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Abstract: Satellite-derived estimates of aerosol optical depth (AOD) are key predictors in particulate
air pollution models. The multi-step retrieval algorithms that estimate AOD also produce quality
control variables but these have not been systematically used to address the measurement
error in AOD. We compare three machine-learning methods: random forests, gradient boosting,
and extreme gradient boosting (XGBoost) to characterize and correct measurement error in the
Multi-Angle Implementation of Atmospheric Correction (MAIAC) 1 × 1 km AOD product for
Aqua and Terra satellites across the Northeastern/Mid-Atlantic USA versus collocated measures
from 79 ground-based AERONET stations over 14 years. Models included 52 quality control, land
use, meteorology, and spatially-derived features. Variable importance measures suggest relative
azimuth, AOD uncertainty, and the AOD difference in 30–210 km moving windows are among
the most important features for predicting measurement error. XGBoost outperformed the other
machine-learning approaches, decreasing the root mean squared error in withheld testing data by
43% and 44% for Aqua and Terra. After correction using XGBoost, the correlation of collocated AOD
and daily PM2.5 monitors across the region increased by 10 and 9 percentage points for Aqua and
Terra. We demonstrate how machine learning with quality control and spatial features substantially
improves satellite-derived AOD products for air pollution modeling.

Keywords: aerosol optical depth (AOD); MAIAC; gradient boosting; AERONET; machine learning;
PM2.5; MODIS; air pollution; measurement error

1. Introduction

A useful public health application of satellite remote sensing is to augment sparse monitoring
networks and cover large time and space domains when modeling particulate matter for epidemiologic
health studies [1]. Recent refinements in remote sensing algorithms have resulted in higher resolution
products such as the 1 × 1 km resolution Multi-Angle Implementation of Atmospheric Correction
(MAIAC) retrieval algorithm estimating the Aerosol Optical Depth (AOD) as a measure of the density
of light scattering particles in the atmospheric column [2,3]. The MAIAC product, derived for the
Moderate Resolution Imaging Spectroradiometer (MODIS) instruments, like earlier lower spatial
resolution AOD products (e.g., 10 km × 10 km Deep Blue and Dark Target retrieval algorithms), is a
key predictor in leading statistical models estimating PM2.5 at the ground level [4–6].
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Because of the challenge of estimating valid AOD measures over heterogeneous landscapes
with varying remote sensing characteristics (e.g., view geometry at acquisition as measured by the
relative azimuth), the resulting products can contain patterns that appear anomalous in visualizations,
which suggests room for improvement. While previous work has compared the agreement of MAIAC
with earlier MODIS 10 × 10 km AOD products and ground monitoring data in different regions and
seasons by stratifying the dataset [7], little work has been done to comprehensively understand and
correct for measurement error in the MAIAC AOD product.

Quantifying and correcting measurement error in the MAIAC AOD product requires a comparison
with a reliable validation dataset. The AErosol RObotic NETwork (AERONET) is a standardized
ground-based remote sensing network for measuring aerosol optical depth with a cloud-screened and
quality assured data record that is frequently used as a validation for satellite-based AOD products [8].

In this application, we propose and compare three related ensemble machine-learning modeling
approaches with a wide range of predictors related to data quality, context, and relevant spatial
characteristics. These predictors are used to partially correct measurement error in satellite AOD
versus data from AERONET stations across the region which are used as a validation. We demonstrate
that this approach improves the MAIAC AOD product over the Northeastern USA. The resulting
corrected AOD has a substantially improved correlation with ground-level PM2.5 and thus will be a
key predictor in the next generation of satellite-hybrid PM2.5 air pollution models.

