
remote sensing  

Article

Estimation of Grassland Canopy Height and
Aboveground Biomass at the Quadrat Scale
Using Unmanned Aerial Vehicle

Huifang Zhang 1,2, Yi Sun 2, Li Chang 2,3, Yu Qin 2, Jianjun Chen 4, Yan Qin 2,5, Jiaxing Du 2,5,
Shuhua Yi 1,2,* ID and Yingli Wang 1

1 School of Geographic Sciences, Nantong University, 999 Tongjing Road, Nantong 226007, China;
zhf10658@ntu.edu.cn (H.Z.); wyl621021@ntu.edu.cn (Y.W.)

2 State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources,
Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou 730000, China; sunyi@lzb.ac.cn (Y.S.);
changli2012@lzb.ac.cn (L.C.); qiny@lzb.ac.cn (Yu.Q.); qyan@lzb.ac.cn (Ya.Q.); dujx@lzb.ac.cn (J.D.)

3 State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating,
Gansu Desert Control Research Institute, 390 North Bank Road West, Lanzhou 730070, China

4 College of Geomatics and Geoinformation, Guilin University of Technology, 12 Jiangan Road,
Guilin 541004, China; chenjj@glut.edu.cn

5 University of Chinese Academy Sciences, Beijing 100049, China
* Correspondence: yis@lzb.ac.cn; Tel.: +86-931-496-7356

Received: 13 April 2018; Accepted: 28 May 2018; Published: 31 May 2018
����������
�������

Abstract: Aboveground biomass is a key indicator of a grassland ecosystem. Accurate estimation
from remote sensing is important for understanding the response of grasslands to climate change and
disturbance at a large scale. However, the precision of remote sensing inversion is limited by a lack in
the ground truth and scale mismatch with satellite data. In this study, we first tried to establish a
grassland aboveground biomass estimation model at 1 m2 quadrat scale by conducting synchronous
experiments of unmanned aerial vehicle (UAV) and field measurement in three different grassland
ecosystems. Two flight modes (the new QUADRAT mode and the commonly used MOSAIC mode)
were used to generate point clouds for further processing. Canopy height metrics of each quadrat
were then calculated using the canopy height model (CHM). Correlation analysis showed that the
mean of the canopy height model (CHM_mean) had a significant linear relationship with field height
(R2 = 0.90, root mean square error (RMSE) = 19.79 cm, rRMSE = 16.5%, p < 0.001) and a logarithmic
relationship with field aboveground biomass (R2 = 0.89, RMSE = 91.48 g/m2, rRMSE = 16.11%,
p < 0.001). We concluded our study by conducting a preliminary application of estimation of the
aboveground biomass at a plot scale by jointly using UAV and the constructed 1 m2 quadrat scale
estimation model. Our results confirmed that UAV could be used to collect large quantities of ground
truths and bridge the scales between ground truth and remote sensing pixels, which were helpful in
improving the accuracy of remote sensing inversion of grassland aboveground biomass.

Keywords: vegetation height; grassland; aboveground biomass; UAV; canopy height model; structure
from motion (SfM); FragMAP

1. Introduction

Grassland ecosystems are an important component of natural ecosystems, accounting for 15%
of Earth’s surface area [1]. They not only provide food and habitat for herbivores [2], but also play
an important role in environmental protection, such as water conservation, sand fixation, and soil
conservation [3,4]. In addition, grassland ecosystems play a critical role in the global carbon cycle and
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in climate regulation [5,6]. Compared with other ecosystems, grassland ecosystems are more vulnerable
to climate change [7]. Biomass is one of the important indicators for evaluating grassland ecosystems.
Studies have shown that it is highly susceptible to meteorological factors, such as temperature,
precipitation, and surface temperature. In addition, variable biomass-climatic relationships exist
within different grassland ecosystems [8–10]. Therefore, an accurate estimation of grassland biomass
would significantly increase our understanding of the response of grasslands to climate change and
disturbance, and the coupling mechanism of grassland ecosystems and climate change.

Remote sensing has recently become a major data source for estimating biomass over large areas.
For example, different remote sensing data have been used to extract grassland biomass information,
such as IKONOS images with 1 m spatial resolution [11], Landsat, and SPOT data with 30 m and 20 m
spatial resolution, respectively [12–18], the moderate resolution imaging spectroradiometer (MODIS) and
the advanced very high resolution radiometer (AVHRR) data with 1 km spatial resolution [8,19–24],
or hyperspectral remote sensing data [25,26]. Regardless of the type of spatial resolution satellite
data used for estimating grassland biomass, it is essential that relationships between field biomass
measurements and corresponding spectral indices obtained by satellite be established. Thus, the quantity
and quality of field-scale grassland biomass samples are important factors for influencing the accuracy of
biomass inversion.

