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Abstract: Raft-culture is a way of utilizing water for farming aquatic product. Automatic raft-culture
monitoring by remote sensing technique is an important way to control the crop’s growth and
implement effective management. This paper presents an automatic pixel-wise raft labeling method
based on fully convolutional network (FCN). As rafts are always tiny and neatly arranged in images,
traditional FCN method fails to extract the clear boundary and other detailed information. Therefore,
a homogeneous convolutional neural network (HCN) is designed, which only consists of convolutions
and activations to retain all details. We further design a dual-scale structure (DS-HCN) to integrate
higher-level contextual information for accomplishing sea–land segmentation and raft labeling at
the same time in a uniform framework. A dataset with Gaofen-1 satellite images was collected to
verify the effectiveness of our method. DS-HCN shows a satisfactory performance with a better
interpretability and a more accurate labeling result.
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1. Introduction

Raft-culture is a kind of aquaculture, where people use offshore waters to cultivate aquatic crops
such as wakame, kelp and shellfish. The rafts are usually made up of floats and ropes, fixed to
the seabed and neatly arranged on the water. With the fast development of optical remote sensing
techniques, people nowadays are able to observe the states of rafts and control the growth of crops
by remote sensing images. However, monitoring by manpower is extremely time-consuming and
laborious. To obtain the accurate distribution and the area of these rafts, people have to manually
label the large scale of the remote sensing image pixel by pixel. Usually, labeling one thousand
square kilometers of sea area would take tens of hours of human work. Therefore, automatic
raft-culture labeling by optical remote sensing is important for agricultural automation production
and implementing effective management.

Figure 1a shows a photograph of rafts in natural environment (https://www.flickr.com/photos/
46200806@N05/6079646404/), and Figure 1b shows some remote sensing images with rafts inside.
In 16-m spatial resolution images, the rafts usually share the following features:

1. Rafts are usually small stripes with different lengths but the same width. The width of the strip is
about 4–5 pixels (16-m spatial resolution).
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2. Rafts are usually closely arranged near the coastline. The gap between adjacent stripes is about
2–5 pixels (16-m spatial resolution).

(a) Rafts in natural environment

(b) Rafts under remote sensing observation

Figure 1. (a) The raft-culture photograph shows rafts floating on the ocean with crops. (b) The first and
third figures are thumbnails, the second and fourth figures are details from dashed boxes. In remote
sensing images, rafts are small and densely arranged, and some of them are hard to recognize.

To tackle the raft-culture labeling problem, traditional methods start with the features of rafts
and extract the shape, texture and color information. For optical remote sensing images, Liu et al.
utilized the neighborhood statistics method by processing the blue band for remote sensing images [1].
Wang et al. applied the region-line primitive association framework in raft-culture extraction [2].
For SAR images, Fan et al. proposed joint sparse representation classification method based on the
wavelet decomposition and gray-level co-occurrence matrix [3]. Geng et al. combined the sparse
representation classifier and the collaborative representation classifier with residual-based fusion
strategy [4]. However, the robustness of these methods cannot be guaranteed and their parameters
have to be adjusted manually, especially when applied to complex ocean environments.

In recent years, Convolutional Neural Network (CNN) [5] has played a very important role in the
remote sensing field for image classification, detection, description and segmentation [6–12], and it
also has been widely used in many other fields [13–16]. CNN constructs multiple layers to learn
high-level image features with better discrimination and robustness, as opposed to that in traditional
methods [17–19], where features have to be handcrafted. The rapid development of CNN gave birth
to a new technology: Fully Convolutional Networks (FCN) [20], which is specifically designed to
predict a 2-D label map with the arbitrary-sized input image. FCN has greatly increased the processing
flexibility and computational efficiency, and the image-to-image mapping process is naturally suitable
for the pixel-wise image labeling tasks. In remote sensing image interpretation fields, such tasks
include land structure segmentation, sea–land segmentation and others [21–23]. However, raft labeling
is different from the above labeling problems, where there is a huge difference between the semantic
scales between them. In the former task, as rafts are always tiny and neatly arranged, one should
mainly focus on some tiny structures and edges of the images, whereas in the latter task, one should
pay more attention to the semantic information of a larger scale. This difference makes the traditional
FCN based labeling method fail on this particular task. In fact, the key to tackling this problem is to
explore and to take advantage of some important properties of an FCN model, e.g., invariance and
equivariance, which is closely related to our problem.



