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Abstract: Linear Discriminant Analysis (LDA) is a widely-used technique for dimensionality
reduction, and has been applied in many practical applications, such as hyperspectral image
classification. Traditional LDA assumes that the data obeys the Gaussian distribution. However,
in real-world situations, the high-dimensional data may be with various kinds of distributions,
which restricts the performance of LDA. To reduce this problem, we propose the Discriminant Analysis
with Graph Learning (DAGL) method in this paper. Without any assumption on the data distribution,
the proposed method learns the local data relationship adaptively during the optimization. The main
contributions of this research are threefold: (1) the local data manifold is captured by learning the
data graph adaptively in the subspace; (2) the spatial information within the hyperspectral image
is utilized with a regularization term; and (3) an efficient algorithm is designed to optimize the
proposed problem with proved convergence. Experimental results on hyperspectral image datasets
show that promising performance of the proposed method, and validates its superiority over the
state-of-the-art.

Keywords: hyperspectral image classification; linear discriminant analysis; graph learning;
sparse learning

1. Introduction

Hyperspectral Image (HSI) provides hundreds of spectral bands for each pixel and conveys a lot
of surface information. Hyperspectral image classification aims to distinguish the land-cover types of
each pixel, and the spectral bands are considered as features. However, the great number of bands
significantly increases the computational complexity [1]. Moreover, some bands are highly correlated,
leading to the feature redundancy problem. Consequently, it is critical to perform dimensionality
reduction before classification. The goal of dimensionality reduction is to project the original data into
a low-dimensional subspace while preserving the valuable information.

Dimensionality reduction techniques can be roughly classified into two categories: feature
selection [2,3] and feature extraction [4–9]. Feature selection methods select the most relevant feature
subset from the original feature space, while feature extraction methods exploit the low-dimensional
subspace that contains valuable information. Compared to feature selection, feature extraction is
able to create meaningful features through the transformation of the original ones. Consequently,
plenty of techniques have been put forward on feature extraction [9–13]. Principal Component
Analysis (PCA) [14] and Linear Discriminant Analysis (LDA) [15] are the most popular feature
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extraction methods. PCA learns the feature subspace by maximizing the variance of the feature matrix.
While LDA learns a linear transformation that minimizes the within-class distance and maximizes the
between-class discrepancy. In this research, we mainly focus on LDA because it is able to use the prior
knowledge and shows better performance in real-world applications [11].

Though achieving good performance in many tasks, LDA has four major drawbacks on processing
HSI data. Firstly, LDA suffers from the ill-posed problem [12]. LDA needs to compute the inverse
matrix of the within-class scatter Sw. When the data dimensionality exceeds the number of training
samples, Sw is irreversible. Thus, LDA cannot handle the HSI data with great number of spectral bands.
Secondly, the feature dimensionality reduced by LDA is less than the class number, namely over-reducing
problem [13]. Taking the Kennedy Space Center (KSC) dataset [16] for example, the class number
is thirteen, and the rank of the between-class scatter Sb is at most twelve. Thus, LDA could find
at most twelve projection directions, which may be insufficient for retaining the useful information.
Thirdly, LDA neglects the spatial smoothness. In HSIs, the pixels within a spatial neighborhood
region usually belong to the same class. However, LDA just focuses on the pixels’ distances in the
feature space, and ignores the spatial aspect. Fourthly, LDA assumes that the data samples are
Gaussian-distributed, and share equal covariances in all the classes. However, HSI data seldom
obeys the Gaussian distribution [17], and the local data structure may be inconsistent with the global
structure. Therefore, LDA is unable to find the local classification boundary for the HSI data.

In the past few decades, many variants of the original LDA are proposed, trying to enhance
its performance from different views. Bandos et al. [18] proposed the Regularized LDA (RLDA),
which employs a regularized within-class scatter to tackle the ill-posed problem. Kumar and
Agrawal [19] presented the two-dimensional exponential discriminant analysis for data with small
sample size. The Semi-supervised Discriminant Analysis (SDA) method [20] utilizes the unlabelled
data to extend the training set. Wan et al. [13] and Nie et al. [10] developed the full rank between-class
scatter matrix to mitigate the over-reducing problem. To enforce the spatial consistency, Yuan et al. [21]
and Wang et al. [22] constructed a scatter matrix from a small neighborhood, and took it as a
regularization term. With the above methods, the ill-posed and over-reducing problem are alleviated,
and the spatial correlation between pixels can be preserved. However, the exploration of the local data
structure remains to be an open issue. Some graph-based methods [10,11,23,24] defined the scatter
matrices according to the predefined affinity graph, which may be seriously affected by the noise.
Ly et al. [25] performed graph learning and discriminant analysis separately, so the data graph is also
fixed during the optimization. Recently, Wang et al. [9] and Wu et al. [26] proposed to learn the data
graph in the subspace. However, they neglect the similar samples from different classes, which largely
determine the classification boundary.

