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Abstract: A detailed and state-of-the-art landslide inventory map including precise landslide location
is greatly required for landslide susceptibility, hazard, and risk assessments. Traditional techniques
employed for landslide detection in tropical regions include field surveys, synthetic aperture radar
techniques, and optical remote sensing. However, these techniques are time consuming and costly.
Furthermore, complications arise for the generation of accurate landslide location maps in these
regions due to dense vegetation in tropical forests. Given its ability to penetrate vegetation cover,
high-resolution airborne light detection and ranging (LiDAR) is typically employed to generate
accurate landslide maps. The object-based technique generally consists of many homogeneous
pixels grouped together in a meaningful way through image segmentation. In this paper, in order
to address the limitations of this approach, the final decision is executed using Dempster–Shafer
theory (DST) rule combination based on probabilistic output from object-based support vector
machine (SVM), random forest (RF), and K-nearest neighbor (KNN) classifiers. Therefore, this
research proposes an efficient framework by combining three object-based classifiers using the DST
method. Consequently, an existing supervised approach (i.e., fuzzy-based segmentation parameter
optimizer) was adopted to optimize multiresolution segmentation parameters such as scale, shape,
and compactness. Subsequently, a correlation-based feature selection (CFS) algorithm was employed
to select the relevant features. Two study sites were selected to implement the method of landslide
detection and evaluation of the proposed method (subset “A” for implementation and subset “B”
for the transferrable). The DST method performed well in detecting landslide locations in tropical
regions such as Malaysia, with potential applications in other similarly vegetated regions.

Keywords: DST; object-based approach; landslide detection; LiDAR; GIS; remote sensing;
Dempster-Shafer theory

1. Introduction

Landslide inventory maps may provide baseline information about landslide types, distribution,
location, and boundaries in landslide-prone areas. Information pertaining to slope and displacement
measurements affecting failure may be deduced from landslide inventories [1]. Furthermore, landslide
inventories could be deployed for various purposes, such as implementation of landslide susceptibility,
hazard assessment, risk assessment, and landslide magnitude recording. It is a quite challenging
task to map landslide inventory in tropical areas due to densely vegetative cover which obscures the
underlying landforms [2]. However, most of the available traditional landslide detection methods,
such as optical and aerial photographs, high spatial resolution multispectral images, synthetic
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aperture radar (SAR) images, very high resolution (VHR) satellite images, and moderate-resolution
digital terrain models (DTM) [3–6] are not sufficiently quick and accurate enough to map landslide
inventory due to rapid vegetation growth in tropical areas. Thus, a fast and accurate approach is
required in landslide inventory mapping. Therefore, high-resolution light detection and ranging
(LiDAR)-derived digital elevation models (DEMs) may provide highly valuable information on
landslide-prone terrain shielded by densely vegetative cover [7]. High-resolution DEM may be
employed to detect landforms and provide useful information about densely vegetated and rocky
areas; consequently, minimal changes in topographic features may be easily detected [8–10]. Generally,
LiDAR data could propose significant benefits, owing to their ability to penetrate dense vegetation
and provide valuable information on topographic conditions [2]. These benefits make LiDAR data
unique and different from other data sources, such as aerial photographs for slope failure detection
under dense vegetation [4,6].

Pixel-based approaches often exhibit a “salt and pepper” appearance when very high spatial
resolution images are employed [11]. However, an object-based method is widely utilized in landslide
mapping to resolve the aforementioned pixel-based limitations [12]. According to Moosavi et al. [13],
it is usually assumed that a pixel is very likely to belong to the same class as its neighboring pixels.
In contrast to the information obtained from individual pixels, object-based image analysis offers
additional geometric and contextual information that can be derived from image objects [5,12]. In an
object-based approach, one of the most challenging issues is selecting the optimum combination of
segmentation parameters [13]. According to Zeng et al. [14], the Dempster–Shafer theory (DST) is a
precise fusion algorithm utilizing belief uncertainty intervals to present the belief of assumptions based
on evidence of multiple observations. The algorithm utilizes reasoning, weight, and probability-driven
evidences contained within the dataset [14]. The ability to handle incomplete data and an associated
degree of uncertainty gives DST the strength to exploit data from many sensors in a processing
train [15]. The reasoning-based system [16] and the empirical determination of parameters in DST
make the concept generally applicable without depending on satellite imagery [15]. Furthermore, it is
an economical and time-effective alternative, as it decreases the time required to select training sites [17].
From the literature, it is apparent that the DST method has previously been employed for multisensor
images [18]. In the current study, the DST method was applied to fuse three object-based classified
maps at the feature level. This approach (DST) has been tested in many other applications, such as
fingerprint verification, forensics, ontologies, and the military [19–21]. Also, the model has been used in
remote sensing applications such as mapping landslide susceptibility [22–25], groundwater assessment
and potentials [26], and risk assessment of groundwater pollution [27]. In 2017, Mezaal et al. [28]
applied the DST method for automatic detection of landslide locations using very high LiDAR-derived
data and orthophoto imagery.

Landslides have the capability to display heterogeneous sizes that require information with higher
spatial resolutions in order to produce complete event inventories [29]. Effective feature selection,
such as texture, image band information, and geometric features, are needed to improve the quality
of landslide inventory mapping. However, handling huge amount of irrelevant features can lead to
overfitting [3]. Landslide identification in a particular area may be improved by selecting the most
significant features [3,6–9]. According to Van Westen et al. [8], selection of the most significant features
may aid in distinguishing between landslides and non-landslides. Researchers such as Stumpf and
Kerle [30] have attempted to improve the efficiency of feature selection in detecting the location of
landslides. Some object-based investigations have taken care of feature selection to detect landslides
using LiDAR data [3,31]. Recently, Pradhan and Mezaal [2] effectively utilized a correlation-based
selection method (CFS) to optimize the feature selection for detecting landslides in tropical areas.

