90%), respectively, whereas debris cover increased
by 17.79 km2, from 23.58% to 32.10% of D-glaciers.

As shown in Table 3, glaciers in the GRB retreated rapidly during 1988–2015, and the retreat rate
appears to have accelerated further since 1994. A total of 38 C-glaciers disappeared from 1988 to 2015.
Five D-glaciers emerged from the previous C-glaciers between 2001 and 2010, as a result of surface
downwasting and then debris formation at the termini of C-glaciers. In general, the areas of C-glaciers,
D-glaciers, and C-part glaciers continued to decrease throughout the six episodes from 1988 to 2015,
which is in sharp contrast with the consecutive increase in the area of D-part glaciers.

Table 2. Statistics of glacier inventories in six episodes between 1988 and 2015.

Year C-Glacier Count (Area, km2)
D-Glacier

Sum Count (Area, km2)
Total Count (Area, km2) C-Part (km2) D-Part (km2)

1988 435 (305.51) 32 (308.58) 235.80 72.78 467 (614.09)
1994 432 (289.94) 32 (304.63) 226.05 78.58 464 (594.57)
2001 429 (278.24) 32 (298.98) 218.19 80.79 461 (577.22)
2006 415 (262.80) 34 (293.47) 211.17 82.30 449 (556.27)
2010 402 (248.53) 37 (288.59) 203.56 85.03 439 (537.12)
2015 397 (230.94) 37 (282.13) 191.56 90.57 434 (513.07)
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Table 3. Glacier changes between 1988 and 2015.

Period
Count Area (km2) (Annual Rate (% a−1))

C-Glacier D-Glacier C-Glacier D-Glacier C-Part D-Part

1988–1994 −3 0 −15.57 (−0.42) −3.95 (−0.11) −9.75 (−0.26) +5.80 (+0.16)
1994–2001 −3 0 −11.70 (−0.28) −5.65 (−0.14) −7.86 (−0.19) +2.21 (+0.05)
2001–2006 −14 +2 −15.44 (−0.53) −5.51 (−0.19) −7.02 (−0.24) +1.51 (+0.05)
2006–2010 −13 +3 −14.27 (−0.64) −4.88 (−0.22) −7.61 (−0.34) +2.73 (+0.12)
2010–2015 −5 0 −17.59 (−0.65) −6.46 (−0.24) −12.00 (−0.45) +5.54 (+0.21)
1988–2015 −38 +5 −74.57 (−0.54) −26.45 (−0.19) −44.24 (−0.32) +17.79 (+0.11)

We further summarized four major scenarios for glacial changes between 1988 and 2015, which are
no change, decrease, conversion, and increase (Figure 2 and Table 4). The conversion among C-glacier,
C-part glacier and D-part glacier was first calculated by spatial overlap analysis, then each changing
type was summed and categorized into these four scenarios. The most evident decrease was identified
in C-glaciers (−76.77 km2) and C-part glaciers (−21.88 km2). The conversions among C-part, D-part,
and C-glaciers are also obvious. For example, quite a few C-part glaciers were converted to D-part
glaciers during the process of glacial downwasting, and some C-part glaciers were disaggregated into
smaller sizes owing to glacial splitting at the upper levels. Although glacier changes in the GRB are
dominated by the decrease and conversion scenarios, minor expansions are also observed in C-glaciers
and C-part glaciers (approximate 0.2 km2 in total), which were likely caused by ice motion or ice
avalanche. In summary, the total area decreased by 74.57 km2 (24.41%) in C-glaciers and by 44.24 km2

(18.76%) in C-part glaciers between 1988 and 2015, while D-part glaciers increased by 17.79 km2

(24.44%) (Tables 3 and 4).

Table 4. Summary of various scenarios of glacier changes between 1988 and 2015.

Scenario Description Area (km2)

Unchanged
C-glacier 226.42
C-part glacier 190.96
D-part glacier 70.01

Decreased

C-glacier 76.77
C-part glacier 21.88
D-part glacier 2.58

Converted

C-part to D-part due to glacial downwasting 18.57
C-part to C-glacier due to glacial splitting at the upper level 4.39
C-glacier to D-part due to glacial downwasting 1.99
C-glacier to C-part due to formation of D-part glacier 0.33
D-part to C-part due to glacier motion 0.19

Increased

C-glacier 0.13
C-part glacier 0.07
D-part glacier from C-part or C-glacier (equivalent to related
conversions above) 20.56

−

Total change
C-glacier −74.57
C-part glacier −44.24
D-part glacier +17.79

Glacier changes in the GRB exhibit a strong spatial heterogeneity from 1988 to 2015. In comparison
with C-glaciers, individual D-glaciers show greater area losses (Figure 3A). The largest D-glacier
decreased by more than 3.0 km2 but the maximum area loss in C-glaciers is less than 2.0 km2.
In addition, larger glaciers tend to have lower retreat rates (Figure 3B), whereas some small glaciers
have completely perished. Most D-glaciers have a retreat rate lower than 20%, compared with higher
than 20% of area loss for most C-glaciers.