Field-scale biomass is typically collected by methods of destructive sampling, calibrated visual
estimation, and proximal sensing measurements with spectrometers [27–31]. Common shortcomings
exist among these methods which are time-consuming and labor intensive, thus, it is difficult to acquire
vegetation biomass at large scales. In addition, it is impossible to collect all the grassland biomass
information within a satellite pixel for constructing the biomass estimation model. A more rational
method is to set 3 to 5 quadrats in a pixel, and then average the sampling points to estimate the pixel
grassland biomass [16,32–36]. As a result, spatial scale mismatching occurs between ground-based
observation data and satellite data. Therefore, increasing the sample sizes of ground truth and
resolving the scale mismatch issues are of great significance to improve the accuracy of grassland
biomass estimation.

The emergence of the unmanned aerial vehicles (UAV) has made it possible to solve these two
problems. As a new technology, UAV has shown potential for estimation of terrestrial vegetation
biomass [37–39]. Compared with satellite remote sensing data, its flight mode is more flexible.
The flight height of UAV ranges from a few meters to hundreds of meters, and its shooting angle can
be adaptable for different applications. UAV equipped with a laser system can invert the vegetation
information. For example, UAV-Lidar systems have been used to estimate the biomass of forest [40,41],
crop [42], and grassland [43,44]. However, due to the high cost of acquiring LIDAR data, studies were
mostly limited to small areas and have not been widely applied in large areas.

In addition, UAV with an optical camera has been used to accurately estimate vegetation
biophysical characteristics, such as canopy height, vertical structure using a combination of structure
from motion (SfM) algorithm, and a canopy height model (CHM) [37,38,45,46], which can be used
to improve the accuracy of biomass estimation. The SfM is a computer technique that can generate
3D geometry by automatically extracting the corresponding feature points from unordered overlapped
UAV RGB images and optimizing the 3D location of corresponding features based on the principles of
photogrammetry [47]. The CHM is one of the most common methodologies designed to extract the
vegetation canopy height parameter from point clouds. These technologies have been primarily used
to estimate biomass of forest [48–50], shrub [51,52], and crop [37,38,46,53]. However, the accuracy of
inversion results of the CHM algorithm is closely related to the number of point clouds. When the
quality of the generated point cloud data is insufficient for distinguishing the ground and vegetation
point clouds, the algorithm cannot accurately invert the vegetation height information. As a result,
few studies have been conducted over grassland [29,54] and wetland [55], since the height of herbage
is much smaller than that of forest and shrub.
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In this study, we focused on the development of a novel method for estimating the quadrat-scale
aboveground biomass of low-statute vegetation. We first introduced a new non-destructive method to
estimate the grassland canopy height and aboveground biomass by using SfM and CHM algorithms
from UAV RGB images at quadrat scale. We then established and tested the relationships between
canopy height and biomass using in situ measurements. Finally, we applied the established
quadrat-scale relationships to estimate grassland aboveground biomass in a large plot area.

2. Materials and Methods

2.1. Study Sites

To evaluate the performance of the inversion of grassland canopy height and aboveground
biomass by using aerial photographs of UAV, three different study sites were selected from the Gansu,
Inner Mongolia, and Jiangsu provinces of China (Figure 1).
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Figure 1. The location of study sites.

The Gansu study site is located in Maqu County of Gansu Province, located in the eastern section
of the Qinghai-Tibet Plateau. Annual temperature and precipitation rates averaged 2 ◦C and 600 mm,
respectively. During the growing season (May to August), the average temperature and precipitation rates
were recorded at 10.4 ◦C and 400 mm, respectively, whereas during the cold season (September to April),
they averaged −1.5 ◦C and 200 mm, respectively. The duration of sunlight at this site is approximately
2580 h with more than 270 days of frost per year. The primary vegetation type in this site is alpine
meadow, for example, Poaceae and Cyperaceae [56].

The Inner Mongolia study site is located in Alashanzuoqi County of the Inner Mongolia
autonomous region. The area is a temperate desert arid region exhibiting a typical continental
climate. The average annual rainfall ranges from 80 mm to 220 mm, with an annual evaporation of
2900~3300 mm. The site experiences 3316 h of sunlight, an annual average temperature of approximately
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7.2 ◦C, and a frost-free period of 120 to 180 days. The typical grassland types of this region are primarily
desert and semi-desert steppe, such as Stipa glareosa, Iris lactea Pall. var. chinensis (Fisch.) Koidz, and
Bassia dasyphylla.