Therefore, the present study proposes an improved approach to detect landslide locations by
employing a Dempster–Shafer theory (DST) fusion technique. In this technique, three object-based
classified outputs are fused together (in contrast to multisensor data) to achieve more efficient and
accurate results.
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2. Materials and Methods

The investigation started with the preprocessing of LiDAR data and landslide inventories, an
essential step typically taken before the commencement of subsequent steps to eliminate the noise
and outliers from data. Subsequently, a high-resolution DEM (0.5 m) was derived from LiDAR
point clouds and utilized to produce other LiDAR-derived products and landslide conditioning
factors (i.e., aspect, slope, height, normalized digital surface model (nDSM), intensity, and hillshade).
The LiDAR-derived products and orthophotos were combined by correcting their geometric distortions
and were projected in one coordinate system. Lastly, they were prepared in GIS for feature
extraction. Thereafter, a fuzzy-based segmentation parameter optimizer (FbSP optimizer), developed
by Zhang et al. [32], was employed to acquire suitable parameters (i.e., shape, scale, and compactness)
in differing levels of segmentation. Next, three object-based approaches—support vector machine
(SVM), random forest (RF), and K-nearest neighbor (KNN) classifiers—were applied for both analysis
and test areas. Subsequently, DST was employed to combine the outputs of the aforementioned
classifiers in MATLAB R2015b. Model transferability was applied to another part of the study area
(i.e., test site). The results were then validated and compared based on quantitative and qualitative
methods (i.e., confusion matrix and precision/recall). Figure 1 illustrates a detailed flowchart of the
methodology and the overall framework.
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2.1. Study Area

The present investigation was carried out in the tropical, densely vegetated rainforest of Cameron
Highlands, Malaysia. The rationality for choosing this study area was the frequent occurrence of
landslides there. Geographically, the area under consideration is located in the north of peninsular
Malaysia (latitude 4◦26′09”N–4◦27′30”N and longitude 101◦23′02”E–101◦23′47”E), covering an area
of 26.7 km2. The study area records an annual average rainfall of about 2660 mm and average
temperatures of 24 ◦C and 14 ◦C during day and night times, respectively. A significant portion of the
study area (80%) is forested landform, ranging from flat terrain (0◦) to hilly area (80◦).

In the present investigation, two subsets were selected to implement the proposed method, shown
in Figure 2. A training area was employed to enhance the methodology for detecting the location of
landslides. Similarly, a testing site was employed for testing purposes. Meticulous care was taken in
selecting the test site to avoid deficiencies in the number of classes. Moreover, the training sample size
was assessed using stratified random sampling method in order to enhance the accuracy of the subsets
under consideration (i.e., training and test sites).
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Figure 2. Study area: (A) Training area; and (B) Test site.

Generally speaking, landslide history is an important aspect of landslide detection. It gives an
idea of its occurrences in a particular region. In this regard, landslide history was collected from many
sources such as newspapers, national reports, technical papers, etc. The preliminary classification
was based on age for landslide inventory mapping in accordance with visible morphologic criteria
captured on aerial photographs. Landslide deposits and scars are disequilibrium landforms that
evolve through morphologic stages with age [33]. Specifically, relevant information from previous
investigations and landslide inventory information spanning over a decade was prepared for the
whole Cameron Highlands. In an earlier paper by Pradhan and Lee [34], a database of 324 landslide
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incidents was prepared for 293 km2 of the Cameron Highlands to assess the number of landslides
and their corresponding surface area. It was observed that the landslides are shallow rotational
and a few translational types. The data was put together based on historical landslide records.
In March 2011, AIRSAR data was deployed to prepare the landslide inventory map. In 2014,
Samy and Marghany [35] presented the landslide history of 273 landslides of different sizes collected
from the archive data of the Department of Mineral and Geosciences, Malaysia. In the same year,
Murakmi et al. [36] prepared a database of historical landslide occurrences in the Malaysian Peninsula.
In 2015, Shahab and Hashim [37] reported a landslide history prepared from different sources, such as
field surveys, published reports, and digital aerial photographs (DAP) covering a 25-year period.
Therefore, landslides can be characterized as old and new events using visual inspection and overlaying
the last landslides events on the Cameron Highlands. Due to vegetation cover, landslides which have
occurred between 2008 and 2010 are considered old landslides. On the other hand, new landslides are
those which have occurred after 2010. New landslides less than 5-years old are apparently barren in
nature and can be observed by red, green, and blue (RGB) sensors. However, the ones older than 5 years
are usually covered by vegetation and thus cannot be recognized in visible bands. Figures 3 and 4
show the landslide inventory map for both subsets (training and test sites), respectively.
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2.2. Data Used