Remote Sens. 2018, 10, 1130 3 of 17

Invariance is an important property for CNN and FCN, and it makes the network’s output stable
to some changes of input of its scale and shape. Equivariance is another important property where the
output of a network is sensitive to the input at the boundaries of different semantic classes. For a raft
labeling task, both invariance and equivariance are needed. However, traditional FCN methods have
strong invariance but lack equivariance. Thus, even the state of the art methods such as Deeplab [24]
cannot get clear and detailed labeling result of the rafts.

In this paper, we propose a new model called Homogeneous Convolutional Neural Network
(HCN), which only consists of convolution and activation layers. In an HCN, all pooling layers are
removed to retain all output details. The resolution of the output keeps the same as that of the input.
As a result, all feature maps in an HCN share the same width and height to keep every details of
an input image. In fact, in computer vision field, there are also some convolutional neural networks
designed without pooling layers. Springenberg et al. replaced pooling layers by convolution layers
with the same stride and the same kernel size to improve the network [25]. He et al. proposed a residual
network and also replaced the pooling layers by some residual blocks with strides [26]. However,
although pooling layers are removed in these methods, their output resolutions are still lower than the
inputs, thus it is hard to obtain detailed raft labeling results.

Since rafts are usually located on the sea surface near land, it is crucial to remove land regions,
which can mitigate the interference of some stripe-like objects. Note that, although one can easily
generate the land mask by using geographical information and shore-line dataset, coastlines are
frequently updated due to some human activations and it is hard for people to obtain an accurate and
highly efficient coastline dataset. Therefore, in this paper, we further introduce a dual-scale version
of HCN (DS-HCN), and this network can accomplish the sea–land segmentation task and the raft
labeling task simultaneously in a semantic labeling fashion, i.e., label every pixel of the image into
three classes, sea, land and rafts. The dual-scale structure of DS-HCN successfully addresses the huge
scale gap between different classes, i.e., sea/land and rafts, and gives more accurate labeling results.

The contributions of our work are summarized as follows:

1. A new FCN based model, HCN, is proposed for the raft-culture labeling problem. HCN gives
accurate and clear labeling results of tiny and densely arranged rafts with a noticeable performance
improvement over the state of the art labeling methods.

2. We further propose a dual-scale version of HCN to tackle the sea–land segmentation and the
rafts labeling in a uniform framework. Such approach gives further accuracy improvement of
rafts recognition.

The rest of this paper is organized as follows. In Section 2, we introduce Fully Convolutional
Network and our proposed method in detail. In Section 3, we further discuss our method based on
some experimental results. Finally, conclusions can be found in Section 4.

2. Methodology

In this section, we first give a brief review of the traditional FCN model and then give a detailed
introduction for our proposed HCN and its dual-scale variant DS-HCN.

2.1. Fully Convolutional Network Framework

In general, the main calculations under the FCN framework include convolution, activation
and pooling.

Convolution. A convolution layer is often made up of multiple kernels, which are used to
separately convolute with the input data. This kind of layers aims at automatically extracting
various local features from images, and these features can finally compose semantic information
by layer stacking.

Activation. The non-linearity of a network is contributed by activation layers, and it ensures
that the network is able to handle non-linear problems. Activation layers are usually attached to
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convolution layers with the element-wise operation, where the most popular activation functions are
ReLU [27] and its variants [26,28].

Pooling. A pooling layer can often be found after convolution and activation layers. This layer is
designed to down-sample feature maps for speeding up the calculation, improving the invariance and
the generalization ability of a network. Max-pooling is the most common operation to obtain results
from each local region of the input.

FCN shares similar structural units to CNN, while their major difference is at the decision
layer, where the fully connected layers in CNN are replaced by convolution layers with 1× 1 sized
convolution kernel. Since convolution operation would not limit the input image size, FCN allows
arbitrary-sized input image, which brings the concept of the receptive field.

The receptive field plays a key role in the FCN, and it limits the range of input pixels involved
in the calculation, when predicting the semantic label for a pixel. Obviously, a small receptive field
will make it difficult for a network to perceive global information. Generally, the receptive field is
expanded by introducing convolution layers and pooling layers, so the classical fully convolution
networks tend to use a deep structure with several pooling layers.