The Jiangsu study site has a northern subtropical monsoon climate, with a mean annual
temperature of −1.5~2.5 ◦C in winter and 26.5~27.5 ◦C in summer, and an annual precipitation
range from 850 to 1000 mm. The grassland type in this area belongs to salt marsh, with plant species
such as Spartina alterniflora, Suaeda glauca Bunge, and Phragmites australis.

2.2. Methods

A flowchart for estimation of grassland canopy height and aboveground biomass at 1 m2 quadrat
scale is shown in Figure 2, summarized in four steps: (1) acquire UAV photos; (2) generate dense point
clouds; (3) calculate canopy height model (CHM); and (4) establish vegetation height and aboveground
biomass estimation models. More detailed information is described in the following sections.

1 

 

 

 

 

 

 

 

 

 

Figure 2. The flowchart of estimation of grassland canopy height and aboveground biomass.

2.2.1. UAV System and Flight Modes

DJI Phantom3 Professional (DJI-Innovations, Shenzhen, China) was used for field observation
in this study. It is a lightweight four-wheel UAV with an integrated 4k camera. The camera featured
a 94◦ angle-of-view lens with an f/2.8 aperture, and a maximum picture size of 4000 × 3000 pixels.
More detailed parameters are included in Table 1. The maximum flight altitude is 6000 m above sea
level, and the working temperature ranges from 0 ◦C to 40 ◦C. In order to obtain a more precise flight
position, this UAV is equipped with an inertial measurement unit and GPS/GLONASS, with a GPS
accuracy of 1.0 m in the horizontal direction. In addition, the DJI Innovation Company provides a
software development kit (SDK) for developers, making it possible to design a specific flight route and
flight height for a certain purpose.

Table 1. The detailed parameters of the camera of DJI phantom3 Professional.

Parameter Value Parameter Value

image sensor 1/2.3 inch CMOS RGB color space sRGB
camera lens FOV 94◦ 20 mm shutter speed 1/8000 s

aperture f/2.8 photo size 4000 × 3000 pixels
ISO range 100–1600 image format JPEG

The FragMAP software (version 4.2) [57–59] has been used in the past to accomplish the automatic
flight of the UAV rather than manual operation, reduce the probability of mistakes due to improper
manual operation, and improve the efficiency of image acquisition.
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A new QUADRAT flight mode was designed to obtain vegetation point clouds at quadrat scale.
Its flight routes were planned as follows: (1) the FragMAP first generated five sample quadrats evenly
according to the predefined size, for example, 30 m × 30 m (Figure 3a). The location of these quadrats
could be further adjusted to meet actual situational needs. (2) The UAV flew to the center of each
quadrat to take four photos vertically at a 90-degree interval. (3) The UAV then flew to a distance of
2 m from the quadrat center and took 3 pictures toward the center at 45-degree intervals; θ was 15◦

(Figure 3b). Owing to the error of GPS, the flight trajectory of each quadrat would be slightly different,
especially in a small area (Figure 3a). In this study, the height of the QUADRAT flight mode was 3 m
to ensure grassland with low height could be clearly seen in the UAV images.

The commonly used MOSAIC flight mode was also used in this study [57]. Since the scene
captured by lightweight UAV was limited, it was impossible to obtain a large plot area (for example,
~180 m × 160 m) in one shot at low altitude. In fact, it often required hundreds of overlapping
photographs stitched together capture a picture of the entire area [60]. As a result, the MOSAIC mode
was developed to align the proper flight path to ensure the overlap rate of UAV photos was no less
than 70% along and parallel to the flying direction (Figure 4). The height and flying speed of UAV
were set to 20 m and 2 m/s, respectively, and the camera was set to a vertically downward direction.
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2.2.2. Synchronous Experiments of UAV and Field Measurements

To evaluate the performance of UAV in retrieving vegetation aboveground biomass at quadrat
scale, the synchronous experiments of UAV and field measurements were conducted at each study
site in August 2017. Twenty 30 m × 30 m plots were set up at each site (8, 4, and 8 in the Gansu,
Inner Mongolia, and Jiangsu sites, respectively) with 3–5 quadrats in each plot, totalling 75. One frame
was placed in each quadrat (Figure 5). Due to the healthy herb growth and even distribution in the
Gansu study area, a 0.5 m × 0.5 m sample frame was used to collect the grassland aboveground
biomass. Alternatively, the fractional vegetation cover in the Inner Mongolia site was not as good,
and thus a 1 m×1 m sample frame was used. In the Jiangsu site, the average height of grassland
was approximately 1.5 m, much higher than in the other two sites, thus a 1 m × 1 m sample frame
was used to ensure it could be seen clearly in the UAV images. Aerial photographs for each plot
were acquired using the FragMAP software with the QUADRAT and MOSAIC flight modes. Field
measurements were conducted immediately after the UAV flights. To ensure that the average height of
vegetation within each frame was calculated accurately, a stratified random sampling strategy was
used. In each frame, the vegetation was roughly divided into three categories: high, medium, and
low according to the relative height of vegetation.Vegetation height was measured five times for each
category. The average canopy height of each frame was calculated and referred to as Field Height
(Fd_Height). Thereafter, aboveground vegetation in the frame was harvested and dried at 65 ◦C to
calculate the dry aboveground biomass per frame, referred to as Field Biomass (Fd_Biomass (g/m2)).
A total of 75 destructive aboveground biomass samples were collected.