The LiDAR point cloud data was captured for the Cameron Highlands region on January 15, 2015.
The land area spans 26.7 km2 of the Ringlet at an altitude of 1510 m. The point density is approximately
8 points per square meter, with a 25,000-Hz pulse rate frequency. The accuracy of the LiDAR data was
restricted to conform to the root-mean-square errors of 0.15 m and 0.3 m in the vertical and horizontal
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axes, respectively, as standardized by the Department of Survey and Mapping Malaysia (JUPEM).
A high-resolution camera (visible bands) used in the acquisition of LiDAR point cloud data in the study
area was deployed to collect the orthophotos. A DSM was generated by interpolating LiDAR point
clouds using inverse distance weighting method (IDW) using the ArcGIS 10.3 software (Figure 5A).
A DEM of spatial resolution of 0.5 m was interpolated from the LiDAR point clouds after removing
the nonground points using inverse distance weighting, with GDM2000 as the spatial reference
(Figure 5B). Next, the height feature, i.e., normalized DSM (nDSM), was derived by subtracting DSM
from DEM (Figure 5E). Subsequently, the LiDAR-based DEM was used to generate the derived layers
in identifying the location of landslides and their features [38]. Slope is a major determinant of land
stability due to its role in landslide phenomenology [39]. Hillshade refers to a map showing sufficient
images of terrain movement which aid in landslide mapping [40]. The intensity image obtained from
LiDAR data also play a significant role in differentiating between landslides and non-landslides [2].
Moreover, the quality of the landslide inventory map may be significantly improved by using texture
features [2,6]. These data provide extensive information on landslide detection [28]. The accuracy and
ability of DEM to represent the surface are affected by terrain morphology, sampling density, and the
interpolation algorithm [41]. In the present study, various LiDAR-derived data were employed as
follows: DEM, DSM, intensity, height (nDSM), slope, and aspect (shown in Figure 5). Additionally,
orthophoto images (i.e., visible bands) and texture features were used to detect the landslides.

2.3. Multiresolution Segmentation Algorithm

A multiresolution segmentation (MRS) is a bottom-up approach used in a segmentation algorithm
and is based on the pairwise region-merging technique [12]. In algorithms, image pixels that possess
homogeneous spectral and textural characteristics are usually grouped [42]. The smaller objects
are substituted in the larger ones based on certain criteria obtainable from three parameters: color,
scale, and shape (i.e., smoothness and compactness). The aforementioned three parameters may
be determined in this algorithm using the traditional trial-and-error method; however, this is a
time-consuming and laborious task [4]. Hence, many semiautomatic and automatic approaches
have attempted to optimize parameter segmentation [43–45]. Optimization techniques consider
only the scale, without taking into consideration the combination of the parameters [4]. A few
powerful optimization techniques currently exist, such as the Taguchi optimization method [4] and
the fuzzy-based segmentation parameter optimizer (FbSP optimizer) [32]. These techniques represent
advanced methods employed for automatic combination of segmentation parameters (i.e., scale, shape,
and compactness). However, differentiating among image objects at various scales is still a challenge
and not all feature selection methods are fully utilized in a particular segmentation scale. Thus, it is
suggested that an automatic method should be directly implemented.

2.4. Calculation of the Relevant Feature Selection

Classification schemes implemented on segments are more significant than single pixels in an
object-based approach. This occurs by incorporating a multitude of additional information such as the
texture, shape, and context associated with image objects [46]. However, both objective and subjective
methods may be used to select important object features in object-based classification. The subjective
methods depend on user knowledge and past experience, while the employment of feature selection
algorithms is relatively objective [47].
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According to Stumpf and Kerle [30], several remote sensing applications are able to measure
rotation invariance. However, they cannot capture directional patterns in the grey-value distribution.
Landslide-affected areas regularly appear in a downslope direction with texture patterns. Stumpf
and Kerle [30] reported that patterns are potential features for detecting and differentiating landslide
surfaces and texture patterns oriented at the strike of the slope [30]. Gray-level co-occurrence matrix
(GLCM) texture features can be calculated with airborne laser scanning data by using eCognition
software and the measured texture co-occurrence can be calculated for individual landslide objects
in the software. This result comprises Dissimilarity, Contrast, Homogeneity, and Standard Deviation
co-occurrence texture measured based on all bands.

In the present study, a correlation-based feature selection algorithm (CFS) was used to select
the most important features in detecting the landslide locations. The best search was utilized for
determining the feature space, and the five consecutive, fully expanded, nonimproving subsets were
set to a stopping criterion in order to avoid searching the entire feature subset space. In this study,
the Weka 3.8 package was used to implement this feature selection algorithm. Furthermore, three
employed object features resulted in 82 total features—Mean and StdDev LiDAR data, Mean and
StdDev visible band, and texture (see Table 1). Mean and StdDev data were extracted from airborne
laser scanning data with the use of eCognition software.

Table 1. Feature selection used in the current research.

Features Objects Features Used

LiDAR data Mean and StdDev (Intensity, DEM, DSM, Slope, Aspect, Height)

Visible bands Mean and StdDev (Red, Green, and Blue, Max. diff, and Brightness)

Texture features

Four directions, 0◦, 45◦, 90◦, 135◦ (Gray-level co-occurrence matrix (GLCM) correlation,
GLCM Dissimilarity, GLCM angular second moment, GLCM StdDev, GLCM Mean,
GLCM Contrast, GLCM Entropy, GLCM Homogeneity, GLDV angular second moment,
Grey level difference vector (GLDV) Mean, GLDV Entropy and GLDV Contrast)

The correlation coefficient between Mean Intensity and GLCM Dissimilarity, GLCM Angular
second moment, had a positive and moderate relationship at (p < 0.01), and it had a negative moderate
relationship at (p < 0.01) with StdDev Blue as indicated in Table 2. The relationship between GLCM
Homogeneity and GLCM Contrast and GLCM Dissimilarity were negatively correlated at (p < 0.01).
However, there was positive significant relationship at (p < 0.01) with GLCM Angular second moment
and StdDev Blue. The Mean Slope had a positive significant relationship at (p < 0.01) with Mean DTM
and StdDev Blue, however it had a negative significant relationship at (p < 0.05) with StdDe DTM.
The Mean Red showed a strong relationship at (p < 0.01) with GLCM Contrast and GLCM Dissimilarity,
and it showed a negative relationship at (p < 0.05) with StdDe DTM. The correlation coefficient between
Mean DTM and StdDe DTM was negatively significant at (p < 0.05). GLCM Contrast had a strong
significant relationship at (p < 0.01) with GLCM Dissimilarity. The relationship between GLCM
Dissimilarity and StdDev Blue was negatively significant at (p < 0.05).
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Table 2. Correlation coefficient between the best feature selection.