2. Materials and Methods

The study region was the Northeast and Mid-Atlantic USA including 13 states from Maine to
Virginia. This region includes 629,729 centroids from a fixed grid that is approximately 1 × 1 km in
resolution as produced for the MAIAC algorithm (Figure 1). Satellite-derived AOD products from the
MAIAC algorithm for both MODIS instruments on the Terra and Aqua satellites were obtained from
NASA (version downloaded 16 October 2016). These data include AOD estimates as well as auxiliary
variables such as uncertainty estimates, relative azimuth, and additional QC flags such as cloud
adjacency masks (full variable list in results). The AOD data were collected from 24 February 2000 to
6 August 2016 and from 4 July 2002 to 31 August 2016 for Terra and Aqua, respectively. The MAIAC
dataset is organized by orbit, with the number of acquisitions per satellite per day ranging from 1 to 3;
the percentage of days with 2 acquisitions was equal to 78.1% for Terra (with local average overpass
times of 9:52 a.m. and 11:31 a.m.) and 82.8% for Aqua (with local average overpass times of 11:51 a.m.
and 1:29 p.m.). For those centroids with more than one value of AOD per day (coming from different
acquisition times on the same day), making up almost 10% of the data; we kept the record with the
lowest AOD uncertainty estimate from the MAIAC dataset.

All global Aerosol Optical Thickness (AOT—a synonymous term for AOD used by AERONET)
measurements from AERONET sun photometers were downloaded from https://aeronet.gsfc.nasa.gov/
(accessed 29 March 2017; Level 2.0, cloud-screened and quality-assured data; Version 2.0 Direct Sun
Algorithm) and subset to the 79 AERONET stations in the study region (Maine to Virginia) with
available data between 2000 and 2015 (Figure 1). AERONET measures were joined to the Aqua or
Terra derived MAIAC AOD, when available, from the fixed grid cell centroid closest to the AERONET
location, using the AERONET measure closest in time to the satellite overpass (within 60 min).

https://aeronet.gsfc.nasa.gov/
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Figure 1. Study region in Northeastern and Mid-Atlantic USA with 79 unique AERONET stations
showing the number of years of coverage for use in measurement error modeling.

Our outcome of interest was the difference between AOD and AOT (calculated as AOD-AOT);
a residual that approximates the satellite product measurement error. We selected this as our parameter
for three reasons: (1) the difference has an easier interpretation because our goal in modeling
measurement error was to minimize the difference from the reference AOT; (2) the difference had
an approximately normal distribution; and (3) because some ensemble modeling methods resample
subsets of covariates, estimating AOT without first subtracting from AOD would lead to regression
trees within the ensemble which do not include the AOD as a predictor.

Our modeling approach to estimate measurement error used a set of 52 total predictor variables.
These included quality control features that are part of the MAIAC dataset (e.g., relative azimuth
at acquisition and the MAIAC algorithm’s own AOD uncertainty estimate), GIS-derived land use
and meteorologic covariates (e.g., nearest air temperature from the NOAA reanalysis and proportion
of forest within 1 km from the National Land Cover Dataset [9]), and spatially derived covariates
engineered to capture characteristics of the data that were observed in visualizations and assigned
to each centroid (e.g., number of non-missing AOD centroids within moving windows, difference of
AOD from the mean within moving windows of varying edge lengths, and clump size of the number
of contiguous non-missing AOD measures within a day). A detailed definition of the model equation
including the 52 predictor variables, data sources, and their derivation are included in Appendix A.

In this analysis we trained ensemble machine-learning methods for regression that operate by
constructing a multitude of decision trees in a training set and using them to make predictions on
a withheld test set. Specifically, we fit three machine-learning algorithms: Random Forest (RF) and
two implementations of Gradient Boosting (GB) models. RF uses an ensemble of unpruned decision
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trees, each grown using a bootstrap sample of the training data, and randomly selected subsets of
predictor variables as candidates for splitting tree nodes. The RF prediction for a new observation is
the average of the output over all trees. Unlike RF that trains each tree independently, GB grows each
tree on the residuals of the previous tree. This means that at each particular iteration, a new weak,
base-learner model is trained with respect to the error of the whole ensemble learnt so far. Prediction
is accomplished by weighting the ensemble outputs of all the regression trees.