Figure 5. A quadrat with frame in the Gansu (a), Inner Mongolia (b), and Jiangsu study sites (c).

2.2.3. Point Cloud Generation and Classification

After aerial photographing and field measurements, the SfM algorithm was employed to
generate point clouds for each quadrat to obtain the 3D structure metrics of vegetation. Agisoft
PhotoScan software (Agisoft LLC, St. Petersburg, Russia, version 1.3.0) was chosen to perform
the SfM algorithm for its user-friendly interface and high-efficiency operation performance [61,62],
accomplished using three processes. (1) Add photos: 28 overlapped photos were added for each
quadrat for computing. (2) Align photos: Agisoft Photoscan was used to align images by calculating
the position and orientation of each photo and to build a spare point cloud model. In this step,
the parameter of accuracy was set to high and photos with poor resolution were removed. Incorrectly
positioned photos with greater errors were subsequently removed by using the returning error analysis
results from the Agisoft software to ensure high quality generation of spare cloud points. (3) Build
dense clouds: the depth information for each camera was calculated based on the estimated camera
positions and then combined together to generate dense point clouds for each quadrat. The parameters
of quality and depth filtering were set as high and aggressive, respectively. All dense point clouds
were produced with high quality to obtain more accurate geometry of vegetation 3D structure metrics.
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After completing the above steps, dense point clouds were further divided into both ground
point and non-ground point clouds by using the following algorithms. There were two point clouds
classification options in the Agisoft PhotoScan program: one with an automatic division of all the points
into the two classes of ground and non-ground points, and the second with a manual classification [62].
These two methods were used together in this study to identify the ground points. The automatic
classification procedure consisted of two steps. The first step was to divide dense point clouds into
cells of a certain size. In each cell, the lowest point was detected to generate the first approximate
mesh of the terrain model. The second step was to calculate the distance and angle between the terrain
model and the new point whenever a new point was added. If the value of distance or angle was
less than a certain threshold, the new point would be classified as a ground point; otherwise as a
non-ground point. A new triangulation of a terrain model would then be updated by including this
new point. The second step was repeated until all points were checked [62]. Due to the flat terrain
of the study area, the maximum angle and the maximum distance were set to 15◦ and 0.001 cm,
respectively. The cell size was set to 0.1 m owing to the small coverage area of the generated point
cloud, that is, about 5 m × 6 m. In addition to the automatic classification of the ground method,
Agisoft PhotoScan allows users to associate all points within dense clouds with a certain standard
class, such as ground, building, vegetation, and water, to meet the classification needs [62]. Given the
significant color difference in bare ground and vegetation, we also identified ground points by using
RGB attributes of point clouds. Since the bare ground of different study sites showed different colors
in aerial photos, the color threshold was adjusted for each quadrat to ensure ground points could be
selected with high accuracy.

2.2.4. Digital Terrain Models (DTM)

Digital Terrain Models for each site were generated from ground point clouds by using the
creating mesh function of CloudCompare software (version 2.8.1). CloudCompare is a 3D point cloud
and triangular mesh processing software [63]. It was designed to perform a comparison between two
dense 3D point clouds or between a point cloud and a triangular mesh. When compared with Agisoft
Photoscan software, CloudCompare was a more generic point cloud processing software given its
many advanced algorithms, such as registration between two point clouds, resampling the point cloud,
interactive segment, and static computing, which had critical functions for point cloud computing.
Hence, dense point clouds in each quadrat and their corresponding classified ground points were
exported into CloudCompare for subsequent processing.