Mean
Intensity

GLCM
Homogeneity

Mean
Slope

Mean
Red

Mean
DTM

GLCM
Contrast

GLCM
Dissimilarity

GLCM Angular
Second Moment

StdDev
Blue

StdDe
DTM

Mean intensity 1
GLCM Homogeneity −0.099 1

Mean Slope −0.076 −0.058 1
Mean Red −0.011 −0.103 0.046 1

Mean DTM 0.116 −0.158 0.632 ** 0.074 1
GLCM Contrast 0.077 −0.249 ** 0.003 0.958 ** 0.048 1

GLCM Dissimilarity 0.292 ** −0.453 ** −0.060 0.790 ** 0.008 0.922 ** 1
GLCM Angular second moment 0.333 ** 0.359 ** −0.075 −0.007 −0.046 0.010 0.042 1

StdDev Blue −0.575 ** 0.181 ** 0.275 ** 0.035 0.028 −0.091 −0.285 ** −0.055 1
StdDe DTM 0.139 −0.004 −0.129 * −0.158 * −0.163 ** −0.094 −0.008 0.015 −0.122 1

** Significant at 0.01 level, * significant at 0.05 level.
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2.5. Support Vector Machine (SVM)

The dataset was categorized into groups using a supervised nonparametric statistical learning
technique consistent with training examples. SVMs are gaining huge popularity in various
applications of remote sensing, especially in landslide mapping [13,29,48–50], due to their capability
in handling small training datasets and unknown statistical distribution data obtained in the field [51].
Huang et al. [52] observed that SVMs containing fewer training dataset yielded more stable results
compared to those of decision tree, maximum belief, and artificial neural network classifiers with
large training datasets. SVMs are regarded as binary classifiers designed to determine the boundary
of the decision region that separates the dataset features or characteristics into two regions in the
feature space. In SVM, boundary optimal hyperplanes exhibiting maximum safety margins are chosen
closest to the training features. These are called support vectors, which take full advantage of the
margin between the classes [29]. Kernel functions have been used in the linearization of the decision
boundary and were achieved by using the maps of the training data in the higher-dimensional space
that have the capacity to linearly separate two classes of hyperplanes [52]. A nonlinear transformation
of covariates was also conducted, transferring into high-dimensional feature space [53].

In the present study, SVM e1071 package [54] for the R statistical computing software was
implemented [55]. It was observed that hyperparameters determined the performance of the SVM
classifier. Therefore, the selection of these parameters was optimized and their sensitivity analyzed.
Three parameters were assessed in the case of SVM, namely, the penalty parameter (C), kernel function,
and gamma parameter (7). The most accurate prediction was attained in the radial basis function
(RBF), using gamma parameter (7) 0.9 and penalty parameter of 300. This was carried out rapidly
by visual inspection of the match between results and reference data. Seventy percent (70%) of the
inventory map, along with all the features, were selected as training sets to train the RF model.

2.6. Random Forest (RF)

The RF classifier method has been implemented for detecting landslides using many types of
remote sensing data [3,30,56–59]. The algorithm builds upon multiple decision trees that depend on
randomly selected subsets of the training dataset. The RF makes use of the high variance among
individual trees in a classification problem by assigning the respective classes based on majority
votes. The merit of this approach lies in its performance on complex datasets, with fewer attempts for
fine-tuning [30]. RF is defined as a random subset of the original set of features, whereas a classification
and regression tree considers all variables in each node. Users can estimate the number of variables per
node by using the square root of the total variable number. Various mechanisms, such as sampling and
usage of random variables, in each node may produce entirely different uncorrelated trees. Moreover,
large numbers of trees are absolutely required to obtain variability in the training data and attain
accurate classification. A total vote of all the trees in the forest is used to determine a feature and the
class will then be assigned on the basis of the majority vote.

RF package [54], an open-source statistical language R, was used in this research. The parameters
used in the analysis were the number of variables in the random subset at each node and the number
of trees in the forest. The number (500) of trees was chosen, which is a typical value for the RF
classifier [30]. A single randomly split variable was employed to grow the trees. The inventory map
(70%) together with other features and feature subsets were chosen as training sets to train the RF
model. The remaining 30% of the inventory was used to evaluate the accuracy of the classification.
The mean and standard deviation (stdev) values of the classification accuracies were then obtained
from 50 random runs.

2.7. K-Nearest Neighbour (KNN)

KNN is a powerful tool utilized in many object-based workflows due to its flexibility and
simplicity [60,61]. It is used most often for classification in object-based software frameworks,
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i.e., eCognition (Trimble Geospatial, Munich, Germany). In comparison to model-based learning, KNN
allocates the object to the class based on proximity or neighborhood in the feature space, rather than
learning from a model [62]. The closest K neighbors are obtained from the training set and then used to
vote for the final predicted new object. K is usually a tunable parameter, typically assuming a small and
positive integer value [5]. In this study, an optimal K parameter was used based on cross-validation
and bootstrap samples which were used to search for the best K value, where K ranges from 1 to
10 in steps of 1 and the best value is applied to the KNN algorithm implemented in the R package
“class”. The inventory map (70%) together with all the features were selected as training sets to train
the KNN model.