In this work, we propose a new method for supervised dimensionality reduction, termed as
Discriminant Analysis with Graph Learning (DAGL). In order to exploit the data structure, the proposed
method learns the data graph adaptively during learning of transformation matrix. Furthermore, to
guarantee the spatial smoothness, the samples within a small region are encouraged to share the same
class label. With the proposed objective function, the proposed method does not have the ill-posed
and over-reducing problem. The contributions made in paper are summarized as follows:

(1) The affinity graph is built according to the samples’ distances in the subspace, so the local data
structure is captured adaptively.

(2) The proposed formulation perceives the spatial correlation within HSI data, and avoids the
ill-posed and over-reducing problem naturally.

(3) An alternative optimization algorithm is developed to solve the proposed problem, and its
convergence is proved experimentally.
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2. Linear Discriminant Analysis Revisited

In this section, the Linear Discriminant Analysis is briefly reviewed as the preliminary. Given an
input data matrix X = [x1, x2, · · · , xn] ∈ Rd×n (d is the data dimensionality and n is the number of
samples), LDA defines the between-class scatter Sb and within-class scatter Sw as

Sb =
c
∑

k=1
nk(µk − µ)(µk − µ)T ,

Sw =
c
∑

k=1
∑

xi∈k
(xi − µk)(xi − µk)

T ,
(1)

where nk is the sample number in class k, c is the class number, µk is the mean of samples in class
k and µ is the mean of all the samples. With the above definitions, LDA aims to learn a linear
transformation W ∈ Rd×m(m� d), which maximizes the between-class difference while minimizing
the within-class separation:

max
W

Tr(
WTSbW
WTSwW

), (2)

where Tr() indicates the trace operator. With the optimal transformation W∗, data sample xi can be
projected to a m-dimensional feature vector W∗Txi.

As shown in Equation (1), LDA assumes that the data distribution is Gaussian and the
between-class divergence can be reflected by the subtraction of the mean. This assumption is unsuitable
for HSI data, and makes LDA insensitive to the local manifold.

3. Discriminant Analysis with Graph Learning

In this section, the Discriminant Analysis with Graph Learning (DAGL) method is introduced,
and an optimization method is proposed to get the optimal solution.

3.1. Graph Learning

In real-world tasks, such as HSI classification, the local manifold may be inconsistent with the
global structure. Thus, it is necessary to take the local data relationship into consideration.

In the past few decades, numerous algorithms are proposed to explore the data structure. Some
of them [27–30] first construct an affinity graph with various kernels (Gaussian kernel, linear kernel,
0–1 weighting), and then perform clustering or classification according to the spectral of the predefined
graph. However, the choice of kernel scales and categories is still an open issue. Therefore, the graph
learning methods [25,31–35] are developed to learn the data graph automatically. One of the most
popular graph learning techniques is Sparse Representation [31,32], which aims to learn a sparse graph
from the original data. Spare Representation assumes that a data sample can be roughly represented
by the linear combination of the others. Defining a coefficient matrix S ∈ Rn×n, the optimal S should
minimize the reconstruction error as follows:

min
S

n

∑
j=1
||xj −∑

i 6=j
xiSij||22

= min
S
||X− XS||2F,

s.t.
n

∑
i=1

Sij = 1, S ≥ 0.