For a pixel-wise labeling task, a softmax loss is usually chosen as the loss function at the end of a
network, which is equivalent to the pixel-wise accumulation of negative log-likelihood of the output
class-probability.

2.2. Homogeneous Convolutional Network

Traditional semantic segmentation methods in computer vision field usually apply
down-sampling operations to improve the invariance, and final full-sized outputs are usually enlarged
by interpolation or deconvolution [20,24,29–31]. Similar to a sampling problem in the signal processing
field [32,33], the times of down-sampling has an upper limit for an FCN method to recover every detail
of the input. For natural images, the foreground objects are usually large in size, which allows the
neural networks to have some pooling layers or other similar structures to balance the equivariance
and invariance. However, raft-culture remote sensing images contain rich semantic details. Thus,
when applying multiple down-sampling operations, the original semantic information of those rafts
will be difficult to recover, as shown in Figure 2.

Figure 2. Images in the first row are natural images chosen from the VOC2012 dataset [34], images in
the second row are a raft-culture remote sensing image and its semantic labels, and those images of
two groups are in the same size. The right column shows the recovered labels which are obtained by
down-sampling and up-sampling the original label by the nearest neighbor interpolation method.

Based on the above analysis, we chose a high-performance 16-layer classification network
(VGG-16 [35]) as the backbone of our HCN model, and then all the pooling layers and fully connected
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layers are removed. As shown in Figure 3, HCN contains only convolution and activation operations,
which keeps the full resolution of all feature maps the same as the input image.

For a neural network, a deeper structure (more convolution layers) is helpful to further abstract
features and improve the expression ability [36], and a wider structure (more convolution filters)
means that various features can be extracted. In the raft-culture labeling task, there are only three
kinds of category required to recognize, so the depth is more important than the width. Therefore,
we add two additional convolution layers to the end of the VGG-16, where the filter number is set to
512, half as much as that of VGG-16, for controlling the number of parameters.

Figure 3. The illustration of HCN. The input image is an 8-bit RGB image transformed from a
multi-spectral remote sensing image. Conv_g(l,n,k× k,s) means there are l convolution layers in the
g-th group with n convolution kernels and their size is k× k and stride is s. The black, gray and white
in label image represent land, sea and raft, respectively.

As a comparison, the down-sampling times of Long’s FCN [20] and DeepLab [24], the classical
semantic labeling methods, are 32 and 8, respectively, which are much larger than the width of rafts.
Thus, the direct application of these networks in raft-culture would have difficulty obtaining accurate
labeling results.

2.3. Dual-Scale HCN

Another difference between natural images and remote sensing images is about the scale.
The objects in natural images are diverse, even those that are in the same category. In contrast,
in remote sensing images, the intra-class objects are always in a similar size and shape, but the scales
of inter-class objects are quite different, e.g., sea/land and rafts. Therefore, it is feasible to sacrifice the
intra-class invariance introduced by pooling layers to get all detailed information.

However, a disadvantage of removing all pooling layers is the decrease of the receptive field.
For example, the receptive field of the homogeneous convolutional network is only 33× 33. In this
case, there are some raft-like shapes in images miss-labeled as positive samples. Therefore, we further
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introduce an extra branch with a large receptive field, which is designed to integrate functions of the
raft-culture distribution detection and the sea–land segmentation. That is, the improved HCN becomes
a unified framework to tackle multiple tasks on different scales.

As shown in Figure 4 and Table 1, DS-HCN has two branches. Branch A is the same as the
single-scale version with a small receptive field, as we have introduced in Section 2.2. Branch B is
improved from VGG-16 with some dilated convolutions [24] for a larger receptive field, which could
extract large-scale spatial information such as sea–land distribution and rafts distribution. Thus,
when the features of the two branches are combined, the false-positives of Branch A will be suppressed
by Branch B, and the features from Branch B can be regarded as a kind of prior information of the
rafts’ distribution.

Figure 4. The dual-scale version of HCN. DS-HCN has two branches representing small and large
scales, respectively.

Table 1. The detailed configuration of DS-HCN.