2.8. Dempster–Shafer Theory

The DST is built on a frame of discernment, formally defined as the set of mutually exclusive and
collectively exhaustive hypotheses, represented by Θ [62,63]. By defining two functions (Plausibility
Pls and Belief Bel), this theory seeks to model imprecision and uncertainty. The two functions are
essentially derived from a mass function (m), with the latter function being applicable to every element
of 2θ in lieu of exclusively to elements of θ. Thus, a rich and flexible modeling behavior is achieved
which may potentially address numerous remote sensing applications. Thus, a mass function m(T)
allocates belief for each proposition, shown in the following equation:

m : 2θ → [0, 1]


m(T) ≥ 0, ∀T ⊂ Θ

∑
T∈θ

m(T) = 1

m(∅) = 0

(1)

where φ is the empty set. Two common evidential measures within the mass function are belief
(Bel) and plausibility (Pls), both defined in equations:

Bel(S) = ∑
T⊂S,T 6=φ

m(T) (2)

Pls(S) = ∑
S∩T 6=∅

m(T) (3)

where for every S ⊂ Θ, Bel(S) is a measure of the total amount of beliefs committed exactly
to every subset of S by m. Pls (S) signifies the degree to which the evidence remains plausible.
These two functions, which are regarded as the lower and upper probabilities, respectively, contain
following properties:

Bel(S) ≤ Pls(S) (4)

Pls(S) = 1− Bel(S). (5)

The rule of combination in the proposed DST builds on the mathematical theory substantiating
the combination of the mass functions mi obtained from n sources of information given in Equations (6)
and (7):

m(S) = m1(S1)⊕m2(S2)⊕ . . .⊕mn(Sn) (6)

m(S) = ∑
S1∩...∩Sn=S

n

∏
i=1

mi(Si)/(1− K) (7)

where K denotes the degree of conflict given in Equation (8):

K = ∑
S1∩...∩Sn=S

n

∏
i=1

mi(Si). (8)
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Various methods exist for taking a final decision using the DST decision technique as found in the
literature: the maximum mass, plausibility, or belief [28]. From the probabilistic SVM, RF, and KNN
classifiers, the posterior probabilities are converted in the form of mass function (m). These, in turn,
are then combined using the DST method. The combination output may be considered a belief function,
which defines a posterior probability measure for each thematic.

2.9. Fusion of Three Object-Based Classifiers via Dempster–Shafer Theory (DST)

The fusion level analysis (FLA) method groups different classified features together and fuses them
into a new class based on the belief confusion matrix [14]. In the present study, the DST algorithm was
employed to perform the feature-based data fusion. This method comprises well-defined combination
rules that are capable of combining several belief functions in the same frame. The theory is built on
the formulated basis of harmonizing the information from many sources [64]. The evidence is then
integrated in a reliable approach to complete the evaluation of the entire body of evidence. DST may
serve both uncertainty and imprecision from belief and plausibility functions, while also possessing
the ability to compute compound hypotheses [65].

Consequently, the results of three object-based approaches (i.e., SVM, KNN, and RF) were
combined by fusing the DST with LiDAR data. The method employed the fused class label contained
within each pixel with the maximal belief function. The produced fused pixels were set as an
unclassified value in the case of multiple class labels [64]. For all classified landslide and non-landslide
(frame of discernment), the belief functions were estimated using a precision function, which processes
the confidence of a classifier probability. DST considers the majority of classified labels and then
assigns that label to the segment. The belief masses for labelled features resulting from the classifiers
were calculated using a confusion matrix, which is a text file that fuses the most probable feature label.
Fundamentally, belief measurements are divided into four types, namely, precision, accuracy, Kappa,
and recall. Due to its high performance in previous works, the precision belief function was selected in
the present study to label the belief classes from standalone classifiers.

3. Results and Discussion

3.1. Optimization of Segmentation Parameters

Various parameters were optimized with the FbSP optimizer, namely, the scale, shape,
and compactness of the multiresolution segmentation (MRS) algorithm. This FbSP optimizer has the
capability to delineate the boundaries of landslides and non-landslides, such as bare soil, vegetation,
and cut slope, respectively. In this study, the values 50, 0.1, and 0.1 were used in the analysis area as
the initial segmentation parameters trained in the FbSP optimizer for scale, shape, and compactness,
respectively. After three iterations, the optimum values achieved in the optimizer were 75.52, 0.4,
and 0.5, standing for scale, shape, and compactness, respectively (shown in Table 3). The initial and
optimal segmentation processes are further illustrated in Figure 6.

Table 3. Multiresolution segmentation parameters.

Initial Parameters Optimal Parameters

No. Scale Shape Compactness Scale Shape Compactness

1 50 0.1 0.1 75.52 0.4 0.5
2 80 0.1 0.1 100 0.45 0.74

Table 3 illustrates the results of segmentation parameters obtained using the FbSP optimizer.
Furthermore, the segmentation of each landslide class is also highlighted. The use of the optimal
segmentation parameters yielded accurate results based on the image objects produced in most classes,
the results of which are depicted in Figure 6. For accurate detection of landslides, identifying and
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defining the parameters are extremely crucial. However, the accuracy of the result may affect the
final classification map due to a certain degree of under-segmentation in some landslide locations.
In case over-segmentation or under-segmentation issues arise, it becomes difficult to use the contextual
and spatial features in feature identification, mainly due to the improper definition of target features.
Therefore, misclassifications of the spatial and contextual features may occur with other similar
features. In order to achieve result-oriented classification, it is necessary to eliminate these errors
in segmentation by employing robust approaches. Therefore, combination methods could be viable
alternatives to improve the accuracy of landslide classification.
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3.2. Feature Subset Selection