We implemented RF using the randomForest R package [10]. Hyper-parameters were set to use
10,000 trees (ntrees) and to subsample 1/3 of the covariates in each tree (mtry). GB was implemented
using two different R functions: gbm (Generalized Boosted regression Models) and xgboost (eXtreme
Gradient Boosting) from the gbm and xgboost packages, respectively [11,12]. Although both GBM and
XGBoost follow the principle of gradient boosting, XGBoost has some additional changes to improve
predictive performance that makes it more of a hybrid of the GB and RF approaches [13]. Specifically,
XGBoost uses a more regularized model formalization to control for overfitting, and can also use a
random subset of predictor variables at each node like in RF. Hyper-parameters for the GBM were
set to use 10,000 trees (n.trees), allow up to 6 splits per tree (interaction.depth) and a learning rate of
0.002 (shrinkage), all selected based on previous tuning experience. For XGBoost, we also applied
5-fold cross-validation to the training set to tune the hyper-parameters of the model. Root Mean
Square Error (RMSE) was used to select the optimal model hyper-parameters using the smallest mean
value across the 5 folds. The final hyper-parameters for XGBoost for Aqua were 10,000 trees (ntree),
allowing up to 5 splits per tree (max_depth), a learning rate of 0.01 (eta), using all features in each tree
(colsample_bytree), and using half of the data in each tree (subsample). For Terra the hyper-parameters
were the same except for allowing up to 6 splits per tree (max_depth) and subsampling only 1/3 of
the covariates in each tree (colsample_bytree). In order to train and validate the performance of these
three methods, we split the two datasets (for Terra and Aqua satellites) into training and testing sets.
Because the relationship between AOD and ground conditions varies daily [4], the testing sets were
created by withholding all observations from randomly selected days across the study period such
that the number of withheld testing observations were 15% of the entire dataset. Root Mean Square
Prediction Error (RMSPE) of the testing set was used to assess and compare the performance of the
three approaches for each satellite.

While predictors can have complex relationships in ensemble models, their contribution can be
summarized with variable importance measures to quantify and partial dependence plots to visualize
the way that predictions (in our case, measurement error) depends on covariates. Variable importance
for the XGBoost model was quantified using the xgb.importance function from the xgboost R package
that quantifies how splitting on each feature improves the purity of each node, which in regression
tree models is the maximum likelihood estimator of the variance within the node. R functions for
permutation testing were used to assess variable importance for both RF and GBM approaches.
Both these methods randomly permute each predictor one variable at a time and compute the
associated reduction in predictive performance: the higher the reduction, the more important the
variable is in predicting the outcome. The only difference in these two functions is that, while GBM
permutes the entire training dataset, RF uses only the out-of-bag observations. We also used the
R function max.subtree from the randomForestSRC package [14] to compute the first order depth of
each variable using RF models—this represents the average number of splits within a tree between
the root node and the first split on that variable. The smaller the first order depth the greater the
impact of that variable on prediction. For visualization, partial dependency plots show the effect
of a predictor variable on the target outcome, after accounting for the average effects of the other
predictors—partialling them out.

We also tried fitting XGBoost using just the top 10 or top 20 most important predictors from the
XGBoost model to assess the loss of information when using a more parsimonious feature set. In both
cases, 5-fold cross-validation was again used on the training set to tune the parameters of the more
parsimonious models before assessment on the testing set.
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We implemented two methods to estimate the predictive uncertainty in our measurement error
model: bootstrapping the ensemble learner (resampling with replacement and refitting the entire
model multiple times), and running the Infinitesimal Jackknife (IJ) which has been developed for
Random Forest models [15,16].

In previous work, we have demonstrated that AOD is the best single predictor for models
to estimate PM2.5 at the ground level, although the complex relationship is improved with daily
calibrations [4,17,18]. To demonstrate that the measurement error correction provided by our approach
will help with the subsequent modeling of ground-level air pollution, we also compared the raw
and corrected values of AOD with PM2.5 measurements from all available monitors within the study
region based on the EPA and IMPROVE monitoring networks [4]. The AOD and PM2.5 were compared
with the Pearson correlation coefficient using non-missing AOD from the closest grid centroid (within
1 km of the monitoring station) and the daily average PM2.5 concentrations. We remove one monitor
(420030064, near Pittsburgh PA) due to aberrant values likely related to the proximity of large industrial
facilities, including the Clairton Coke Works. This station is located in the Monongahela river valley
across from and <3 km to the Clairton Coke Works, the largest coke manufacturing plant baking coal
for steelmaking in the United States.