Substructures Configurations

Fundamental feature extraction
Conv_1 (2, 64, 3 × 3, 1)
Conv_2 (2, 128, 3 × 3, 1)
Conv_3 (3, 256, 3 × 3, 1)

Small-scale branch A
Conv_4a (3, 512, 3 × 3, 1)
Conv_5a (3, 512, 3 × 3, 1)
Conv_6a (3, 512, 3 × 3, 1)

Large-scale branch B
Conv_4b (3, 512, 3 × 3, 2)

Conv_5b (3, 512, 3 × 3, 2, dilation = 2)
Conv_6b (1, 512, 3 × 3, 1, dilation = 12)

Combination Concate [Conv_6a; Conv_6b]
Conv_7 (1, 3, 1 × 1, 1)

As for the structure of dual-scale version, the new branch includes three groups which,
respectively, have 3, 3 and 1 convolution layers with 512 convolution kernels. Besides, for the first
layers in Conv_4b and Conv_5b, the stride of these layers are set to 2 for enlarging the receptive field.
Finally, outputs of two branches are resized to the same size and concatenated to a 1024-dimensional
feature cube, and then the final output will be generated by Conv_7.

2.4. Fusion Strategy

For the fusion operation of different features in a convolutional neural network, some classical
fusion strategies are early fusion and late fusion, as shown in Figure 5.
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Figure 5. Schematic diagrams of different fusion strategies: (a) Before the decision layer, early fusion
can happen anywhere in the neural network. (b) Late fusion only happens when merging score maps.
(c) The fusion strategy of DS-HCN belongs to early fusion but happens in the specific position (the front
layer of the decision layer) and use the specific operation (concatenation).

Early fusion is feature-level, which refers to merging kinds of features into stronger ones. There are
two classical early fusion methods: high-level and low-level fusion by skip connections [37,38] and
multi-scale fusion by constructing feature pyramid [20,24,39].

Late fusion is used in decision-level, which combines several decision results by voting,
finding maximum, or counting mean value [40–43]. Generally, it takes multiple loss functions to
build multiple multi-task optimization problems, and the final output consists of every weighted
decision scores.

In this paper, we utilize the early fusion strategy to further improve the performance of our
proposed network. By setting dual branches, we construct two different scales to extract texture
information (small scale) and environmental information (large scale) for remote sensing images.
As for the raft-culture labeling task, texture information refers to the edges of rafts, and environmental
information means the regions of sea–land.

However, different from classical early fusion methods, the fusion strategy in DS-HCN is to
concatenate dual-scale feature rather than adding them together. Suppose that W and b are the weight
matrices and the bias vector of the decision layer, Xα and Xβ represent the features extracted by each
branch, and X means the concatenation of Xa and Xb, then the output sore map S can be split into two
parts Sα and Sβ which represent the decisions of Branch A and Branch B, respectively. Then, these
three decisions have the following relations:

Sα =Wα ∗ Xα + λαb

Sβ =Wβ ∗ Xβ + λβb

S =W ∗ X + b = Sα + Sβ

s.t. : λα + λβ = 1

(1)

where Wα and Wβ are the first and last part of W, respectively; λβ and λβ are the weighting coefficients;
and the asterisk (*) represents the convolution operation.

DS-HCN has a good interpretability. As the above relations, this kind of fusion strategy is
equivalent to the weighted mean (late fusion) of each branch’s decision result, but the weighted factors
are learnable. That is, our method takes advantage of both fusion strategies. Therefore, it is easy to
visualize the decision result of each branch.
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3. Experiment, Results and Discussion

We designed three experiments to verify the effectiveness of our method. The first experiment was
used to evaluate the performance of the classical adaptive threshold method (AT) [1], a state-of-the-art
semantic labeling method DeepLab [24], HCN and its dual-scale version DS-HCN. The second
experiment was designed to explore the effect of different scales on raft labeling. We further designed
an experiment to parse and visualize the outputs of each branch of DS-HCN, which is helpful to
analyze how the branches cooperate with each other in our task.

3.1. Dataset and Evaluation Criteria

A raft-culture dataset is built for experiments. Our dataset contained 56 remote sensing image
slices and corresponding pixel-wise ground truth labels. We used 40 of them for training and the
rest for testing. Images of our dataset were captured by the Gaofen-1 Wide field of view camera at
different times with 16-m spatial resolution and the size of 500× 500 pixels. The geographical location
of the images is near Dalian, China, as shown in the red rectangle in Figure 6. It should be noted
that, since the original Gaofen-1 image (original Gaofen-1 images were provided by China Centre For
Resources Satellite Data and Application (http://www.cresda.com/)) is a 16-bit depth and 4-band
image, all images were converted to 8-bit RGB images before being fed into the networks. Figure 7
shows some examples and corresponding ground truth labels of our dataset.

