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Supplementary Material 
 

1. In-situ data  

 

Prochlorococcus cell counts were determined by fixing 0.8 ml water samples using 

paraformaldehyde, and quantifying cells in these samples using a FACSCalibur (Becton Dickinson) 

flow cytometer. On the Atlantic Meridional Transect (AMT) cruises 12, 13, 16, 18, 19, 20, and 21, 

Prochlorococcus populations were determined based on their autofluorescence and right-angle light 

scatter (RALS) in unstained samples analysed following the method described in Heywood et al. (2006). 

On AMTs 14, 15, 17, 22, 23, and 24, samples were stained with 1% commercial stock solution of SYBR 

Green 1 (Molecular Probes, Inc.) in Milli-Q water mixed with 300 mM tripotassium citrate (24.5 mM 

final concentration) immediately following fixation (Olson et al., 1993; Zubkov et al., 2007). 

Prochlorococcus populations were determined using the cells’ green fluorescence and right-angle light 

scatter, and yellow-green 0.5 and 1.0 µm reference beads (Fluoresbrite Microparticles, Polysciences, 

Warrington, PA, USA) were used as an internal standard for both fluorescence and flow rates (Zubkov 

and Burkill, 2006). The WinMDI (version 2.0) freeware (Joseph Trotter) was used to extract data of the 

flow cytometer output.  

In-situ ZDCM (ZDCM′) was defined as the depth at which the peak in chlorophyll (red) fluorescence 

was observed in each profile, using a SeaBird fluorometer mounted on a CTD rosette. The in-situ 

attenuation coefficient for PAR (KdPAR') was calculated from profiles of downwelling PAR measured 

using a SeaBird CTD PAR sensor, then KdPAR' was used to calculate the in-situ fractional PAR at depth 

(fPAR(z)′), or the percent value of surface irradiance at depth. Remote sensing reflectance at 443 and 

488 nm were acquired from match-ups with 4×4 km 8-day satellite-derived composites (Aqua-MODIS, 

Ocean Color, NASA 2014).  

The compilation, processing, and analysis of the in-situ dataset were performed using R packages 

stats (R Core Team, 2017), ggplot2 (Wickham, 2009), lattice (Sarkar, 2008) and devtools (Wickham 



	
	

2 

and Chang, 2016). Satellite data were assessed using the R packages ncdf4 (Pierce, 2015), chron (James 

and Hornik, 2017), fields (Nychka et al., 2015), and raster (Hijmans, 2016). 

 
2. Delineation of the area of subtropical gyres 
 

Subtropical gyres are vast oligotrophic areas usually in the centre of ocean basins. These areas present 

very low chlorophyll concentrations at the sea surface due to the limitation of nutrients, as they are 

remote from any nutrient source and, usually, the pycnocline is deep and strong, slowing the transport 

of nutrients from depth to the euphotic zone. 

As the depth of the nutricline commonly coincides with the depth of the deep chlorophyll maximum 

(ZDCM) (Fig. S1), ZDCM can be used as a proxy for nutrient supply from depth in these areas.  

 

 
Figure S1. Latitudinal section of the Atlantic Ocean, showing profiles of a) the concentration of nitrate and b) the 
concentration of chlorophyll. Figure c) shows the relationship between the depth of the nutricline (Znut) and the 
depth of the deep chlorophyll maximum (ZDCM), where the red line shows the 1:1 relationship. Data for figs. (a) 
and (b) from AMT 18 (1998), and data for fig. (c) from AMTs 12 to 24 (n=533 observations), were provided by 
the British Oceanographic Data Centre (BODC).  
 

In Fig. S1c, Znut was defined as the depth where the concentration of nitrate becomes 0.5 µmol l-1 

higher than the concentration of nitrate at surface, and ZDCM is the depth where the fluorescence-derived 

chlorophyll concentration is highest (when this depth > 50 m). 

 

Some criteria are commonly used to delineate the ocean gyres, such as: 

a) sea surface chlorophyll ≥ 0.07 mg m-3 (McClain et al., 2004); 

b) the depth of the deep chlorophyll maximum (ZDCM) ≥ 80 metres (Zubkov et al., 2000); and 

c) the temperature at 100 metres depth ≥ 17oC (Zubkov et al., 2000).  
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Considering the relationship between ZDCM and sea-surface chlorophyll (SSChlo) found in our dataset 

of 12 AMT cruises (Fig. S2), we established a SSChlo threshold of 0.075 mg m-3 to delineate the area 

of the ocean gyres. 

 
Figure S2. Relationship between the depth of the deep chlorophyll maximum (ZDCM) and the sea-surface 
chlorophyll (SSChlo) (n=409 observations). Black dots show locations where ZDCM >= 80 metres. Data from 
AMTs 12 to 24 were (provided by the British Oceanographic Data Centre (BODC). 
 