In an attempt to obtain the optimum algorithm, CFS was used to select the most relevant
feature in order to detect landslide locations. The feature input, used in the experiment, consisted
of 82 LiDAR data (height, slope, and intensity), texture features (GLCM homogeneity and GLCM
StdDev), and the visible band. These features were deduced using the eCognition software (see Table 4).
High classification accuracy was obtained when 10 of the features indicated that visible bands,
LiDAR-derived data, and textural features were applied. The values of these features contributed
to separate landslides from other land cover classes such as manmade, bare land, and vegetation.
It can be attributed to the landslide characteristics in the area under consideration. This illustrates the
fact that visible bands, LiDAR-derived data, and textural features are effective in revealing landslide
locations. Table 4 presents the most significant features selected using the CFS algorithm, showing
highly important features such as Mean Intensity, GLCM Homogeneity, Mean Slope, and GLCM
Angular Second Moment. Mean Red and Texture features are also significant for improving the
classification accuracy. The results of the feature selection demonstrated the importance of relevant
features in improving the accuracy of classification. The results of the relevant features revealed that
the best combination was achieved by CFS, which improved the detection between landslide class
and other land cover classes in both areas (training area and test area). Generally, selection of the most
relevant feature can decrease computation time, avoid the subjective requirement of expert knowledge,
and improve the classifier process.
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Table 4. Results of feature selection using the correlation-based feature selection (CFS) algorithm.

Feature Iteration Rank

Mean Intensity 20 1
GLCM Homogeneity 18 2

Mean Slope 20 3
GLCM Angular Second Moment 20 4

StdDe DTM 17 5
Mean Red 20 6

Mean DTM 20 7
GLCM Contrast 18 8

GLCM Dissimilarity 15 9
StdDev Blue 20 10

3.3. Results of Object-Based SVM, RF, and KNN Classifiers in Training Area

Figure 7 shows the results of RF, SVM, and KNN, which are the three object-based classifiers
used in the present study. The results indicate that landslides and non-landslides were accurately
classified. The results further indicate that the SVM performed excellently by creating an accurate
landslide inventory map with only limited undetected landslides. Furthermore, visual assessment was
found to be more reliable in SVM than in KNN and RF. Most of the landslides in the study area were
identified with the aid of SVM rather than RF and KNN. The performance recorded in the SVM is a
result of the two optimization techniques used to optimize the parameters of segmentation and the
most relevant features selected in the classification process. Furthermore, the improvement recorded
could be attributed to the parameters used in the classifiers that resulted in the classification quality.
It is highly imperative to take the required measures in order to avoid landslide separation from
other land cover classes, such as manmade and bare soil. This is due to the fact that the morphology
features of the landslide are quite different from other types of land cover classes. For instance,
the slope, shape, and other features such as depth, width, dip direction, and length of surface terrain
could change after the occurrence of a landslide. Optimized landslide segments can be exploited in
analysis to select the significant features. According to Van Westen et al. [8] and Mezaal et al. [64],
selecting relevant features is highly imperative in distinguishing between landslides and non-landslides.
Improved classification accuracy has been observed when the segments are well-fitted into landslide
shapes [66–68]. After optimization of the feature selection in this study, it was observed that Intensity,
GLCM Homogeneity, and Slope features are very significant to detect landslide locations. Hence, those
features contribute to the object-based classifiers (i.e., SVM, RF, and KNN) as ancillary data in order
to improve the classification results and compare with the standalone LiDAR RGB-orthophoto image.
Basically, the nature of various non-landslides (e.g., cut slope and bare soil) is different in term of shape,
slope, size, and texture from landslide classes. Thus, the value of the relevant features such as Intensity,
GLCM Homogeneity, and Slope help to improve the classification accuracy for proper separation of
the landslide classes from the bare soil or manmade classes. The OBIA classifiers were trained using
the landslide inventory. Overall, all the training samples exhibited Slope values much higher than
the bare soil (above 25 degrees) and the GLCM Homogeneity values are less than the manmade areas
such as bright roofs (less than 0.06). Additionally, the Mean Intensity feature contributes greatly in
identifying the old landslides from those that have been covered by vegetation canopy after some years.
Considering the fact that all forest areas reflect similar intensity pulses, the covered old landslides under
forest have higher intensity values in comparison with the surrounding areas [69]. Since a historical
inventory was used to train the applied OBIA classifiers, it was observed that the Intensity value above
30,000 in forest areas reflects the old landslide location where it cannot be seen by RGB-visible bands of
the orthophoto image. Then, all three classifiers expanded the trained examples to the rest of images
using their own algorithms to detect the recent or old landslides out of similar non-landslide objects
with different accuracy. Thus, by employing the most appropriate features derived from high-resolution
LiDAR data and the texture feature could aid in distinguishing between landslides and non-landslides.
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However, it was observed that there exist misclassifications in identifying landslide and non-landslide
classes, such as the aforementioned manmade and bare soil with other classifiers, which may affect
further analysis. This would cause over-segmentation in some objects, where the structural and spatial
features of landslide areas are not discriminated. In addition, this confusion is due to the degree of
similarity of spatial characteristics among the aforementioned classes.
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The DST method was used in the present work to combine the results of each classifier, landslide
class, and belief functions. These were projected using a precision algorithm that measures the confidence
of probable classifier on the bases of the resulting feature labels. The belief’s masses for feature labels,
obtained from each classifier, were computed using a confusion matrix, a text file used to fuse the most
probable feature label. The feature fusion of classifiers produced a single and precise landslide inventory
map which combines the extracted information from the inputs’ object-based classifications and the



Remote Sens. 2018, 10, 1029 18 of 26

results of the DST method, as shown in Figure 5. The validated results and maps developed substantiates
the notion that the proposed method is reliable for the recognition and mapping of landslide locations.