2.2.5. Canopy Height Models and CHM Metrics

Canopy height models (CHM) were generated by computing the distances between dense point
clouds and their corresponding ground meshes using the cloud/mesh distance function. In this
algorithm, the model searched for the nearest triangular in the reference mesh for each point of the
compared point cloud to compute the distance. To accurately compare the point clouds retrieved
from UAV with field sample data, generated point clouds were cut by using the segment function and
thus only the point clouds in the frame were retained for further calculation (Figure 6a). The CHM
height metrics were then calculated within each frame at a height >0 m, including the median
(CHM_median), mean (CHM_mean), minimum (CHM_min), maximum (CHM_max), and standard
deviation (CHM_sd). The vegetation coverage index of each quadrat was extracted using FragMAP
software [57] (Figure 6b), which identified the green vegetation by using the excess green index
(EGI) [64]: EGI = 2G − R − B, where R, G, and B represent the 0–255 value at the red, green, and blue
bands, respectively. To evaluate whether the vegetation cover had an impact on aboveground biomass
estimation, we also calculated the average height of the point clouds belonging to the vegetation type
in each quadrat, defined as the variable CHM_height_green.
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2.2.6. Aboveground Biomass Estimation Model

Aboveground biomass models were generated by establishing the relationship between CHM
metrics and field measured aboveground biomass using R statistics software (version 3.4.2). When
constructing the model, 70% of the samples were randomly selected as the training data and the
remaining 30% as the independent validation data. The coefficients of determination (R2), root mean
square error (RMSE), and relative root mean square error (rRMSE) indices were used to quantify the
fitting accuracy of the constructed models.

3. Results

3.1. Correlation of CHM Metrics and Field Measurements Analysis

Point clouds of quadrat scale were successfully generated from UAV photos of QUADRAT mode
in the Gansu and Inner Mongolia sites, and from MOSAIC mode in the Jiangsu site. Therefore,
we only used successfully generated point clouds for further analysis. Prior to construction of the
aboveground biomass estimation model, the correlations between the canopy height metrics and field
measured indices were analyzed at quadrat scale. The mean height of field heights (Fd_Height) was
significantly correlated with the CHM_mean (r = 0.95), CHM_median (r = 0.94), CHM_max (r = 0.95),
and CHM_height_green (r = 0.94) metrics obtained from UAV inversion (Figure 7). Aboveground
biomass had positive correlations with the CHM_mean (r = 0.86) and the CHM_max (r = 0.87), but had
a relatively lower correlation with CHM_height_green (r = 0.83). Strong correlations were also found
among CHM_mean, the CHM_max, CHM_median, and CHM_height_green. The correlation analysis
showed that CHM metrics obtained from UAV were well correlated with field measurements, which
could be used to retrieve the canopy height and aboveground biomass of grassland.
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Figure 7. The correlation coefficient charts between canopy height model (CHM) metrics and field
measurement for all three study sites. The diagonal line in the figure shows the distributions of the
variables themselves. The lower triangle (left and the bottom of the diagonal) in the figure shows
scatter plots of the two properties. The upper triangle (upper right of the diagonal) in the figure
indicates the correlation values of the two attributes; the asterisk indicates the degree of significance
(more stars indicate greater significance, *** = p-value of <0.001.). The bold bigger numbers mean the
higher correlation.

3.2. Vegetation Height Estimation Model

As shown in Figure 7, Fd_Height had a significant correlation with CHM_max, CHM_mean,
CHM_median, and CHM_height_green indices (p < 0.001). However, scatter plots between Fd_Height
and these indices indicated that Fd_Height had a better fit with CHM_mean and CHM_height_green
indices (Figure 7). Therefore, we conducted a comparative test between these two indices with
results showing no significant differences between the two indices (Table 2). The R2 between the
CHM_mean and Fd_Height was 0.90, and the rRMSE was 16.50%, which was slightly better than that
of CHM_height_green, and had a good fit with Fd_Height (Figure 8). These results indicated that
vegetation coverage had little effect on the UAV estimation of average vegetation height at quadrat
scale. Since the metric CHM_mean was more accessible than CHM_height_green, it was selected to
predict the grassland average height at quadrat scale.

Figure 8. The scatter plot of Fd_Height and CHM_mean (a); and the scatter plot of Fd_Height and
CHM_height_green (b).
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Table 2. The comparison results between vegetation height models from all 75 samples.

Variable R2 RMSE (cm) rRMSE (%)

CHM_Mean 0.90 19.79 16.50
CHM_height_green 0.88 20.89 17.42

3.3. Aboveground Biomass Estimation Models

Figure 7 showed that the aboveground biomass had a high correlation with the CHM_mean,
CHM_max, and CHM_median metrics. Thus, either a linear or a nonlinear regression analysis
was performed between Fd_Biomass and these metrics (Figure 9). The fitting effects of logarithmic
models were better than linear models (Table 3). The value of R2 varied from 0.66 to 0.78. Even
though the CHM_max had the highest correlation with Fd_Biomass (r = 0.87), its fitting accuracy
was not the highest. Instead, the CHM_mean had the highest coefficients of determination (R2 = 0.78)
among all models and with the lowest root mean square error (RMSE = 162.2 g/m2, rRMSE = 25.36%).
Furthermore, all models were validated by using the independent validation data (Figure 10).
It showed that logarithmic models had better fitting accuracy than linear models. Among all three
logarithmic (M2, M4, M6) models (Table 4), the CHM_mean logarithmic model (M4) showed the
highest fitting accuracy (R2 = 0.89, RMSE = 91.48 g/m2, rRMSE = 16.11%), followed by CHM_median
and CHM_max models.