 
3. Equations to estimate the vertical distribution of light  

 
The following equations were used to estimate the vertical distribution of light in the water column. 

The in-situ attenuation coefficient for PAR (KdPAR') was calculated from profiles of downwelling PAR 

according to equation (S1) from Kirk (2011): 

𝐾#𝑃𝐴𝑅' = 	−𝑑 ln 𝐸# 𝑑𝑧	, (S1) 

where Ed is the downwelling irradiance, and z is the depth in metres. Then, KdPAR' was used to calculate 

the in-situ fractional PAR at depth (fPAR(z)′) in equation (S2) from Kirk (2011): 

𝑓𝑃𝐴𝑅 𝑧 ' = exp −𝐾#𝑃𝐴𝑅'		𝑧 	. (S2) 

The equation used to calculate the satellite-derived KdPAR (equation (1) from the manuscript) was 

derived from KdPAR'. The rationale for using equation (1) rather than equation (9') from Morel et al. 

(2007) that is conventionally used to estimate KdPAR under open ocean conditions is that, in clear 

oligotrophic waters, Prochlorococcus dominates. We would argue that to achieve the best estimates of 

the Prochlorococcus standing stock, which dominates vast regions of the global ocean that are 

characterised by low chlorophyll and consequently low KdPAR, it is critical to have accurate estimates 

of KdPAR when light attenuation is low. When comparing equation (1) to KdPAR values estimated using 

Morel et al.’s equation, the estimates of equation (1) were more similar to in-situ values (Fig. S3). 
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Figure S3. a) Comparison between observed attenuation coefficient for photosynthetically available radiation 
(KdPAR') from CTD PAR profiles in AMTs 20-24 (red empty circles, locations displayed in Fig. 1) versus 
predicted KdPAR using equation (1) of the present work (grey-filled circles) and using equation (9') from Morel 
et al. 2007 (blue stars); b) Observed (AMTs 20 to 24, n=108 observations) and predicted KdPAR (n=61 
observations) across the Atlantic Ocean. The number of predicted values is lower than those observed because of 
the lack of availability of Rrs(443) information near the equatorial convergence caused by cloud cover. 

 

To calculate the day length (DL), equation (S3) was taken from Forsythe et al. (1995): 

𝐷𝐿 = 	 −1	 cos <#=>
?@.AB?

		(sin E=F
?@.AB?

)
H
	 + 1	 	12   , (S3) 

where Jday is the Julian day (day of the year) and Lat is the latitude (degrees N). The absolute solar 

zenith angle at noon θs was derived from the sun declination (Forsythe et al. 1995) using equations (S4) 

and (S5): 

𝛿′ = 	23.45	 sin HOP
HO?

	 284 + 𝐽𝑑𝑎𝑦 	 U
VWP

	, (S4) 

𝜃Y = 𝐿𝑎𝑡 − 	𝛿′  (S5) 

where δ′ is the sun declination (degrees), Jday is the day of the year, and Lat is the latitude (degrees). 

Finally, the depth z (in metres) associated with a particular fPAR was calculated using equation (S6) 

from Kirk (2011): 

𝑧	 = 	−
ln 	(𝑓𝑃𝐴𝑅(𝑧))

𝐾#𝑃𝐴𝑅
 (S6) 

 
 

4. Choice of a two-component model  

 

In vertical profiles of Prochlorococcus cell abundance, the depth of the deep Prochlorococcus 

maximum (ZDPM) is often located a few metres above the depth of the deep chlorophyll maximum 

(ZDCM), particularly in subtropical gyre waters (Fig. S7). In our model, this deep Prochlorococcus 

maximum (DPM) is generated not from a peak in abundance of ProI or ProII, but from the sum of these 

two components. Therefore, ZDPM is typically located at the depth where the ProI and ProII co-occur. 

When the DCM is shallower than 60 m, the maximum Prochlorococcus abundance in a profile often 
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occurs at the ZDCM or at the sub-surface chlorophyll maximum because ProII is nearly absent (Fig. S7a-

c). 

To test if the deep component ProII is relevant to determine the vertical distribution of 

Prochlorococcus cells, curves of observed Prochlorococcus cell abundance versus fPAR were fitted to 

equation (S7) in each sampling station: 

𝑃𝑟𝑜F]F=^(𝑧) 	= 		 𝑃𝑟𝑜Y_`a′	(	1 − exp	(−
		b		acde(f)
c`]ghij'

  (S7) 

where Prosurf′ is the abundance of Prochlorococcus cells at the sea surface observed in situ, and is 

considered to be the maximum cell abundance Prochlorococcus can reach in a profile. In this equation, 

the deep maximum in the abundance of Prochlorococcus cells is neglected (ProII is absent). 