(3)

If xi and xj are similar, Sij will be large. Thus, S can be considered as the affinity graph.
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3.2. Methodology

As shown in Equation (3), Sparse Representation exploits the data relationship in the original
data space, and the data noise may affect the graph quality adversely. To reduce this problem, we
propose to adjust the data graph during the discriminant analysis, which yields the following formula:

min
W,S

c
∑

k=1
∑

xi ,xj∈k
||WT(xi − xj)||22S2

ij

c
∑

k=1
∑

xi∈k,xj /∈k
||WT(xi − xj)||22S2

ij

+ α||X− XS||2F,

s.t.WTW = I,
n

∑
i=1

Sij = 1, S ≥ 0,

(4)

where I ∈ Rm×m is the identity matrix, and α is a parameter. When the linear transformation W
is learned, the first term of problem (4) enforces Sij to be small/large for the within/between-class
samples with large transformed distances. In this way, the data graph is optimized in the subspace.
Similarly, when S is fixed, the transformed distance WT ||xi − xj||22 will be small/large for the
within/between-class samples with large Sij. Consequently, the within-/between-class similar samples
are ensured to be close/far away in the transformed subspace. However, it is difficult to optimize
problem (4) directly because S is involved in both the numerator and denominator of the first term.
Supposing the minimum value of the first term is γ, the optimal W and S should make the value

of
c
∑

k=1
∑

xi ,xj∈k
||WT(xi − xj)||22S2

ij − γ
c
∑

k=1
∑

xi∈k,xj /∈k
||WT(xi − xj)||22S2

ij to be close to 0. Thus, problem (4) is

equivalent to the following formula:

min
W,S

c

∑
k=1

∑
xi ,xj∈k

||WT(xi − xj)||22S2
ij − γ

c

∑
k=1

∑
xi∈k,xj /∈k

||WT(xi − xj)||22S2
ij + α||X− XS||2F,

s.t.WTW = I,
n

∑
i=1

Sij = 1, S ≥ 0,

(5)

where γ can be set as a small value. Denoting a class indicator matrix Z ∈ Rn×n as

Zij =

{
1, if xi and xj are from the same class,
−γ, else

(6)

problem (5) can be simplified into

min
W,S

n

∑
i,j=1
||WT(xi − xj)||22S2

ijZij + α||X− XS||2F,

s.t.WTW = I,
n

∑
i=1

Sij = 1, S ≥ 0.

(7)

In HSI data, the pixels within a small region may be highly correlated and belong to the same
class. The spatial information is essential for an accurate classification. Given a test sample t ∈ Rd×1,
we find its surroundings within a r × r region, and denote them as [t1, t2, · · · , tr2−1]. For these
samples, we encourage them to be close to each other in the desired subspace, which yields the
following problem

min
W

r2−1

∑
i,j=1

WT ||ti − tj||22. (8)



Remote Sens. 2018, 10, 836 5 of 15

Problem (8) can be further reduced to

min
W

Tr(WTS̃tW), (9)

where

S̃t =
r2−1

∑
i,j=1

(ti − tj)(ti − tj)
T . (10)

Finally, by integrating problems (7) and (9) together, we have the objective function of the
proposed DAGL method:

min
W,S

n

∑
i,j=1
||WT(xi − xj)||22S2

ijZij + α||X− XS||2F + βTr(WTS̃tW),

s.t.WTW = I,
n

∑
i=1

Sij = 1, S ≥ 0,

(11)

where α and β are parameters. Since DAGL does not need to calculate the inverse matrix of within-class
scatter, the ill-posed problem is avoided naturally. In addition, the projected dimensionality m can
be any value less than d, so the over-reducing problem does not occur. With the proposed objective
function, the local data relationship is investigated, and the spatial correlation between the pixels is
also captured.

3.3. Optimization Algorithm

Problem (11) involves two variables to be optimized, so we consider to fix one and update another
one iteratively. The data graph S is firstly initialized with an efficient method [33].

When S is fixed, problem (11) becomes

min
W

n

∑
i,j=1
||WT(xi − xj)||22S2

ijZij + βTr(WTS̃tW),

s.t.WTW = I.

(12)

Denoting a scatter matrix S̃z as

S̃z =
n

∑
i,j=1

(xi − xj)(xi − xj)
TS2

ijZij, (13)

problem (12) is converted into
min

WTW=I
Tr[WT(S̃z + βS̃t)W]. (14)

According to the spectral clustering [36], the optimal W for problem (14) is formed by the m
eigenvectors of matrix (S̃z + βS̃t) corresponding to the m smallest eigenvalues.