1 

 

 

 

 

 

 

 

 

 

Figure 9. The regression graph results of the six different biomass estimation models. M1: the linear
regression constructed by CHM_max; M2: the logarithmic regression constructed by CHM_max;
M3: the linear regression constructed by CHM_mean; M4: the logarithmic regression constructed by
CHM_mean; M5: the linear regression constructed by CHM_median; M6: the logarithmic regression
constructed by CHM_median.
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aboveground biomass estimation models using independent validation data. M1: the linear 
regression constructed by CHM_max; M2: the logarithmic regression constructed by CHM_max; M3: 
the linear regression constructed by CHM_mean; M4: the logarithmic regression constructed by 
CHM_mean; M5: the linear regression constructed by CHM_median; M6: the logarithmic regression 
constructed by CHM_median. 
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M2 213.69 × ln(CHM_max) + 654.80 0.66 204.6 31.99 
M3 578 × CHM_mean + 161.09 0.76 169.7 26.54 
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Table 4. The validation results of the six aboveground biomass estimation models. The comparison 
between predicted aboveground biomass and field measured biomass by using the validation 
dataset. 

Regression Type Model R2 RMSE (g/m2) rRMSE (%) 
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M1 0.83 115.4 20.32 
M3 0.67 158.6 27.92 
M5 0.66 162.3 28.57 

non-linear logarithmic regression model M2 0.89 93.47 16.46 

Figure 10. The scatter plots of measured and predicted aboveground biomass of six different
aboveground biomass estimation models using independent validation data. M1: the linear regression
constructed by CHM_max; M2: the logarithmic regression constructed by CHM_max; M3: the linear
regression constructed by CHM_mean; M4: the logarithmic regression constructed by CHM_mean;
M5: the linear regression constructed by CHM_median; M6: the logarithmic regression constructed by
CHM_median.

Table 3. The regression results of the six aboveground biomass estimation models. M1: the linear
regression constructed by CHM_max; M2: the logarithmic regression constructed by CHM_max;
M3: the linear regression constructed by CHM_mean; M4: the logarithmic regression constructed by
CHM_mean; M5: the linear regression constructed by CHM_median; M6: the logarithmic regression
constructed by CHM_median.

Model Equation R2 RMSE (g/m2) rRMSE (%)

M1 484.26 × CHM_max + 99.35 0.73 180.3 28.19
M2 213.69 × ln(CHM_max) + 654.80 0.66 204.6 31.99
M3 578 × CHM_mean + 161.09 0.76 169.7 26.54
M4 183.04 × ln(CHM_mean) + 763.11 0.78 162.2 25.36
M5 547.42 × CHM_median + 163.18 0.74 179.6 28.08
M6 154.19 × ln(CHM_median) + 735.02 0.73 180.0 28.15

Table 4. The validation results of the six aboveground biomass estimation models. The comparison
between predicted aboveground biomass and field measured biomass by using the validation dataset.

Regression Type Model R2 RMSE (g/m2) rRMSE (%)

linear regression model
M1 0.83 115.4 20.32
M3 0.67 158.6 27.92
M5 0.66 162.3 28.57

non-linear logarithmic regression model
M2 0.89 93.47 16.46
M4 0.89 91.48 16.11
M6 0.89 93.33 16.43
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Therefore, the CHM_mean logarithmic regression model was the best aboveground biomass
estimation model at quadrat scale.

4. Discussion

4.1. The Flight Modes of Taking Aerial Photos at Quadrat Scale

QUADRAT flight mode was used to collect UAV photographs of grassland at a height of 3 m
in all three study sites. It was found that UAV images obtained by QUADRAT flight mode were
successfully used to create dense point clouds for each quadrat in two study sites except for the
Jiangsu site (Figure 11). This was due to high vegetation coverage and density in the Jiangsu site, and
the lack of obvious feature points, such as bare ground, to align photos. Therefore, the commonly
used MOSAIC flight mode was utilized instead of the QUADRAT flight mode to obtain vegetation
photographs at quadrat scale in the Jiangsu study site.
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Figure 11. Examples of dense point clouds of grassland generated from UAV photos using the
QUADRAT flight mode in the Gansu site (a) and Jiangsu site (b).