The resulting dataset included 362 and 381 PM2.5 monitors with 105,798 and 131,788 daily
observations with concurrent AOD for Aqua and Terra, respectively. The Pearson correlation is
calculated using both the predictions from the measurement error model and using multiple
overimputed versions after bootstrapping to account for the predictive uncertainty in our measurement
error model [19]. An improvement in the correlation between AOD values and ground-level PM2.5

supports that the corrected AOD would improve future PM2.5 modeling efforts.
All analyses were conducted in R version 3.4.1.

3. Results

The measurement error correction datasets with collocated AERONET AOT and MAIAC AOD
used in this analysis included 8531 and 10,278 observations at the AERONET sites for Aqua and
Terra, respectively. Table 1 shows that the distribution of AOD from Aqua in this measurement
error correction dataset was similar to overall AOD in the region (shown for comparison are selected
quantiles from all nearly 50 million non-missing AOD observations for Aqua from 2008 for the full
study region).

Table 1. Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol optical depth
(AOD) from Aqua in the measurement error dataset (collocated with AERONET) and across the region
(for 2008).

AOD N Mean Range 5th 25th 50th 75th 95th 99th

All AOD measures from 2008 49,970,022 0.134 0.000; 4.000 0.019 0.041 0.096 0.187 0.389 0.540

Collocated measurement error dataset 8531 0.148 0.019; 1.736 0.021 0.053 0.105 0.200 0.432 0.583

The Pearson correlation between AOD and AOT in the entire measurement error dataset was 0.86
and 0.89 for Aqua and Terra, respectively. The difference between AOD and AOT (AOD-AOT) had
mean and range equal to −0.02 (−0.91, 0.49) and −0.01 (−0.61, 0.66) for Aqua and Terra, respectively
(Figure 2).
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Figure 2. MAIAC AOD versus AOD-AERONET AOT (aerosol optical thickness) in collocated
observations in the Aqua measurement error dataset (n = 8531). Since both AOD and AOT are
strictly positive, the empty upper left of the Bland-Altman plot is expected. Marginal histograms show
AOD is skewed but AOD-AOT, an estimate of measurement error, is more normally distributed.

As described in Materials and Methods, we used three different ensemble learning methods to
predict AOT starting from AOD. All models were trained on the training set and their performances
were validated by computing the RMSPE on the testing set. Table 2 shows the values of the RMSPE
and R2 for models predicting the parameter AOD-AOT in the testing sets for both Aqua and Terra,
although the R2 is not directly comparable between the Aqua and Terra datasets because they were
built on different datasets and thus are not nested models. For all models, the value of the RMSPE
was much lower (up to ~43%, with the best performance from XGBoost) than the root mean square
difference between AOD and AOT (0.074 and 0.079 for Aqua and Terra, respectively).

Table 2. Performance predicting AOD-AOT on a test set.

Model
Aqua (n = 1251) Terra (n = 1478)

RMSPE R2 RMSPE R2

Raw data (AOD vs. AOT) 1 0.074 N/A 0.079 N/A
RF 0.047 0.59 0.049 0.62

GBM 0.044 0.64 0.047 0.65
XGBoost 0.042 0.67 0.044 0.68

1 Raw data reports the comparable root mean square difference between raw AOD and AOT.

Scatterplots showing the agreement of the XGBoost-corrected data versus the original MAIAC
values on the testing set are shown in Figure S1. There is still a strong agreement of the raw AOD
and the corrected AOD after applying the measurement error prediction, suggesting that the changes
are not drastic with the majority of predictions remaining very similar to their original AOD values.
When the XGBoost predicted measurement error model was applied to correct all nearly 50 million
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non-missing AOD observations for 2008 on Aqua in the full study region, the median absolute
difference between the original and corrected AOD was 0.038 and only two percent of observations
had an absolute change greater than the interquartile range of the AOD dataset (0.146).