Glacial retreat occurred in all size classes from 1988 to 2015 (Figure 4A). Of the size classes in
Figure 4, 1–5 km2 has the largest area and also suffered the largest absolute loss of area, entirely due
to loss by C-glaciers. D-glaciers are considerably larger than C-glaciers, and all glaciers larger than
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10 km2 are D-glaciers (Figure 4B,C). Figure 4B reveals that most glaciers in the GRB are C-glaciers, of
which over 99% in number have an area less than 5 km2. Although there are only 16 out of a total of
37 D-glaciers with areas greater than 5 km2, they contribute more than 86% of the total area in 2015
(Figure 4C). These patterns indicate that the glacial status has close relationship with its size and type.

Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 19 

 

 
Figure 3. Glacier area loss (A) and change rate (B) between 1988 and 2015. The glacier extents shown 
in both panels were mapped from 1988 imagery. 

Glacial retreat occurred in all size classes from 1988 to 2015 (Figure 4A). Of the size classes in 
Figure 4, 1–5 km2 has the largest area and also suffered the largest absolute loss of area, entirely due 
to loss by C-glaciers. D-glaciers are considerably larger than C-glaciers, and all glaciers larger than 
10 km2 are D-glaciers (Figure 4B,C). Figure 4B reveals that most glaciers in the GRB are C-glaciers, of 
which over 99% in number have an area less than 5 km2. Although there are only 16 out of a total of 
37 D-glaciers with areas greater than 5 km2, they contribute more than 86% of the total area in 2015 
(Figure 4C). These patterns indicate that the glacial status has close relationship with its size and 
type. 

 
Figure 4. Area and frequency of glaciers in various size classes: (A) glacier total areas in the studied 
six years; (B) C-glaciers in 1988 and 2015; (C) D-glaciers in 1988 and 2015. Glacier numbers are given 
in green. 

3.2. Hypsometry and Topographic Characteristics of Glaciers 

Glaciers and glacier changes show distinct altitudinal distributions between 1988 and 2015 
(Figure 5). In 2015, the altitudes of all glaciers in GRB range from 3600 m a.s.l. to 7300 m a.s.l., with a 
mean altitude of 5507 m a.s.l. The majority glacier area is distributed at 5000–6000 m a.s.l., 
occupying 71.22% of the total glacier area (Figure 5A). C-glaciers generally have a higher altitude 
than that of D-glaciers (Figure 5B), within which C-parts are distributed higher than D-parts (Figure 
5C). In total, glacial area loss between 1988 and 2015 mainly occurred at 4800–6000 m a.s.l. (Figure 
5A). Specifically, most area losses of C-glaciers are observed at 4800–5900 m a.s.l. and for D-glaciers 
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Figure 4. Area and frequency of glaciers in various size classes: (A) glacier total areas in the studied
six years; (B) C-glaciers in 1988 and 2015; (C) D-glaciers in 1988 and 2015. Glacier numbers are given
in green.