When W is fixed, by removing the irrelevant terms, problem (11) is transformed into

min
W,S

n

∑
i,j=1
||WT(xi − xj)||22S2

ijZij + α||X− XS||2F,

s.t.
n

∑
i=1

Sij = 1, S ≥ 0.

(15)
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Fixing the diagonal elements in S as 0, the above problem is equivalent to

min
W,S

n

∑
i,j=1
||WT(xi − xj)||22S2

ijZij + α
n

∑
j=1
||xj − Xsj||22,

s.t.
n

∑
i=1

Sij = 1, S ≥ 0,

(16)

where sj ∈ Rn×1 is the j-th column of S. Since the sj is independent between different j, we can solve
the following problem for each j:

min
W,S

n

∑
i=1
||WT(xi − xj)||22S2

ijZij + α||xj − Xsj||22,

s.t.
n

∑
i=1

Sij = 1, S ≥ 0.
(17)

Defining a diagonal matrix U ∈ Rn×n with Uii = ||WT(xi − xj)||22Zij, we further arrive at:

min
sj

sT
j (U + XTX)sj − 2αsT

j XTxj,

s.t.sT
j 1 = 1, sj ≥ 0,

(18)

where 1 ∈ Rn×1 is a column vector with all the elements equal to 1. Because (U + XTX) is a positive
definite matrix, problem (18) can be readily solved by the Augmented Largrange Method (ALM) [37].

In the above optimization procedure, the original problem (11) is decomposed into two
sub-problems. When solving W, a local optimal value is obtained. When solving S, the ALM
algorithm is employed, whose convergence is already proved. Thus, the objective value of problem (11)
decreases monotonically in each iteration, and finally converges to a local optimum. The convergence
behaviour of the proposed algorithm will be shown in Section 4.3. The details of the whole framework
is described in Algorithm 1.

Algorithm 1 Discriminant Analysis with Graph Learning

Input: training set, testing set, parameter K, r, α and β.
1 For each test sample:
2 Construct the training sub-set X by choosing the K nearest neighbors from the training set.
3 Find the surroundings of the test sample within the r× r region, and obtain S̃t.
4 Initialize data graph S.
5 Repeat:
6 Update W by minimizing problem (14).
7 Update S by solving problem (18).
8 Until converge
9 End

Output: optimal transformation matrix W∗ for each test sample.

4. Experiments

In this section, experiments are conducted on one toy and two hyperspectral image datasets.
The convergence behavior and parameter sensitivity of the proposed method are also discussed.
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4.1. Performance on Toy Dataset

A toy dataset is constructed to demonstrate that the proposed Discriminant Analysis with Graph
Learning (DAGL) can captures the local data structure.

Dataset: as visualized in Figure 1a, the toy dataset consists of two-dimensional samples from two
classes. Samples from the first class obey the Gaussian distribution, and those from the second class
are distributed in the two-moon shape. The coordinates of the samples are taken as the features.

Performance: We transform the samples into the one-dimensional subspace with regularized
Linear Discriminant Analysis (RLDA) [18] and the proposed DAGL. In addition, for DAGL, β is set as
0 since spatial distance is equivalent to the feature distance. Figure 1a shows the learned projection
directions. It is manifest that DAGL finds the correct projection direction successfully, while LDA fails.
On this dataset, the local data structure is inconsistent with the global structure, and the mean values
of the samples cannot reflect their real relationship. Thus, RLDA is unable to project the data correctly,
as shown in Figure 1b. On the other hand, the proposed DAGL does not rely on any assumption on
the data distribution, and learns the local data manifold adaptively, so it finds discriminative subspace,
where the samples are linearly separable, as shown in Figure 1c.
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Figure 1. (a) Projection directions found by RLDA and DAGL; (b) one-dimensional data projected by
RLDA; (c) one-dimensional data projected by DAGL. For a better illustration, the projected data is
plotted in the plane coordinate system, and the horizon coordinate of the projected data is set as zero.

4.2. Performance on Hyperspectral Image Datasets

In this part, experiments are conducted on hyperspectral image datasets. The data samples are
projected into the subspace, and then classified by the Support Vector Machine (SVM) classifier. The
parameters of SVM are selected by grid search within {20, 21, · · · , 210} and {20, 21, · · · , 220}. Three
widely-used measurements, overall accuracy (OA), average accuracy (AA) and kappa statics (κ) are
adopted as evaluation criteria.