Figure 6. The study area—coastal waters of Dalian, China. The red rectangle shows where the images
are collected.

http://www.cresda.com/
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Figure 7. The slices (True-color images) and corresponding semantic labels (White–gray–black images)
in the first and second lines are chosen from the training set and testing set respectively.

The ground truth labels of our dataset contain three categories representing land, sea and
raft, respectively.

In our experiments, we used softmax-loss and weighted-softmax-loss for pixel-wise computing the
distance between outputs and labels. Our primary task was that the accuracy of rafts’ labeling is as high
as possible, and the secondary task was to obtain a good result of sea–land segmentation.The formulas
of softmax, softmax-loss and weighted-softmax-loss for a single pixel are shown as Equations (2)–(4).

pi =
exi

∑K
k=1 exk

(2)

L =
K

∑
k=1

yk log pk (3)

L =
K

∑
k=1

λkyk log pk (4)

where x = (x1, ..., xK) and p = (p1, ..., pK) are an output vector and the corresponding probability
vector, λk is the k-th weight parameter and its value is inversely proportional to the pixel number
of the corresponding category, y = (y1, ..., yK) is the one-hot label, L is the loss and K is the number
of categories. Furthermore, we used intersection over union (IOU) as our core evaluation criterion,
which is defined as Equation (5).

IOU =
|LR ∩ GT|
|LR ∪ GT| (5)

where IOU is the area ratio of overlap and union between pixel-wise labeling result (LR) and ground
truth (GT). Similarly, precision (P) and recall (R) can be defined as:

P =
|LR ∩ GT|
|LR| (6)

R =
|LR ∩ GT|
|GT| (7)
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3.2. Accuracy

In this experiment, we mainly verified the performance of the proposed method and choose
HCN and DeepLab as comparisons. Each image of the training set was augmented by rotation,
gamma transformation, contrast and saturation transformation for better generalizability. In addition,
the three networks were initialized by pre-trained models. Particularly, we fine-tuned HCN by VGG-16
pre-trained on Imagenet, DeepLab by the provided model and DS-HCN by combining trained models
of HCN and VGG-16. The training method is the stochastic gradient descent method with momentum
and the hyper-parameters are set as follows: the learning rate is 10−4, the decay of learning rate is 0.9
per 5000 steps, the maximum number of iterations is 40,000, the momentum is 0.9 and the batch size is
8. Furthermore, due to the down-sampling process, it is hard for DeepLab to learn the details as rafts,
so we used the weighted-softmax-loss when training DeepLab.

For further comparison, we adopt the adaptive threshold method (AT) as the baseline. There are
three steps: (1) Convert test images to gray ones. (2) Orderly apply the adaptiveThreshold() and
medianBlur() in OpenCV [44] to process gray images. (3) Repeatedly adjust the parameters of those
functions until achieving the best IOU. Finally, the optimal parameter settings are shown in Table 2.

Table 2. The parameter settings of the baseline method.

Function Name Parameter Setting

adaptiveThreshold

maxValue 1
adaptiveMethod ADAPTIVE_THRESH_MEAN_C
thresholdType THRESH_BINARY

blockSize 7
C 3

medianBlur ksize 5

Testing results of all methods are shown in Table 3 and Figure 8.
As shown in Figure 8, because of the complex marine environment, the baseline method cannot

fit all possible situations, so there are many errors in the binary results. As for deep learning methods,
the robustness and automaticity are greatly improved, which is mainly because the neural network
can learn and extract good features instead of manual ones. Nevertheless, based on the experimental
results, HCN-based methods are superior to classical neural network (DeepLab) in rafts extracting.
Generally, pooling layer is used to overcome tiny deformation by shrinking the size of feature maps,
but it can also lead to a lower spatial resolution, and then the network will lose a lot of boundary
information. Therefore, the results extracted by DeepLab are area-based, and then densely arranged
rafts are treated as a whole. On the contrary, HCN has no pooling layer; each pixel of output can be
directly mapped to input other than obtained by interpolation, so the boundary information of rafts
can be kept as much as possible, which means HCN framework is suitable for the raft extraction task
with remote sensing images.