3.2. Hypsometry and Topographic Characteristics of Glaciers

Glaciers and glacier changes show distinct altitudinal distributions between 1988 and 2015
(Figure 5). In 2015, the altitudes of all glaciers in GRB range from 3600 m a.s.l. to 7300 m a.s.l.,
with a mean altitude of 5507 m a.s.l. The majority glacier area is distributed at 5000–6000 m a.s.l.,
occupying 71.22% of the total glacier area (Figure 5A). C-glaciers generally have a higher altitude than
that of D-glaciers (Figure 5B), within which C-parts are distributed higher than D-parts (Figure 5C).
In total, glacial area loss between 1988 and 2015 mainly occurred at 4800–6000 m a.s.l. (Figure 5A).
Specifically, most area losses of C-glaciers are observed at 4800–5900 m a.s.l. and for D-glaciers at
5200–5800 m a.s.l. (Figure 5B). In contrast, the increasing areas of D-part are more prominent in higher
elevations (mainly from 4900 m a.s.l. to 5500 m a.s.l.) on D-glaciers that previously be covered by
C-part glaciers (Figure 5C). This indicates a trend of upward progression of debris covers induced by
glacial downwasting.
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Figure 5. Altitudinal distribution of glaciers and their changes between 1988 and 2015: (A) distributions
of glacier areas and the net area loss; (B) area distributions of C-glaciers and D-glaciers; (C) area
distributions and changes of C-part and D-part glaciers. The shaded area in (C) is only the area increase
in D-parts.
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In 2015, the slope of glaciers in the GRB ranges from 10◦ to 50◦, with a mean of 31◦ (Figure 6).
Most C-glaciers have an average slope between 10◦ and 35◦. Compared with D-glaciers (with a mean
slope of 27◦), C-glaciers (mean slope of 31◦) are distributed on steeper terrains. Similarly, C-parts of the
D-glaciers are more likely to occur on steeper surfaces, which are consistent with their higher altitudes
than D-parts.

Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 19 

 

by C-part glaciers (Figure 5C). This indicates a trend of upward progression of debris covers induced 
by glacial downwasting. 

 
Figure 5. Altitudinal distribution of glaciers and their changes between 1988 and 2015: (A) 
distributions of glacier areas and the net area loss; (B) area distributions of C-glaciers and D-glaciers; 
(C) area distributions and changes of C-part and D-part glaciers. The shaded area in (C) is only the 
area increase in D-parts. 

In 2015, the slope of glaciers in the GRB ranges from 10° to 50°, with a mean of 31° (Figure 6). 
Most C-glaciers have an average slope between 10° and 35°. Compared with D-glaciers (with a mean 
slope of 27°), C-glaciers (mean slope of 31°) are distributed on steeper terrains. Similarly, C-parts of 
the D-glaciers are more likely to occur on steeper surfaces, which are consistent with their higher 
altitudes than D-parts. 

 
Figure 6. Area distribution of glaciers at various slope classes in 2015: (A) area distributions of 
C-glaciers and D-glaciers; (B) area distributions of C-part and D-part of D-glaciers. The average slope 
was calculated based on DEM with a 30 m spatial resolution for individual C-glacier, D-glacier, 
C-part and D-part glaciers, and then we summed the area for each class. 

In GRB, most glaciers are small C-glaciers and oriented towards north (Figure 7). The number 
of north facing glaciers decreased from 90 in 1988 to 78 in 2015 due to the disappearance of some 

Figure 6. Area distribution of glaciers at various slope classes in 2015: (A) area distributions of
C-glaciers and D-glaciers; (B) area distributions of C-part and D-part of D-glaciers. The average slope
was calculated based on DEM with a 30 m spatial resolution for individual C-glacier, D-glacier, C-part
and D-part glaciers, and then we summed the area for each class.

In GRB, most glaciers are small C-glaciers and oriented towards north (Figure 7). The number of
north facing glaciers decreased from 90 in 1988 to 78 in 2015 due to the disappearance of some small
C-glaciers. In case of area, however, D-glaciers facing west, southwest, and south aspects contribute
more than half of the total area since several largest glaciers in GRB are D-glaciers. Between 1988 and
2015, glaciers facing north, northwest, west, southwest, and south decreased more in area than those
in the other aspects.
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3.3. Glacial Lake Inventory and Lake Changes

A total of 107 (4.62 ± 1.12 km2) glacial lakes in 1988 and 148 (7.12 ± 1.50 km2) in 2015 were
identified from our mapping (Table 5). The altitude of glacial lakes ranges from 3800 m a.s.l. to 5600 m
a.s.l. in 2015 (Figure 8A). Most of the glacial lakes (130) in 2015 are smaller than 0.1 km2. The 18 lakes
larger than 0.1 km2, however, account for over 50% to the total area (Figure 8B). The distribution of
lake area in elevation is concentrated lower than that of lake count.

Table 5. Inventory of glacial lakes in various types at six time points between 1988 and 2015 (units:
count (area, km2)).