To ensure high-resolution images for the generated point cloud or orthography in the MOSAIC
flight mode, it is critical that the photo overlap ratio be no less than 70% along and parallel to the
flight direction. It is well-known that the overlap ratio is also affected by the UAV flight height,
flight speed, and shooting interval. After several flight experiments, we found that the generation
of Spartina alterniflora point clouds could be ensured if flight parameters of the overlap ratio, flight
height, flight speed, and shooting interval were set to 70%, 20 m, 2 m/s and 3 s, respectively. We were
unable to generate point clouds at the other two sites (results not shown here), thus necessitating the
need for further studies to investigate the causes.

4.2. The Effects of Grassland Density on the Generation of Point Clouds and DTM

Three different grassland ecosystems were verified for exploring the feasibility of inversion of
plant height and aboveground biomass from UAV RGB images. The most critical steps were the
generation of dense point clouds and the accurate acquisition of DTM for each quadrat.

During the process, it was found that the quality of generated dense point clouds was not only
related to the overlap rate of the acquired UAV photos, but also to the density of the vegetation in the
shooting area. If the density of grassland was too high, then the quality of generated point clouds was
relatively poor with a certain degree of deformation. Due to the high-density coverage of vegetation,
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the SfM algorithm could not automatically extract enough corresponding feature points to determine
the correct geometric position of the point cloud. As a result, additional marker points were added by
visualization to improve the quality point clouds, yet, in the occurrence of greater grassland density,
there was no obvious improvement in quality. Thus, the use of QUADRAT mode to obtain point
clouds failed in the Jiangsu study site (Figure 11b). However, quantitative analysis of the influence
of grassland density on the quality of point clouds had not yet been conducted. In future research,
the polygon grids method will be utilized to further quantify the impact of vegetation density on the
quality of point clouds [65].

The quality of DTM was also influenced by the density of grassland. If the vegetation density
was moderate, the extraction of ground points was relatively easy, but if the density was too high,
an accurate DTM could not be generated due to insufficient ground points. In this step, we not only
used the automatic ground point classification provided by Agisoft Photoscan, but also the RGB
attributes to identify the ground point cloud, since RGB information was useful for distinguishing or
monitoring the grassland [66].

4.3. Estimation of Grassland Canopy Height from UAV

Our results indicated that the CHM_mean significantly correlated with field measured canopy
height at quadrate scale (Table 2), which further confirmed that grassland canopy height can be
retrieved by UAVs. In contrast to forest or shrub, grassland has a low vegetation height. For example,
vegetation height in the Jiangsu site was less than 2 m, and the height observed in the Inner Mongolia
and Gansu sites was even lower, typically less than 50 cm. Inconsistent with the previous study [67],
our results indicated that CHM could also be used to infer the height of short vegetation with high
accuracy. It was reported that CHM_mean was the most suitable variable for estimating ground
vegetation height [37,45]. Our results also fit this pattern. It was also found that CHM_mean canopy
height of grassland was usually lower than the field measured height [37]. The possible causes for
this phenomenon are as follows: (1) the number of plant height measurement was small, and the
mean field measurement height did not represent the true average vegetation height at quadrat scale;
and (2) the field canopy height was measured as the vertical distance between the top of vegetation
and ground surface. However, the dense cloud points generated by UAV could capture the entire
height information of grassland, including the stem, but not the top of the vegetation. Consequently,
inversed average vegetation height was always lower than measured mean canopy height, which was
comparable to the results obtained using airborne lidar system [68,69].

4.4. Error Analysis of the Predicted Aboveground Biomass

The predicted errors of aboveground biomass were calculated to evaluate the performance
of UAV at quadrat scale by using the independent validation dataset. The aboveground biomass
error estimation differed for all three study sites (Figure 12a). The Jiangsu site had the largest
error ranging from 9.34 to −233.45 g/m2, the RMSE was 125.6 g/m2, and the rRMSE was 19.55%
(Table 5). At the Gansu site, the RMSE and rRMSE of predicted biomass were 34.35 g/m2 and 22.11%,
respectively (Table 5). Although the Inner Mongolia site had the smallest RMSE (RMSE = 16.19 g/m2),
the rRMSE was the largest among the three sites (rRMSE = 43.92%). This could be attributed to the low
aboveground biomass in Inner Mongolia. The average biomass in Inner Mongolia was only 36.87 g/m2

(Table 5), which was significantly smaller than the other two study sites. The predicted percentage
errors were typically 25% (Figure 12b). Our results were consistent with previous studies, which
reported the mean relative error of a grassland aboveground biomass estimation model, using random
forest algorithm, was 28% [70].
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Figure 12. The scatter plots of predicted aboveground biomass and estimation error at quadrat scale (a)
and the scatter plot of predicted biomass error percentage of different study sites (b). GS: Gansu study
site; IM: Inner Mongolia study site; JS: Jiangsu study site.