As a visual example of the impact of applying this approach to MAIAC AOD, we generated
maps for 16 January 2008 (a testing set day not used in model training) showing the non-missing
AOD from the southwestern portion of the region before and after applying the XGBoost model
correction (Figure 3). The correction pulls down the right tail of the AOD distribution leading to
greater homogeneity in this scene and particularly attenuates some of the higher values seen in small
clusters on the left or close to edges that are likely near clouds.
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Figure 3. Maps of MAIAC AOD for 2008-01-16 (a) before; and (b) after correction with our XGBoost
measurement error prediction model. The inset shows the density of AOD within this scene.

Although all three ensemble approaches use different measures of variable importance, there
was generally high agreement in the rank of the variable importance (Figure S2), with several features
showing up among the most important in all three modeling approaches for both Aqua and Terra:
relative azimuth, AOT uncertainty, long term time trend, windowed differences of AOD over smaller
to intermediate scales of 30 km to 210 km, and column water vapor (Figure 4). In general, there was
good agreement in the rank of the most and least important variables including the lowest importance
for MAIAC cloud mask, which arises infrequently in the data collocated with AERONET measures,
and the MAIAC aerosol model flag for dust-affected values. Both of these two variables have little
variation in the measurement error dataset over this particular study region. There was less consistency
in variable importance rank between modeling approaches for the majority of variables assigned a
more intermediate importance.



Remote Sens. 2018, 10, 803 8 of 17

Cloud mask
Aerosol model

Two month seasons
Proportion of water bodies

Distance from missing AOD
# non−missing AOD in 3x3

AOD mean in 410x410
Adjacency mask

AOD mean in 310x310
Specific humidity

AOD mean in 210x210
# non−missing AOD in 210x210

Proportion of forest
Elevation

AOD mean in ecoregion
AOD daily percentile in political region

AOD mean in political region
SD non−missing AOD in 3x3

# non−missing AOD in 310x310
AOD − AOD mean in 410x410

AOD mean in 50x50
AOD mean in 510x510

# non−missing AOD in 410x410
Precipitable water

# non−missing AOD in 110x110
AOD − AOD mean in ecoregion
AOD − AOD mean in 510x510

Visibility
AOD mean in 110x110

AOD mean in 30x30
AOD − AOD mean in political region

AOD daily percentile in ecoregion
AOD clump mean

AOD clump size
V−wind

Accumulated total evaporation
# non−missing AOD in 510x510

AOD − AOD mean in 310x310
U−wind

Planetary boundary layer height
Surface pressure

Air temperature
# non−missing AOD in 50x50

AOD−AOD mean in 30x30
# non−missing AOD in 30x30

Column water vapor
AOD − AOD mean in 50x50

AOD − AOD mean in 110x110
Time trend

AOT uncertainty
AOD − AOD mean in 210x210

Relative azimuth angle

0.000 0.025 0.050 0.075 0.100 0.125

Fractional contribution to the improvement of the model accuracy

Aqua
Terra

Figure 4. Variable importance predicting measurement error by node impurity from XGBoost for the
Aqua and Terra dataset with intervals showing the range of variable importance measures across ten
bootstrap-resampling fits of the training dataset.

Partial dependence plots were used to visualize the relation of the most important features with
the measurement error parameter (Figure 5 and Figure S3–S5).
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Figure 5. Partial dependence plot of measurement error as a function of relative azimuth for the Aqua
training set (n = 7280) from the GBM approach. The marginal histogram shows the bimodal distribution
of relative azimuth for these Aqua retrievals, with larger errors (further from zero) seen for the second
mode with angle >120◦ in backscattering conditions.

To assess whether a simpler model (using fewer features) could achieve similar prediction
performance, we also re-fit XGBoost on the Aqua dataset using just the top 10 or top 20 most important
predictors from the full XGBoost model. The RMSPE of the testing set was equal to 0.050 (19% worse
than the full model) and 0.047 (12% worse than the full model) for models fit with only the top 10 and
20 covariates, respectively.

To reflect predictive uncertainty in our machine-learning models, in addition to predicting
corrected AOD, we generated multiple imputation datasets for corrected AOD. This was done both by
bootstrapping the original training dataset (RF and XGBoost) or applying the infinitesimal jackknife
(IJ) method to estimate variances for each prediction from the RF model only. In all three methods, the
variance of the predictions was larger when the absolute difference between AOD and AOT was larger
(data not shown).