To estimate the total Prochlorococcus abundance at each depth (Prototal(z)) and the abundance of 

Prochlorococcus cells integrated at the surface 200 m of the water column (Proint) using satellite 

observables, fPAR(z) was calculated using equation (2), and Prosurf was calculated using equations  

(3-5). The parameter 𝛼 was taken from the fitted curves of in-situ observations using equation (S7), 

then averaged. 

The comparison between values of Proint calculated using the two-component model (Prototal(z) = 

ProI(z) + ProII(z)) and the one-component model (where Prototal(z) is calculated using equation (S7)) 

is shown in Fig. S4. The one-component model (r2 = 0.36) underestimates Proint in the gyres, especially 

the South Atlantic gyre, as these are the areas where the deep Prochlorococcus maximum is most 

important and dictates the patterns of integrated cell abundances (Fig. S4a-b). In these areas, predictions 

made by the two-component model (r2 = 0.48) are more accurate (Fig. S4c-d). For this reason, we opted 

for the two-component model. 
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Figure S4. a) Comparison between observed and predicted Prochlorococcus cell abundance integrated in the 
water column (Proint) using the one-component model (equations (2), (3-5), and (S7)); b) Observed and predicted 
Proint across the Atlantic Ocean (locations displayed in Fig. 1) using the one-component model (AMT 12 to 24, 
n = 340 observations); c) Comparison between observed and predicted Proint using the two-component model 
(equations (1) to (15)); d) Observed and predicted Proint across the Atlantic Ocean (AMT 12 to 24, n = 340 
observations) using the two-component model.  
 

5. Global estimates of the abundance of Prochlorococcus cells 

 

The validation of the two-component model in areas outside the Atlantic Ocean was performed using 

the PANGAEA dataset (Buitenhuis et al., 2012). Considering the Pacific and Indian Oceans, and the 

limited number of observations matching satellite data, the performance of the model to estimate the 

abundance of Prochlorococcus cells integrated in the water column (Proint
3) was poor when using 

exclusively satellite data (r2 = 0.14) (Table S1). However, when in-situ measurements of the abundance 

of Prochlorococcus at the sea surface were used to calculate the vertical distribution of cells using this 

same model, the performance of the model improved drastically (r2 = 0.75 to Proint and 0.83 to Prototal) 

(Table S1).  

Therefore, in areas outside the Atlantic Ocean, the model is compromised by the equation to estimate 

the abundance of cells at the sea surface (Prosurf), which is empirical and tuned to Atlantic Ocean waters 

(as it was derived from the AMT dataset). This means it is possible to improve the performance of the 

model in other ocean basins by tuning the equation to calculate Prosurf to these areas, which requires a 
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robust dataset containing vertical profiles of the abundance of Prochlorococcus cells (for validation), 

and the temperature at the sea surface and at the depth of 200 metres (used as input to the equation). 

 
Table S1. Response variables with their respective centre-root (unbiased) mean square error (D), determination 
coefficient (r2), and the number of observations (n) when compared with in-situ data from the PANGAEA dataset 
(3808 observations from 376 stations) (Buitenhuis et al., 2012). Variable definitions are listed in Table 1.  

 
Variable Equation D  

PANGAEA 
r2  

PANGAEA 
n 

Prototal(z) 2 (9) 2.800 × 104 0.83 3808 
Proint 2 (10) 3.914 × 1012 0.75 376 
Prosurf

  3 (3-5) 6.431 × 104 0.13 376 
Prototal(z) 3 (9) 6.471 × 104 0.38 3808 
Proint 3 (10) 7.601 × 1012 0.14 376 

Prochlorococcus cell abundances calculated using:  
2 in-situ Prosurf’ and modelled ZDCM ;  
3 modelled Prosurf and modelled ZDCM. 

 
The two-component model estimates a global Prochlorococcus standing stock of approximately 3.4 

× 1027 cells representing a biomass of 171 Mt of carbon (Table 3), which is equivalent to 65% of the 

global phytoplankton carbon standing stock in the mixed layer (Behrenfeld et al., 2015; Kostadinov et 

al., 2016; Roy et al., 2017), and higher than the carbon contained in all picophytoplankton in the mixed 

layer (140 Mt C), as reported by Roy et al. (2017), highlighting the importance of picophytoplankton 

below the mixed layer in oligotrophic waters. Most cells are accumulated within the subtropical gyres 

and at the Equatorial Convergence Zone (Fig. S5a-c), and reside within the top 200 m of the surface 

ocean (Fig. S5; Fig. S7), with 43% of the cells accumulated on the top 45 metres of the water column, 

and 57% between the depths of 45 and 200 m.  