Year Supraglacial C-Glacier Connected D-Glacier Connected Glacier-Fed Unconnected Non-Glacier-Fed Total

1988 11 (0.11) 14 (0.67) 7 (0.36) 46 (2.38) 29 (1.10) 107 (4.62)
1994 20 (0.21) 14 (0.52) 7 (0.49) 53 (2.69) 29 (1.06) 123 (4.97)
2001 21 (0.26) 13 (0.39) 5 (0.41) 64 (3.04) 29 (1.06) 132 (5.16)
2006 25 (0.32) 12 (0.57) 6 (0.49) 64 (3.30) 32 (1.10) 139 (5.78)
2010 23 (0.48) 10 (0.40) 6 (0.75) 71 (3.47) 32 (1.09) 144 (6.19)
2015 24 (0.55) 9 (0.77) 8 (1.00) 74 (3.56) 33 (1.24) 148 (7.12)

1988–2015 +13 (+0.44) −5 (+0.10) +1 (+0.64) +28 (+1.18) +4 (+0.14) +41 (+2.50)
Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 19 

 

 
Figure 8. Characteristics of altitudinal distributions and size groups of glacial lakes: (A) altitudinal 
distributions in area and frequency for glacial lakes in 2015; (B) area and frequency distributions of 
glacial lakes among size classes in 1988 and 2015. 

4. Discussion 

4.1. Impact of Debris Cover on Glacier Changes 

The retreat rate of D-glaciers in the GRB is lower than that of C-glaciers between 1988 and 2015 
because of the role of debris coverage. Most of the D-glacier termini remain nearly stagnant, which 
was also observed in other Himalayan regions [44,45,58]. The stagnant behavior of D-glaciers was 
likely induced by thermal insulation between the glacier surface and the supraglacial debris [76]. 
The retreat of D-glaciers was further constrained by the thickening of supraglacial debris when they 
expanded upward [77]. Meanwhile, formations of new ice cliffs and supraglacial lakes in the 
debris-covered zones possibly promoted glacial ablation [45,59,78]. Downwasting of D-part glaciers 
is a complex process of mass losses for most of Himalayan D-glaciers. 

4.2. Effect of Glacial Lake Changes on Glaciers 

Glacial lakes may accelerate the melting of glaciers owing to the glacio-hydrological interplay. 
To elucidate this point, we further categorized C-glaciers and D-glaciers by their connections with or 
without glacial lakes. As shown in Table 6, C-glaciers and D-glaciers connected with glacial lakes 
experienced higher rates of area loss than those without connections to glacial lakes. The total areas 
for C-glaciers and D-glaciers decreased by 0.77 km2 and 0.75 km2 (summed through the related 
spatial conversion matrix), which was induced by the expansions of terminally connected glacial 
lakes between 1988 and 2015. This means that lake expansions contribute 15.88% to the total area loss 
in the connected C-glaciers and 16.41% to the total area loss of the connected D-glaciers. Clearly, 
glacial lake expansions result in faster glacial retreat through thermal energy transmission to glaciers 
from lake water [22,36,79]. 

Table 6. Comparison of glacier changes by their connection with or without glacial lakes. 

Type 
1988 1988–2015 

Count Area (km2) Area Loss (km2) Area Loss Rate (%) 
C-glacier connected with lake 14 18.88 4.85 25.69 

C-glacier unconnected with lake 421 286.63 69.72 24.32 
D-glacier connected with lake 6 a 40.02 4.57 11.42 

D-glacier unconnected with lake 26 268.56 21.88 8.15 
a Note: two proglacial lakes in 1988 were at the same terminus of one D-glacier. 

Figure 8. Characteristics of altitudinal distributions and size groups of glacial lakes: (A) altitudinal
distributions in area and frequency for glacial lakes in 2015; (B) area and frequency distributions of
glacial lakes among size classes in 1988 and 2015.

In general, glacial lakes in GRB expanded rapidly between 1988 and 2015, but the expanding
status varies among lake types. The total number of glacial lakes increased by 41 (38.32%) and the total
area by 2.50 km2 (54.11%). Except for C-glacier connected lakes, glacial lakes of the other types grew in
number and expanded in area (Table 5). Integrating all lake types, the number and area experienced a
net increase from 1988 to 2015 in each of the size classes (Figure 8B).