Because AOD is used as an important predictor in pollution models that estimate ground-level
PM2.5, the raw and corrected AOD were correlated with PM2.5 across a network of ground monitoring
stations independent of the AERONET AOT. The Pearson correlation between PM2.5 and raw MAIAC
AOD was equal to 0.47 and 0.56 for Aqua and Terra, respectively. After correcting the MAIAC
AOD using our XGBoost model, the correlations went up to 0.57 and 0.65 for Aqua and Terra,
respectively (Table 3). Using Rubin’s rule to combine multiple imputations after a z-transformation [20],
the resulting point estimates were the same, with the mean of the correlation between PM2.5 and 5
imputed versions of the XGBoost predicted values of AOT equal to 0.57 (sd = 0.003) and 0.65 (sd = 0.002)
for Aqua and Terra, respectively.
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Table 3. Correlations between PM2.5 and the predicted value of AOT.

Model Aqua (n = 105,798) Terra (n = 131,788)

Raw MAIAC data 0.473 0.557
RF adjusted 0.548 0.633

GBM adjusted 0.567 0.645
XGBoost adjusted 0.572 0.649

4. Discussion

There is a growing record of remote sensing products from an increasing number of sensors,
including forthcoming high-resolution sub-hourly coverage from geostationary platforms such as
Himawari 8 and GOES-16 [21,22]. The volume of such data makes it possible to construct complex
exposure models covering large regions, but also makes the cleaning of these data a challenge with an
overwhelming volume of data to visualize and an increasing number of quality metrics to integrate.

We present a machine-learning approach to address measurement error in MAIAC retrievals,
a leading AOD product, that makes data cleaning scalable, even when addressing large regions and
many years of data. An advantage of adding a measurement error model is that a corrected value can
be output as a prediction without reducing the size of the dataset, as is often done when excluding data
points with problematic quality control parameters. Thus, this approach can be applied in a two-stage
modeling framework where the corrected AOD value is available for further applications such as air
pollution modeling or emissions inventories. Using a measurement error framework to correct AOD
in this way is novel and differs from previous applications in which machine-learning methods have
used uncorrected AOD products as predictors in estimating ground-level air pollutants without first
addressing measurement error in AOD [23,24].

When predictions of AOD-AOT are evaluated on a withheld testing set, all three ensemble
learning approaches improve on the MAIAC AOD with lower RMSPE for both Aqua and Terra. In both
datasets, as expected, the XGBoost model which includes important features of both the Random
Forest (random feature subsampling) and the gradient boosting approach outperforms the GBM,
which outperforms the RF, in terms of lower RMSPE and higher R2. The additional performance of the
gradient boosting approaches GBM and XGBoost over the simpler RF approach requires additional
model hyperparameters related to the learning rate and feature subsampling (XGBoost only), but our
model tuning suggests that the improved performance of the XGBoost may be due to those additional
model characteristics. Comparing raw AOD and predicted AOT with the observed AOT in the testing
set, the mode of the AOT is slightly higher and the density is more peaked, although both datasets
have a long right tail. The prediction model does not drastically shrink high values as we might have
expected if they were due to large systematic errors, such as from cloud contamination as opposed to
the long-range transport of smoke from biomass burning, although the training dataset included few
truly high AOD values (>1).