Datasets: two hyperspetral image datasets are employed in the experiments, including Indian
Pines and KSC [16] datasets.

The Indian Pines dataset was captured by an Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor over the northwestern Indiana, and annotates 10,249 pixels from 16 classes. Each pixel
is with 220 spectral bands. In the experiments, only 200 bands are used because the other 20 bands are
affected by water absorption. The spatial resolution of this dataset is 20 m.

The KSC dataset was captured by an AVIRIS sensor over the Kennedy Space Center (KSC), Florida.
After removing the water absorption and low SNR bands, there remains 176 bands. In addition, 5211
pixels from 13 classes, which represent the various land cover types, are used for classification.

For each dataset, we randomly select 5% samples as the training set and all the remaining
samples as the test set. To alleviate the random error caused by the dataset partition, we repeated the
experiments for five times and report the average results. The sizes of the training and test sets for the
two datasets are exhibited in Tables 1 and 2. Through experiments, we have found that a small portion



Remote Sens. 2018, 10, 836 8 of 15

of the training set is enough for a good performance. When classifying a test sample, we just select its
50 nearest neighbors (in feature space) from the training set, and use them to train the proposed DAGL
model.

Table 1. Number of training and test samples for each class on the Indian Pines dataset.

No. Class Training Test No. Class Training Test

1 Alfalfa 3 51 9 Oats 1 19
2 Corn-notill 72 1362 10 Soybeans-notill 49 914
3 Corn-mintill 40 741 11 Soybeans-mintill 122 2304
4 Corn 12 222 12 Soybeans-clean 31 582
5 Grass-pasture 24 451 13 Wheat 11 201
6 Grass-tree 38 709 14 Woods 65 1229
7 Grass-pasture-mowed 2 24 15 Bldg-grass-tree-drives 17 315
8 Hay-windrowed 25 464 16 Stone-steel-towers 5 90

Table 2. Number of training and test samples for each class on the KSC dataset.

No. Class Training Test No. Class Training Test

1 Scurb 38 719 8 Graminoid-marsh 22 405
2 Willow-swamp 13 230 9 Spartina-marsh 26 494
3 Cabbage-palm-hammock 13 243 10 Cattail-marsh 21 383
4 Cabbage-palm/oak-hammock 13 239 11 Salt-marsh 21 398
5 Slash-pine 9 152 12 Mud-flats 26 477
6 Oak/broadleaf-hammock 12 217 13 Water 47 880
7 Hardwood-swamp 6 99

Competitors: for a quantitative comparison, six dimensionality reduction algorithms are taken
as competitors, including regularized LDA (RLDA) [18], Semi-supervised Discriminant Analysis
(SDA) [20], Block Collaborative Graph-based Discriminant Analysis (BCGDA) [25], Spectral-Spatial
LDA (SSLDA) [21], and Locality Adaptive Discriminant Analysis (LADA) [22]. To demonstrate the
usefulness of dimensionality reduction, the classification result with all features is taken as the baseline,
known as RAW.

The parameter of RLDA is searched in the range of {10−3, 10−2, · · · , 1}. For SDA, the parameter
is searched in {0.1, 0.5, 2.5, 12.5}. The parameters of BCGDA, SSLDA and LADA are selected
in {10−3, 10−2, · · · , 103}. For DAGL, α and β are searched in {10−3, 10−2, · · · , 103} and
{10−4, 10−2, · · · , 104} respectively, and the size of the neighborhood r is set as 5 empirically.

Performance: each method is performed with different reduced dimensionality. The reduced
dimensionality of BCGDA, LADA and DAGL varies within the range of {1, 2, · · · , 20}. Because LDA,
RLDA, SDA and SSLDA have over-reducing problems, the dimensionality varies within {1, 2, · · · , 15}
and {1, 2, · · · , 12} on Indian Pines and KSC, respectively.

The curves of OA versus the reduced dimensionality on different datasets are shown in Figure 2.
The proposed DAGL achieves the highest OA constantly. Especially, on the Indian Pines dataset,
DAGL exceeds the second best one to a large extent when the reduced dimensionality is less than
4. In Figure 2, the performance becomes stable when the dimensionality increases to a certain value.
This phenomenon implies that a low-dimensional subspace is sufficient for sustaining the valuable
information. Compared with RAW, the performance with projected data is better in most cases,
which validates that dimensionality reduction does improve the classification accuracy.
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Figure 2. Overall Accuracy (OA) versus the reduced dimensionality of different methods on (a) Indian
Pines and (b) KSC datasets.