3.4. Transferability to Test Site

It is necessary to test the transferability of the model developed to other landslide-affected,
dense vegetation-cover areas, especially around regions with less anthropogenic activities. In densely
vegetated areas such as the Cameron Highlands, landslides are generally covered by a much higher
scarp compared to the landslide-free areas. Furthermore, there is a similarity in the characteristics
with other land cover classes such as bare soil, cut slope, and manmade classes which pose difficulty
in separation among the former classes. Consequently, the results of transferability to validate the
proposed method were tested in another part of the study area (testing area), as shown in Figure 6.
The results of the consistency in transferability indicate that SVM achieved a consistent accuracy
compared with KNN and RF, while the transferability accuracy of RF was better than that of the SVM
classifier. Lowered results accuracy shows a decline in results accuracy given the many disadvantages
due to similarities in their characteristics as well as the combination of landslide, shape, area, complex
topography, and so on [6]. Therefore, this study presented a combination of object-based approaches
for landslide mapping. The DST process combined the power of each classifier to derive a more
powerful classifier, as shown in Figure 6. DST showed more improvement than SVM, RF, and KNN
classifiers separately. Moreover, it is worth observing that the improvement margin of DST is better
than that of each classifier. As a result, Figure 6 shows the results of fusion DST, indicating a satisfactory
result for landslide identification and delineation between landslides and non-landslides. The results
show that the fusion of object-based classifiers in the DST method aided in the identification process
of landslides and provided complementary information. The DST decision rule played a great role
in resolving the conflicts generated from object-based classifiers. It fuses the benefits of classifiers
by adding each classifiers’ information to the other classifiers. It may be inferred that DST offered
an improved, high-resolution LiDAR as well as orthophoto images with an acceptable accuracy.
In addition, the transferability results show the importance of features from high-resolution LiDAR
data, visible bands, and textures features for landslide mapping, shown in Figure 8. In addition,
airborne LiDAR data contributed to the detection of the landslide location due to its capability to
obtain differences in size and volume of the landslides [70,71].
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3.5. Field Investigation

Landslides were identified with the aid of a handheld GPS device in the field investigation,
which was carried out to validate the proposed method (GeoExplorer 6000), as illustrated in Figure 9.
The information on the pattern, deposition, source area, landslide extent, run out, and volume was
obtained from the field measurements, which validated the reliability of the produced landslide map.
Based on the field investigation studies, the landslides identified in the proposed method are consistent
and accurate. Therefore, this method has the potential to accurately identify landslide locations,
differentiate between landslides and non-landslides, as well as yield a reasonable and acceptable
landslide inventory map for the Cameron Highlands in Malaysia. In addition, government agencies
and land use planners can use the produced results of this study to identify safe regions for inhabitants
and update urban planning strategies. Such data can decrease the requirements for performing field
surveys by agencies such as departments of surveying.
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3.6. Assessing Accuracy

Many established methods of assessing the accuracy of remote sensing products are available
in the research domain [72]. In this study, the accuracy assessment was conducted based on
quantitative and qualitative (i.e., confusion matrix and precision/recall methods) for the determination
of classification accuracy of one or all categories. Firstly, the confusion matrix was derived from
comparison between reference image pixels and the classified image pixels. The Kappa coefficient was
extracted from the confusion matrix. Thus, this coefficient is calculated as shown in Equation (9):

Kappa Coe f f icient =
θ1 − θ2

1− θ2
(9)

where θ1 denotes the ratio of correctly classified areas, while θ2 represents the proportion of agreement
expected by chance.

The results of the confusion matrix model were used to evaluate the pixel coverage for detecting
landslides in a qualitative assessment approach. In this model, the landslide areas were compared
with real landslide areas in the field. This indicates that the degree of precision in delineated landslide
segments were resolved. Based on the results, it was observed that out of all the standalone object-based
classifiers, the SVM classifier achieved user accuracy up to 80.57% and delineated the exact border
of the individual landslide. This result was followed by RF and KNN classifiers with 78.57% and
75.96%, respectively, for training area (A), in addition to 79.89%, 77.27%, and 72.68% for testing area
(B), respectively (see Tables 5 and 6). However, the DST fusion method improved the qualitative
accuracy of the standalone classifier with 84.6% and 83.16% for subsets A and B, respectively, as shown
in Tables 5 and 6. Therefore, based on the accuracy assessment measurements, it was observed that
fusion DST enhanced the landslide detection analysis quantitatively and qualitatively by 10% and
4%, respectively.

In order to obtain the results for evaluation of pixel coverage for quantitatively detecting
landslides, the confusion matrix was employed to validate the performance of classifiers for both
subsets (i.e., training area and testing area). The findings of SVM, RF, and KNN for both subsets showed
86.98%, 87.69%, and 88.70%, respectively, for training area (A) and 86.83%, 88.53%, and 89.58% for
testing area (B), respectively (see Tables 5 and 6). On the other hand, the quantitative assessment
of the standalone classifier derived from the DST fusion method was enhanced, with results of
90.02% and 91.1% for subsets A and B, respectively (shown in Tables 5 and 6). The accuracy
assessment measurements showed that the fusion DST improved the detection of landslides. Therefore,
the proposed method was shown to be effective and may be applied to other regions exhibiting
similar conditions to the present study. This improvement is attributed to the proposed methodology,
which includes: optimized techniques, capability of LiDAR drive data, and texture features.

Table 5. Classification assessment (confusion matrices) on the training area.