A marked seasonal cycle in the global cell stock was observed from 2003 to 2014 (Fig. S6a), but no 

significant long-term temporal trend was evident (Figs. S6b). At the ocean’s surface, where the global 

seasonal signal is strong (Fig. S6c), a slight decrease in cell abundance was observed from 2003 to 

2011, followed by an increase from 2012 to 2014 (Fig. S6d). These estimates of global Prochlorococcus 

cell and carbon stocks are 5% lower than that made by Williams and Follows (2011) (3.5 × 1027 cells, 

180 Mt C), and 22% higher than the estimate of Flombaum et al. (2013) (2.9 × 1027 cells). 
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Figure S5. Annual mean (averaged from 2003 to 2014) of a) the predicted Prochlorococcus cell abundance 
integrated in the top 200 m of the water column (Proint

3) using the complete model (equations (1) to (10) of the 
present work); b) predicted maximum Prochlorococcus cell abundance at depth (Promax

3) using equation (7); and 
c) predicted Prochlorococcus cell abundance at surface (Prosurf

3) from equations (3) to (5).  
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Figure S6. Time series of a) global horizontally- and vertically-integrated Prochlorococcus cell stocks and c) 
horizontally-integrated cell abundance near the ocean surface, with corresponding anomalies and trends (b,d). 
Values were computed using monthly-composite input variables from the year 2002 to 2014 (NASA Ocean Color 
2014). Anomalies were calculated by subtracting the monthly climatology (dashed red lines in figures (a) and (c)) 
from the calculated values for each month (black lines in figs. (a) and (c)). Red lines in figures (b) and (d) show 
the moving trend. 
 

Additional Tables 
 

Table S1. AMT Cruises used in this study and corresponding dates. 
cruise dates 

AMT 12 12.05.2003 - 17.06.2003 
AMT 13 08.09.2003 - 13.10.2003 
AMT 14 26.04.2004 - 2.06.2004 
AMT 15 19.09.2004 - 29.10.2004 
AMT 16 19.05.2005 - 29.06.2005 
AMT 17 15.10.2005 - 28.11.2005 
AMT 18 3.10.2008 - 10.11.2008 
AMT 19 13.10.2009 - 1.12.2009 
AMT 20 12.10.2010 - 25.11.2010 
AMT 21 29.09.2011 - 14.11.2011 
AMT 22 10.10.2012 - 24.11.2012 
AMT 23 7.10.2013 - 8.11.2013 
AMT 24 21.09.2014 - 6.11.2014 

 
Table S2. AMT cruises used to generate models to calculate the light attenuation coefficient KdPAR, depth of the 
deep chlorophyll maximum ZDCM, Prochlorococcus cell abundance at surface Prosurf, and at the deep maximum 
Promax. n = number of observations (for parameterization and validation). 
 

variable AMT cruises for 
parameterization 

n 
param. 

AMT cruises for 
validation 

n     
valid. 

KdPAR 20 , 21 , 22 , 23 , 24  3421 12 – 20 5842 
ZDCM 12 , 13 , 17 , 18 , 20 , 22 , 24 4575 14, 15, 16, 19, 21, 23 4147 

Prosurf 12 , 13 , 17 , 18 , 20 , 22 , 24 4575 14, 15, 16, 19, 21, 23 4147 
Promax 12 , 13 , 17 , 18 , 20 , 22 , 24 4575 14, 15, 16, 19, 21, 23 4147 
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Additional Figures 

 
Figure S7. Vertical profiles of observed and estimated Prochlorococcus cell abundances (a,d,g) over depth and 
(b,e,h) over the fractional PAR fPAR, with (c,f,i) corresponding profiles of temperature and chlorophyll from CTD 
casts at a site in (a-c) the North Atlantic Gyre periphery (NAGP), (d-f) inside the North Atlantic Gyre, and (g-i) 
the South Atlantic Gyre. In-situ observations are represented by red dots, predicted profiles of ProI by the orange 
dashed line, predicted profiles of ProII by the blue dashed line, and predicted profiles of total Prochlorococcus 
abundance by the solid black line. Data from AMT 24 (2014). 
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Figure S8. Relationship between Prochlorococcus cell abundance at the sea surface (Prosurf) and: a) sea surface 
temperature (SST), b) remote sensing reflectance at 448 nm (Rrs(488)) and c) surface chlorophyll concentration 
on AMTs 12 to 24. The dashed line indicates the chlorophyll threshold used to delineate the subtropical gyres. 
 
 

 
Figure S9. Difference (residue) between predicted and observed Prochlorococcus cell abundance over depth 
(Prototal(z)) a) using the partial model where in-situ observations of ZDCM, KdPAR, and Prosurf are used as input to 
calculate Prototal(z)

1 (i.e. equations (1), (3-5), and (7) are excluded); and b) using the full model with remote-sensing 
input (Prototal(z)

3 from equations (1) to (10)). 
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