The quantitative results of the methods are given in Tables 3 and 4. Each method uses its optimal
reduced dimensionality. It can be seen that DAGL outperforms all the competitors in terms of OA,
AA and κ. RLDA neglects the local data relationship, so it cannot captures the manifold structure.
SDA and SSLDA preserve the local data relationship with a predefined data graph. However, their
performance may be adversely affected by the graph quality. BCGDA learns the affinity graph with
the original data by sparse representation. Because the data graph is fixed during the discriminant
analysis, the data relationship in the desired subspace cannot be exploited. LADA does not have
this problem since it integrates graph learning and discriminant analysis jointly. However, it just
learns the within-class correlation and fails to discover the similar samples from different classes.
The proposed DAGL investigates the local data relationship adaptively, and pushes the between-class
similar samples apart. Therefore, it achieves the best performance on all occasions.

Furthermore, the classification maps of different methods on Indian Pines are also visualized
in Figure 3. SSLDA, LADA and DAGL, which enforce the spatial smoothness within a small region,
show better visualization quality than the others. Thus, the utilization of spatial information improves
the classification performance. It is worth mentioning that the methods with spatial constraints are
time-consuming, as shown in Tables 3 and 4, since they need to find the surroundings and train
the model for each sample. Compared to SSLDA and LADA, DAGL is more efficient because the
optimization method converges fast.

Similar to the experiments on toy dataset, we also visualize the two-dimensional subspace
learned from the Indian Pines dataset. Taking the 5% samples from the Corn-notill, Grass-tree and
Soybeans-notill classes, we project the data into two-dimensional subspace with SDA, SSLDA, LADA
and the proposed DAGL. In this experiment, the spatial-smoothness terms of SSLDA, LADA and
DAGL are removed so that we do not need to train the models for each sample separately. Figure 4
shows the projected data, the subspace found by DAGL separates the samples from different classes
far away. This result explains the good performance of DAGL on the Indian Pines dataset when the
reduced dimensionality is low.
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Table 3. Performance of different methods on Indian Pines image (with the best reduced dimensionality
in brackets). The best results are in bold face.

Class RAW(200) RLDA(14) SDA(13) BCDGA(10) SSLDA(14) LADA(9) DAGL(9)

1 0.5678 0.6471 0.5686 0.5963 0.5490 0.7059 0.7182
2 0.7089 0.7880 0.7819 0.7010 0.8047 0.8333 0.8624
3 0.6699 0.7760 0.6802 0.7092 0.6802 0.7395 0.8062
4 0.4240 0.5315 0.4550 0.5460 0.6441 0.6937 0.8668
5 0.8514 0.8847 0.9135 0.8947 0.9246 0.9290 0.9379
6 0.9163 0.9506 0.9661 0.9463 0.9803 0.9746 0.9790
7 0.5017 0.6250 0.4583 0.5767 0.4167 0.5417 0.5616
8 0.9384 0.9397 0.9784 0.9340 0.9921 0.9978 0.9987
9 0.2337 0.3158 0.3682 0.3258 0.2632 0.3684 0.2778

10 0.8003 0.8077 0.7713 0.7682 0.7954 0.8884 0.9163
11 0.8003 0.8720 0.8342 0.8578 0.9353 0.9280 0.9722
12 0.7246 0.8176 0.7984 0.8024 0.8608 0.9038 0.9224
13 0.9451 0.9712 0.9795 0.9300 0.9453 0.9403 0.9917
14 0.9231 0.987 0.9756 0.9813 0.987 0.9837 0.9894
15 0.4357 0.6222 0.4921 0.5556 0.7746 0.8889 0.7111
16 0.9056 0.8444 0.9667 0.9256 0.8222 0.7667 0.6889

OA 0.7785 0.8458 0.8265 0.8239 0.8683 0.8978 0.9153
AA 0.7092 0.7738 0.7493 0.7532 0.7735 0.8177 0.8250

kappa 0.7538 0.8203 0.7999 0.7933 0.8663 0.8830 0.9088
training time 0 s 0.10 s 0.25 s 0.72 s 1105.23 s 3703.62 s 553.08 s

Table 4. Performance of different methods on the KSC image (with the best reduced dimensionality in
brackets). The best results are in bold face.