Table 3. IOUs over all the test set.

Class Adaptive Threshold IOU DeepLab (Weighted) IOU HCN (Ours) IOU DS-HCN (Ours) IOU

Land – 0.955 0.963 0.970
Sea – 0.694 0.944 0.953
Raft 0.620 0.253 0.633 0.723

mean – 0.634 0.847 0.882
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Figure 8. Visualized category maps. The first row shows the whole images, and the rest of lines are
amplified details from the first line. In the first two columns, RGB images are inputs for each method
and Black–gray–white images are manual labeling results. In the other four columns, automatic labeling
results are obtained by the adaptive threshold method, DeepLab, HCN and DS-HCN, respectively.
Note that the output of the baseline is binary, i.e., raft (white) and non-raft (black).

Although HCN shows its good ability to extract rafts, there are still many false-positive errors in
its results, and those error-pixels are located around the coastline and on the sea, where the places have
complex texture. This phenomenon indicates that the basic HCN with a small receptive field overly
focuses on small-scale features and ignores the large-scale information. Thus, DS-HCN combines
a large receptive field to overcome this shortcoming and makes it possible to mine the association
between multiple targets. Based on Figure 8 and Table 3, DS-HCN achieves the best performance
and suppresses most of the false-positive errors by using prior information that rafts densely gather
together and only exist on the sea.

As for the speed of extraction, DS-HCN can reach a million pixels every three seconds under
NVIDIA Titan X Pascal by using deep the learning framework Caffe [45]. In summary, to label a
2000 × 2000 remote sensing image including a whole raft-culture area only needs 12 seconds which is
much faster than artificial labeling speed.

3.3. Scale Experiment

In this experiment, we aimed to study the effect of different scales on raft labeling. To achieve
this goal, we added pooling layers at the end of the first few convolution groups in HCN, and the
stride of each pooling layer was set to 2. By controlling the number of pooling layers, we can obtain
four networks with different scales: 1× (original HCN), 2×, 4× and 8× (with weighted-softmax-loss),
e.g., 8× represents that there are three pooling layers added to the back of Conv_1, Conv_2 and Conv_3,
respectively. Then, we trained these four networks as the training strategy in the first experiment.
Besides, we normalized the labeling results of these networks as the probability form (non-negative
and sum-to-one) by employing soft-max function as Equation (2). Since the probability vector p
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is three-dimensional, we further visualize the probability map in Figure 9, of which color follows
[B, G, R] = 255p and ∑3

i=1 pi = 1. Finally, for each network, we present its precisions, recalls and IOUs
of pixel-wise predicting results in Table 4.

According to Figure 9, as the down-sampling multiple increases, the loss of the small-scale
information becomes more and more serious, but the large-scale information gradually plays
an important role, so the corresponding probability maps become more and more blurred.
This phenomenon is similar to the sampling theorem in the signal processing field, that is,
the high-frequency information (small-scale semantic information) needs a high sampling frequency
(few pooling layers) to guarantee that the original semantic information can be restored.

Since the interval and the width of most rafts are more than two pixels, the minimum period
of the raft-related semantic signal can be considered to be greater than 4 pixels, which is exactly
twice the sampling period of HCN-2×. That is, as long as the sampling period is less than that of
HCN-2×, all the detailed information can be captured. However, the environmental information is
also important and helpful for suppressing false-alarms, thus HCN achieves the best performance at
the double down-sampling scale with a relatively large receptive field, as shown in Table 4.

Figure 9. Visualized probability maps: (a) a whole image and some amplified slices of the testing set;
(b) the visualized ground truths with pure colors; and (c–f) the visualized labeling probability maps
obtained by HCN in different scales. As shown by the triangular palette, the color of each pixel in
(b–f) represents a probability vector, where the pure color represents the unit vector.
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Table 4. Precisions, recalls and IOUs over all the test set.