While flexible ensemble learning methods are quite performant and lead to excellent predictive
performance in data science challenges [25,26], they are sometimes criticized as being less interpretable
than a more parsimonious or parametric approach. Variable importance metrics and partial dependence
plots can summarize essential relationships and improve the understanding of complex predictive
models. For example, the Relative Azimuth (RA) was shown in all three modeling strategies to be one
of the most important predictor variables in the variable importance metrics and the partial dependence
plot demonstrates that the larger contribution to measurement error occurs when the RA has an angle
of >120◦ in backscattering conditions (which is almost half of the data). This data-driven result is
consistent with our expectation of higher error in estimating aerosols in backscattering conditions
(when the satellite is oriented between the sun and the earth’s surface) because of a lack of shadows and
greater surface brightness that are challenging for aerosol retrieval algorithms [3]. Thus these strategies
help to understand how our empirical/statistical findings fit with the physical model underlying the
MAIAC retrieval approach and may lead to future contributions in the MAIAC algorithm.
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There are multiple methods to estimate variable importance in ensemble learning models.
While there was great agreement in the most and least important variables across the three methods
we employed, there was some heterogeneity in the rank of the importance of the intermediate
variables across methods and with different variable importance metrics. For example, the permutation
importance in the RF model, which is known to have difficulty with highly correlated predictors [27],
quantified the many different windowed variables (from a highly correlated set of predictors) as much
less important than the RF variable importance based on minimal depth, which was in turn highly
correlated with the rank importance of the XGBoost model variable importance from node purity
(Figure S2).

A major motivation in the feature engineering was to capture aspects of the data that might explain
aberrant values seen when plotting individual satellite overpass scenes. For example, the variable
“distance to edge”, which measures the distance of a non-missing pixel to the nearest missing pixel,
was developed to capture edge effects that might be related to incomplete cloud masking. However,
this feature was not as important as variables derived from the anomaly of AOD from moving windows
as well as fixed geographic regions, taking advantage of the spatial autocorrelation and generally
high homogeneity of AOD measures within a given scene in the Northeastern and Mid-Atlantic
USA. Another counter-intuitive finding is that the partial dependence plot for the long-term time
trend (operationalized as integer date) suggests that the measurement error in this dataset has been
decreasing with time, even though the sensors in the MODIS platform have been aging with an
expected decrease in accuracy since their deployment aboard the Aqua and Terra satellites. However,
the time trend may be showing patterns in the residual after the removal of the calibration trend from
the raw MODIS measurements prior to the application of the MAIAC retrieval algorithm [28].

Given the large number of features considered in these measurement error models, it might be of
interest to consider simplifying this approach in future applications by leaving out features that had a
low variable importance and that required processing extra data sources. When we ran the XGBoost
model with only the top 10 or 20 predictors, there was a moderate decrease in the improvement in
measurement error achieved in the testing set. This tradeoff makes sense given that many of the
included features had similar and intermediate variable importance measures.

As we propose using a statistical model to update AOD measures, it may be useful to estimate
the uncertainty in these predictions as well. While the properties of the Infinitesimal Jackknife (IJ)
for estimating predictive uncertainty of estimates from Random Forest models have been previously
demonstrated [15], more work is needed to approximate the posterior predictive distribution for other
ensemble methods, such as XGBoost. When the same Random Forest model was used to compare the
estimated variance of the predictions between bootstrapping and the Infinitesimal Jackknife, we found
that the correlation was moderate for variance estimates after only 5 bootstrap resamplings (r = 0.78
excluding a single outlier) and went up further when the variance estimates were computed after
resampling 50 times (r = 0.89 excluding a single outlier). A future direction of this work would be
to use estimates of the predictive uncertainty in further analyses that employ the corrected AOD
values as a predictor of ground-level PM2.5, perhaps by adapting multiple-imputation approaches for
measurement error correction [19].

Although our approach to address measurement error in satellite AOD is novel and shows
a substantial improvement in the resulting product, it has several limitations. The temporal and
spatial coverage of the AERONET dataset used for validation is not representative of the entire
space-time domain of interest (e.g., the majority of unique AERONET sites are in urban areas;
particularly the DRAGON snapshot campaign in the DC area [29]). Furthermore, because only
cloud-screened and quality-assured AERONET station data are used as a reference value for AOD,
the most problematic measurements (e.g., when there is a nearby cloud) for satellite-based AOD
measures may be underrepresented in our validation dataset making it difficult to train the model to
correct these largest outliers. For example, there are few data points in our validation dataset that have
very high AOD (AERONET AOT >1.5 only once in Aqua and twice in Terra in our dataset) because
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true values this large occur only rarely in this region, even though it is not as uncommon in the MAIAC
dataset. Given the differences in the overall MAIAC dataset and the subset we use for measurement
error correction (collocated with AERONET), future models may be improved by implementing
inverse probability weighting of the measurement error dataset back to the originating dataset. Finally,
the AERONET measure represents a measurement of AOD at a single point, while the AOD from
MAIAC is an estimate over a 1 km2 region, and this can contribute to spatial/temporal misalignment
that we have captured within our estimation of measurement error. While our application benefited
from a reasonably large number of AERONET stations in the Northeastern USA, this approach has not
yet been tested in regions which have few AERONET stations. A future direction for this work will be
to examine the generalizability of this approach in other regions (leveraging the global coverage of
MAIAC and the AERONET station network) and particularly examine performance where there are
fewer unique AERONET stations and collocated observations.