Class RAW(200) RLDA(14) SDA(13) BCDGA(10) SSLDA(14) LADA(9) DAGL(9)

1 0.9316 0.9179 0.9082 0.9224 0.9972 0.9861 0.9986
2 0.8204 0.8043 0.8913 0.8187 0.9130 0.8870 0.8739
3 0.8995 0.7860 0.8971 0.7466 0.9712 0.9424 0.9918
4 0.7933 0.7448 0.7573 0.5037 0.7397 0.7448 0.9833
5 0.4768 0.5855 0.6447 0.6153 0.7303 0.7237 0.7239
6 0.5753 0.8065 0.7558 0.5814 0.9078 0.8894 0.8295
7 0.7476 0.6364 0.6768 0.6363 0.9192 0.8586 0.9293
8 0.8542 0.8963 0.8593 0.8520 0.8148 0.8148 0.8347
9 0.9515 0.9737 0.9757 0.9047 0.9774 0.9974 0.9981

10 0.9143 0.9556 0.9269 0.9291 0.9869 0.9661 0.9765
11 0.9397 0.9749 0.9347 0.9798 0.9917 0.9935 0.9975
12 0.8412 0.8050 0.8616 0.7857 0.7894 0.8470 0.8423
13 0.9707 0.9773 0.9886 0.9986 0.8966 0.9989 0.9994

OA 0.8780 0.8880 0.8963 0.8564 0.9094 0.9236 0.9437
AA 0.8243 0.8357 0.8522 0.7903 0.8950 0.8961 0.9214

kappa 0.8651 0.8754 0.8845 0.8291 0.9027 0.9148 0.9354
training time 0 0.06 s 0.17 s 0.23 s 571.44 s 1121.28 s 216.86 s
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(a) Ground truth (b) Training samples (c) Test samples (d) RAW (e) RLDA

(f) SDA (g) BCGDA (h) SSLDA (i) LADA (j) DAGL

Figure 3. Classification maps for the Indian Pines dataset with different dimensionality reduction methods.
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Figure 4. Two-dimensional subspace found by (a) SDA, (b) SSLDA, (c) LADA and (d) DAGL on Indian
Pines dataset.
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4.3. Convergence and Parameter Sensitivity

The convergence behavior of the proposed optimization algorithm is studied experimentally.
We randomly choose two test samples from the Indian Pines and KSC datasets, and plot the changes
of the objective values during the optimization. From Figure 5, we can see that the objective values of
problem (11) converge within five iterations, which verifies that the optimization algorithm is effective
and efficient.

In addition, the parameter sensitivity of DAGL is also discussed. The objective function (11)
contains two parameters, i.e., α and β. α affects the learning of the data graph, while β controls
the weight of the spatial smoothness term. With varying α and β, the variance of OA is shown in
Figure 6. We can see that DAGL is robust to α and β in a wide range. When α and β become very
small, the performance drops because the graph quality decreases and the spatial smoothness cannot
be guaranteed.
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Figure 5. Converge curves of the proposed optimization algorithm on (a) Indian Pines and
(b) KSC datasets.
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Figure 6. OA with varying α and β on (a) Indian Pines and (b) KSC datasets.
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5. Conclusions

In this paper, we propose a new supervised dimensionality reduction method, known as
Discriminant Analysis with Graph Learning (DAGL). DAGL learns the data graph automatically
during the discriminant analysis. It pulls the within-class similar samples together while pushing the
between-class similar samples far away. Compared with LDA and its graph-based variants, DAGL is
able to learn the data relationship within the desired subspace, which contains more valuable features
and less noise. In addition, DAGL ensures the smoothness within the neighborhood, so it can discover
the spatial correlation within hyperspectral images. Through the experiments on Indian Pines and
KSC datasets, DAGL provides better classification results than the state-of-the-art competitors.

In future work, we would like to generalize the proposed method to the kernel version, and learn
the nonlinear transformation of HSI data. It is also desirable to improve the optimization algorithm to
increase the computation efficiency.
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