Classification Method Class Name
Ground Truth Points

Total Samples User Accuracy Overall Accuracy Kappa Index
Landslide Non-Landslides

RF classifier
Landslides 1917 523 2440 78.57%

87.69% 0.63Non-Landslides 1089 9567 10,656 89.78%

SVM classifier
Landslides 1966 474 2440 80.57%

86.98% 0.66Non-Landslides 1231 9425 10,656 88.45%

KNN classifier
Landslides 1853 587 2440 75.96%

88.70% 0.65Non-Landslides 891 9765 10,656 91.64%

DST classifier
Landslides 2065 375 2440 84.64%

90.02 0.70Non-Landslides 931 9725 10,656 91.26%
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Table 6. Classification assessment (confusion matrices) on the testing area.

Classification Method Class Name
Ground Truth Points Total Samples User Accuracy Overall Accuracy Kappa Index

Landslide Non-Landslides

RF classifier
Landslides 1759 518 2277 77.27%

86.83% 0.61Non-Landslides 1023 8396 9419 89.14%

SVM classifier
Landslides 1819 458 2277 79.89%

88.53% 0.66Non-Landslides 883 8536 9419 90.63%

KNN classifier
Landslides 1655 622 2277 72.68%

89.58% 0.67Non-Landslides 596 8823 9419 93.67%

DST classifier
Landslides 1894 383 2277 83.18%

91.1% 0.73Non-Landslides 658 8761 9419 93.01%

Secondly, the precision/recall method is one of the renowned methods for quantitative accuracy
assessment. This proposed method was evaluated using field observations in each block, as shown in
Equations (10)–(12) [69–72]:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F−measure =
(1 + α)× Precision× Recall

α× Precision + Recall
(12)

where the number of correctly detected landslides is referred to as true positive (TP), while the
undetected landslides are referred as the false negative (FN). Usually, an FP is identified as a pixel that
is falsely recognized as a landslide. The α is a non-negative scalar set to 0.5 in this regard, as suggested
by Liu et al. [70]. Furthermore, the success rate is computed using another equation to estimate the
successful counted rate achievable by dividing segmented numbers over total trees.

The precision/recall method was used to measure the accuracy of landslide detection
quantitatively. The real number of landslide events were recorded using field surveying as a reference.
Thereafter, each classification result was compared in order to observe the inventory map. Landslides
are regarded as correct if they are recognized in segments by larger or smaller sizes of segment borders.
The major idea in landslide counting is in having at least one segment in an occurred landslide,
whereby the area of the landslide should not be significant in the mentioned assessment.

F-measure represents the overall accuracy in counting landslide detection, showing consistency
in the result of the trained area (subset A) and the tested area (subset B) for all of the classifiers
applied. Table 7 represents the number of landslides detected and counted based on previous
landslide occurrence. Moreover, the RF classifier recorded the lowest accuracy in landslide detection
(72% and 70% for subsets A and B, respectively), followed by the KNN classifier which showed
slightly higher accuracy than RF (75% and 73% for subsets A and B, respectively), as shown in Table 7.
However, SVM indicated the highest accuracy among all standalone classification methods before
fusion, which gained 77% for both study areas. It is apparent that fusion DST has overtaken all three
applied classifiers in terms of the outstanding accuracy for landslide counting of 88% in both subsets.
Basically, it has been proven that an applied fusion DST technique can quantitatively improve the
accuracy of landslide detection.

The use of the DST technique guarantees significant improvement of the detection accuracies.
Each of the various classification classifiers in existence has its own merits and demerits. Therefore,
the proposed DST utilized in this research showed improved accuracy. Furthermore, optimized
techniques for segmentation parameters and feature selection with the assistance of high-resolution
LiDAR, visible bands, and texture features contributed to the simplification of the development of the
current research and the improvement of the transferability model [67].

The proposed method was developed in the training area and validated in another part of the
study area (test area), and as a result, better accuracy was achieved.
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Table 7. Quantitative assessment for both areas.

Training Area Testing Area

Methods RF SVM KNN DST RF SVM KNN DST

Inventory 90 90 90 90 129 129 129 129
TP 67 74 70 84 78 98 81 116
FN 12 14 35 7 18 12 25 9
FP 34 26 17 13 41 39 32 20

Precision 0.66 0.74 0.80 0.87 0.66 0.72 0.72 0.85
Recall 0.85 0.84 0.67 0.92 0.81 0.89 0.76 0.93

F-measure 0.72 0.77 0.75 0.88 0.70 0.77 0.73 0.88

4. Conclusions

The optimization of segmentation parameters is an important process used to improve
computational efficiency and model performance with different spatial subsets. This process was
conducted in the Cameron Highlands area. An essential feature selection process was used to
improve the classification accuracy and the computational efficiency in the proposed methodology.
An object-based approach was applied using RF, SVM, and KNN techniques. The accuracies achieved
in the classification using SVM was observed to be better than the accuracies achieved using KNN
and RF, for both training and testing areas. However, the misclassifications of these results should
also be taken into account. Thus, the present study demonstrates a fusion of object-based classifiers
for detecting landslides using the DST method. The employed DST method fused the results of the
classifiers to generate a more accurate landslide inventory map. A more accurate result was observed
in the proposed DST method, which was indicated by an improvement in landslide detection over
object-based SVM, RF, and KNN classifiers, respectively. This success is justified by the complementary
contribution of object-based approaches. In contrast to previous approaches, the main merit of this
approach lies in its simplicity and computational efficiency. It also demonstrated that the results of this
method were more robust and yielded higher detection accuracy. The authors of the present study feel
confident that this detection method will be immensely helpful in mapping landslide inventories and
hazard assessment in landslide-prone environments.
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