Table 5. The errors of predicted aboveground biomass at different sites.

Study Site Error_Min
(g/m2)

Error_Max
(g/m2)

Mean_Biomass
(g/m2)

RMSE
(g/m2)

rRMSE
(%)

Gansu 2.98 70.72 155.4 34.35 22.11
Inner Mongolia −3.42 −22.64 36.87 16.19 43.92

Jiangsu 9.34 −233.45 642.29 125.60 19.55

4.5. Estimation of Grassland Aboveground Biomass at Plot Scale

A preliminary experiment was conducted at the Jiangsu site to estimate the grassland
aboveground biomass at a plot scale (180 m × 160 m) by jointly using UAV and the constructed
1 m2 quadrat aboveground biomass estimation model. For this purpose, overlapped UAV images were
first obtained from the MOSAIC mode. A grassland height map with ~1 cm spatial resolution was then
generated from these images by using SfM and CHM algorithms and were resampled into a 1 m spatial
resolution. It should be noted that during the resampling, the new pixel values were recalculated as
the mean value of the original pixels that fell within the range of 1 m × 1 m. Subsequently, the quadrat
scale estimation models were applied over each 1 m × 1 m pixel to calculate the aboveground biomass
over the entire plot.

The results showed great potential for obtaining canopy height and aboveground biomass
by using UAV at a large plot scale (Figure 13). Most vegetation height could be inverted with
reasonable values, except for that located at the edge of the orthophotoquad which could not be
accurately retrieved due to the limited UAV photos (Figure 13b). As also shown in Figure 13,
the Spartina alterniflora of this area was patchy in spatial distribution, and vegetation height at the
edge of the patch was relatively lower than in the inner area of the patch. The vegetation height map
retrieved by UAV reflected the spatial distribution of Spartina alterniflora. In addition, the vegetation
height spatial distribution pattern with coarse resolution (Figure 13c) was consistent with that of high
resolution (Figure 13b), which provided a guarantee for accurate estimation of aboveground biomass
at a large plot scale (Figure 13d). These preliminary application results indicated that our constructed
estimation model could also be used to estimate aboveground biomass at a plot scale, which was
useful for estimating the aboveground biomass at a satellite pixel-scale level in the future.
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4.6. Limitations and Future Research

In this study, we only used vegetation height to estimate vegetation aboveground biomass
without considering the grassland type. However, the aboveground biomass estimation error analysis
results (Figure 12) indicated a slight variance in UAV performance accuracy in the different grassland
types. For example, the dominant vegetation type observed in the Inner Mongolia study site was
desert steppe, and the rRMSE of predicted aboveground biomass was relatively higher than the other
two sites (Table 5). Therefore, we will increase the number of study sites and samples of different
vegetation types to further verify the feasibility of UAV to inverse the height and aboveground biomass
of grassland at quadrat scale in future studies.

Though our results confirmed the feasibility of UAV inversion of grassland canopy height and
aboveground biomass at quadrat scale, the use of the constructed aboveground biomass estimation
model in other sites still needed validation.

Even though the 1 m2 quadrat scale estimation model had been applied to estimate the grassland
aboveground biomass at a plot scale, further investigation is needed to determine the best method
for scaling up the parameters obtained from UAV to the commonly used satellites, such as Sentinel-2,
Landsat, or MODIS data. In addition, the relationships between aboveground biomass and satellite
spectral indices at the same scale should be established and tested before regional application.

5. Conclusions

In this study, synchronous experiments of UAV and field sampling were conducted at three study
sites to explore the feasibility of inverting the canopy height and aboveground biomass of grassland at
quadrat scale from UAV images.
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Based on the acquired UAV images, point clouds and CHM metrics of each quadrat were
calculated by using SfM and CHM algorithms to explore the relationships between CHM metrics and
field measurements. CHM_mean was the most suitable variable to estimate the canopy height and
biomass of grassland at quadrat scale. Our results confirmed that UAV could be used to estimate
grassland vegetation height and aboveground biomass of grassland at quadrat scale.

In addition, we also estimated the grassland aboveground biomass at a large plot scale by joint
use of the constructed estimation model and UAV at the Jiangsu study site. It indicated that the 1 m2

quadrat scale model could be well used to invert canopy height and aboveground biomass at a large
plot scale. It showed great potential for estimating aboveground biomass of grassland at a satellite
pixel-scale, which is significantly useful for resolving the issues of scale mismatching when retrieving
aboveground biomass from remote sensing at the regional or global scale.
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