4. Discussion

4.1. Impact of Debris Cover on Glacier Changes

The retreat rate of D-glaciers in the GRB is lower than that of C-glaciers between 1988 and 2015
because of the role of debris coverage. Most of the D-glacier termini remain nearly stagnant, which was
also observed in other Himalayan regions [44,45,58]. The stagnant behavior of D-glaciers was likely
induced by thermal insulation between the glacier surface and the supraglacial debris [76]. The retreat
of D-glaciers was further constrained by the thickening of supraglacial debris when they expanded
upward [77]. Meanwhile, formations of new ice cliffs and supraglacial lakes in the debris-covered
zones possibly promoted glacial ablation [45,59,78]. Downwasting of D-part glaciers is a complex
process of mass losses for most of Himalayan D-glaciers.
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4.2. Effect of Glacial Lake Changes on Glaciers

Glacial lakes may accelerate the melting of glaciers owing to the glacio-hydrological interplay.
To elucidate this point, we further categorized C-glaciers and D-glaciers by their connections with
or without glacial lakes. As shown in Table 6, C-glaciers and D-glaciers connected with glacial lakes
experienced higher rates of area loss than those without connections to glacial lakes. The total areas
for C-glaciers and D-glaciers decreased by 0.77 km2 and 0.75 km2 (summed through the related
spatial conversion matrix), which was induced by the expansions of terminally connected glacial lakes
between 1988 and 2015. This means that lake expansions contribute 15.88% to the total area loss in the
connected C-glaciers and 16.41% to the total area loss of the connected D-glaciers. Clearly, glacial lake
expansions result in faster glacial retreat through thermal energy transmission to glaciers from lake
water [22,36,79].

Table 6. Comparison of glacier changes by their connection with or without glacial lakes.

Type
1988 1988–2015

Count Area (km2) Area Loss (km2) Area Loss Rate (%)

C-glacier connected with lake 14 18.88 4.85 25.69
C-glacier unconnected with lake 421 286.63 69.72 24.32

D-glacier connected with lake 6 a 40.02 4.57 11.42
D-glacier unconnected with lake 26 268.56 21.88 8.15

a Note: two proglacial lakes in 1988 were at the same terminus of one D-glacier.

4.3. Impact of Glacier Changes on Glacial Lakes

In the context of glacial retreat, the statuses of glacier changes significantly influence the formation,
conversion, and current standing for glacial lakes. For supraglacial lakes on D-glaciers, they vary in
location, size, and shape, as reported in previous publications [22,23,36]. A good case is the rapid
evolution and expansion of supraglacial lakes on Lalaga Glacier (Figure 9A), where the lake labeled by
green dot reached an area of 0.31 km2 in 2017 from 0.01 km2 in 1988. A total of 9 C-glacier connected
lakes became glacier-fed unconnected lakes between 1988 and 2015 (such as the lake in Figure 9B),
caused by continuous glacier retreat. D-glacier connected lakes (Figure 9C), generally named as
moraine-dammed lakes, expanded by 1.77 times in area from 1988 to 2015, and are prone to form large
lakes that are potentially dangerous to the downstream regions. Historically, this type of lake usually
resulted in GLOFs. For example, Longda Tsho and Zanaco in the GRB burst and caused flooding
hazards on 25 August 1964 and 7 June 1995, respectively [23,61]. This implies that close attention
should be paid to the expansion of D-glacier connected lakes in the future.

Generally, glacial lakes unconnected from glaciers are relatively stable, such as the lakes in
Figure 9D,E–H . C-glacier connected lakes are the most dynamic among all lake types. The process
from connection to disconnection between a newly formed lake and its feeding C-glacier is distinctly
observed across the GRB (Figure 9E–H ). Such conversion from new formation to disconnection makes
a major contribution to the increase in number and area for glacier-fed unconnected lakes (Table 5).
Similarly, the increase in number of non-glacier-fed lakes was caused by the disappearance of upstream
glaciers (Figure 9H). It is obvious that glacier changes affect the hydrological connectivity between
lakes and their feeding glaciers and therefore exert a profound influence on the evolution and status of
glacial lakes.
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(B) lake connected with C-glacier (85.522556°E, 28.415646°N); (C) lake connected with D-glacier 
(85.494453°E, 28.508467°N); (D) unconnected glacier-fed lake (85.170447°E, 28.292374°N); (E) no lake 
at the glacier terminus (85.593496°E, 28.378879°N); (F) newly-formed lake connected with C-glacier; 
(G) lake unconnected with C-glacier; (H) lake becoming non-glacier-fed after the disappearance of 
the upstream glacier. 