Method Indicator Land Sea Raft Mean

HCN (1×)
Precision

Recall
IOU

0.975
0.987
0.963

0.966
0.976
0.944

0.853
0.711
0.633

0.931
0.891
0.847

HCN (2×)
Precision

Recall
IOU

0.981
0.987
0.968

0.971
0.979
0.951

0.854
0.764
0.676

0.935
0.910
0.865

HCN (4×)
Precision

Recall
IOU

0.983
0.976
0.960

0.958
0.976
0.935

0.801
0.669
0.574

0.914
0.874
0.823

HCN (8×, weighted)
Precision

Recall
IOU

0.977
0.991
0.968

0.992
0.750
0.746

0.289
0.982
0.288

0.753
0.908
0.667

Based on this experiment, it can be found that the networks usually focus on their own scales,
which means that the multi-branch structure can receive more information from different scales.
Therefore, we chose the sharpest one and the smoothest one to structure the dual-scale neural network.
Compared with HCN-2×, DS-HCN significantly improves the IOU of rafts with a 4.7% increase (Tables
3 and 4).

3.4. Interpretability Experiment

In this experiment, we tried to glimpse the internal working of our proposed method based on
the first experiment. In detail, each branch in DS-HCN contributes to output, so we can split the final
result by using each branch’s features. Based on Equation (1), we set the output features of Branches A
and B to Xα and Xβ as XA and XB, respectively; split the convolution kernels in Conv_7 of DS-HCN
to corresponding two parts WA and WB; and suppose that each branch has the same contribution,
which means λα = λβ = 1

2 . Then, we can get the following formulas in Equation (8):

SA =WA ∗ XA +
1
2

b

SB =WB ∗ XB +
1
2

b

S =W ∗ X + b = SA + SB

(8)

Finally, after sending the three score maps to the ArgMax layer, isolated decision maps are shown
in Figure 10.

It is worth mentioning that formulas in Equation (8) are approximate calculations for two branches,
so images in Figure 10b,c are only sketches. Nonetheless, benefitting from the dual-scale structure,
it can be found that the proposed network did successfully learn two different information scales,
and the behaviors of the branches in our network are similar to the original ones. Besides, the fusion
process of these dual branches can be found in Figure 10.

Branch A, a small-scale HCN-like branch, contributes to the clear boundary for each raft, as shown
in the third column in Figure 10. However, in a complexly practical situation, many other objectives
would be identified by mistake. To overcome this weakness, Branch B is used to contribute to the
general distribution of each category. Further, when combining the two contributions, spatial relations
will become apparent. For instance, if a pixel is considered as raft by Branch A but sea by Branch B,
then this pixel will be confirmed as the sea with high probability in the end, since this pixel is out of
rafts’ range, as shown in the fourth row of Figure 10. Therefore, by integrating dual branches, it makes
our method possible to learn some prior information about spatial relations, and then each branch will
have its specifically practical meaning.
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Figure 10. Visualized category maps: (a) the input images and its amplified slices from the testing
set; (b) the separated decision maps related to the Branch A; (c) the separated decision maps related
the Branch B; and (d) the final decision maps of the proposed method. The add operation is on the
score-level as Equation (8).

Based on this experiment, our proposed method shows good interpretability, and the decisions of
each branch can be easily visualized. This is very useful to analyze the behavior of the neural network
and further improve it. In addition, benefiting from the fusion strategy used in this paper, the neural
network can automatically learn the fusion weights of different scales according to the training samples
to obtain the end-to-end labeling results under a uniform framework.

4. Conclusions

In this paper, we propose the homogeneous convolutional network (HCN) to solve the problem
of raft-culture remote sensing image labeling. This network consists of 17 convolution layers and
corresponding ReLU layers, which has the largest spatial resolution and can distinguish tiny rafts in
images. Furthermore, we introduce dual-scale version (DS-HCN), and it contains two branches with
different receptive fields. The bigger one aims to extract the distribution of each category, and the
smaller one only aims to catch every detail. Based on the three experiments, we can obtain the
following three conclusions: (1) The network without down-sampling can capture the very small rafts,
and the dual-scale structure will contribute to suppressing the false-positive errors. This structure
may also be used in labeling other small objects, e.g., ships, buildings and roads, especially when
using the relatively low-resolution remote sensing images. (2) Different scales represent different
semantic information, and small objects need a high-resolution network to be distinguished, such as
HCN. (3) The fusion strategy (concatenation) in this paper can help a multi-scale network more easily
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visualize its decisions from different scale features. In summary, our DS-HCN has high precision and
good interpretability, and it is suitable to solve the raft-culture labeling problem.
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