As discussed above, warming-induced glacial retreat controls the evolution of glacial lakes in 
the study area. Retreating glaciers cause a large volume of meltwater and space for connected lakes 
to expand [15,86]. The future glacier melt runoff was projected to increase by a glacio-hydrological 
model in the Langtang watershed, located at the south of our GRB [10]. As glacial lakes usually 
continue to expand in the case of accelerated glacier retreat and wastage, the risk of GLOFs is likely 
to increase in the Himalayas. We agree with others who predict GLOF frequency will increase 

Figure 9. Evolution and changing status of typical glacial lakes (labeled by green dots) superimposed
on background Landsat images: (A) supraglacial lake on Lalaga Glacier (85.563661◦E, 28.426213◦N);
(B) lake connected with C-glacier (85.522556◦E, 28.415646◦N); (C) lake connected with D-glacier
(85.494453◦E, 28.508467◦N); (D) unconnected glacier-fed lake (85.170447◦E, 28.292374◦N); (E) no lake
at the glacier terminus (85.593496◦E, 28.378879◦N); (F) newly-formed lake connected with C-glacier;
(G) lake unconnected with C-glacier; (H) lake becoming non-glacier-fed after the disappearance of the
upstream glacier.

4.4. Climate as a Major Factor Driving Glacial Retreat and Lacustrine Evolution

Glacial retreat is known to be a result of rising temperature in the Himalayas [3,7,49]. Warming is
significantly observed in the central Himalayas (Figure 10A) based on in situ meteorological data from
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the nearest weather stations in Nyalam County and Tingri County, where annual mean air temperature
increased by 0.35 ◦C per decade (adjusted R2 value of 0.29 and p-value of 0.002) during 1988–2015.
Meanwhile, annual precipitation has remained stable (Figure 10B) at a negligible increasing rate of
2.83 mm per decade (adjusted R2 value of −0.04 and p-value of 0.875). The gridded GPCP precipitation
data, however, show a decreasing trend across the high altitude region of the Himalayas from 1979 to
2014 [22]. This confirms that continuous warming is likely the dominant contributor to the accelerated
glacial retreat in the GRB between 1988 and 2015 rather than the variation in precipitation. Debris cover
is also considered as an important factor of glacier changes [45]. Upward expansion of D-part glaciers
reflects the response of glaciers to climate change in the central Himalayas. Other properties, such as
size, steepness, aspect, altitude, and connectivity with glacial lakes, also influence the heterogeneous
wastage of glaciers [80–82]. The changing composition of glacier surface, such as the content of black
sooty particles [83–85], is also a contributor to glacial retreat. All these factors indicate the complex
nature of alpine glacial changes.
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Figure 10. Air temperature (A) and annual precipitation (B) changes in the central Himalayas observed
from the nearest meteorological stations between 1988 and 2015. The blue line represents the linear
regression. The red curve is the 5-year moving average.

As discussed above, warming-induced glacial retreat controls the evolution of glacial lakes in the
study area. Retreating glaciers cause a large volume of meltwater and space for connected lakes to
expand [15,86]. The future glacier melt runoff was projected to increase by a glacio-hydrological model
in the Langtang watershed, located at the south of our GRB [10]. As glacial lakes usually continue to
expand in the case of accelerated glacier retreat and wastage, the risk of GLOFs is likely to increase
in the Himalayas. We agree with others who predict GLOF frequency will increase during the next
decades and into the 22nd century [87]. Therefore, a continuous monitoring of glaciers and glacial
lakes will be crucially important for GLOF risk assessments, hazard management and mitigation.

5. Conclusions

This study provides a comprehensive monitoring of glaciers and glacial lakes across the entire
GRB using archival Landsat imagery acquired in the past nearly three decades. Our results reveal
dramatic retreats of C-glaciers and C-part glaciers in association with significant upward expansions
of D-part glaciers in the studied six episodes between 1988 and 2015. We attribute the expansion
of supraglacial debris primarily to the internal conversion from C-part to D-part. While C-glaciers
retreated rapidly because of the lack of debris cover, D-glaciers appeared more stable due to thermal
insulation under the thickening supraglacial debris.

We also demonstrate that the dynamics and conversions among glacial lake types were controlled
strongly by glacier changes via hydrological connectivity. On the one hand, expanding glacial lakes
likely accelerated the retreat of connected mother glaciers through thermal transmits. On the other
hand, glacier lakes were hardly influenced by the upstream glaciers once they were disconnected
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from the lakes. The interplay between glaciers and glacial lakes implies the complexity of glacial
downwasting. Under the current climate change, glaciers will possibly continue to retreat and
downwaste. As a result, D-glacier-connected lakes may expand in the near future. Therefore, hazard
assessment for the potentially dangerous glacial lakes is highly recommended in this important river
basin, which contains the Gyirong Pass, the only trading port that currently functions between China
and Nepal.
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