Although extreme (high) values of AOD are relatively rare, these values merit extra attention as
they may indicate unusual pollutant scenarios or highly influential outliers if not real. We discovered
that for the Aqua satellite, the highest pair of AOD and AOT data points in our collocated measurement
error dataset occurred on 10 June 2015 after long range drift of smoke from Canadian wildfires [30].
However, the detection of emitted smoke that has undergone long-range transport is a challenge
in the field and may be too infrequent in our measurement error dataset to make a meaningful
contribution here.

5. Conclusions

AOD is an important predictor of ground-level fine particulate air pollution (PM2.5) [31]. As a
demonstration that adjustment of AOD estimates with our measurement error model reduces noise
and enhances the underlying relation with PM2.5 measures, we also compared AOD from Aqua and
Terra before and after correction with daily PM2.5 monitors from across the Northeastern US that
were not included in any part of our measurement error modeling. We demonstrate that our best
measurement error model using XGBoost improves the correlation of collocated MAIAC AOD and
daily average PM2.5 by nearly 10 percentage points for both Aqua and Terra. This substantial increase
suggests that the use of measurement error corrected MAIAC AOD will be an important advancement
for the next generation of satellite-based air pollution models.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/5/803/s1.
Supplemental figures show the relation between predictions and target values in the testing dataset (Figure S1),
variable importance measures for all three ensemble learning approaches (Figure S2), and partial dependence
plots for the effects of AOT uncertainty (Figure S3), column water vapor (Figure S4), and time trend (Figure S5).
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Appendix A.

Appendix A.1. Model Specification

The machine-learning ensemble models in this paper used a set of 52 variables that were included
because of their hypothesized relation with measurement error in MAIAC AOD or were constructed
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to capture apparent patterns in visualizations of MAIAC data. The general model specification to
estimate the difference between MAIAC AOD and AERONET AOT was:

(aod-aot) ~air.2m + evap + hpbl + pres.sfc + pr_wtr + shum.2m + uwnd.10m + vis + vwnd.10m +
elev + Water_P1km + forestProp_1km + AOT_Uncertainty + Column_WV + RelAZ + maskcloud +
maskadj + aerosolmod + distedgekm + sdwin3km + nwin3km + nwin30km + nwin50km + nwin110km
+ nwin210km + nwin310km + nwin410km + nwin510km + meanwin30km + meanwin50km +
meanwin110km + meanwin210km + meanwin310km + meanwin410km + meanwin510km + diffwin30
+ diffwin50 + diffwin110 + diffwin210 + diffwin310 + diffwin410 + diffwin510 + percreg10 + percecoreg
+ meanreg10 + meanecoreg + diffreg10 + diffecoreg + clumpn + clumpmean + dayint + bimon

These variables belong in origin or in meaning within these general groups and are detailed below:

AERONET aerosol optical thickness
MAIAC variables
meteorological and land use variables
distance to an edge
focal variables
regional variables
cluster variables
temporal variables

Appendix A.2. Detailed Variable Sources and Derivation

Appendix A.2.1. AOD & AOT

As detailed in the Materials and Methods of the manuscript, blue band aerosol optical depth
(AOD) came from the MAIAC algorithm variable “Optical_Depth_047”, with fixed grid centroids on a
~1 km2 resolution provided by NASA:

Aerosol optical depth (AOD)

Sun photometer measures of aerosol optical thickness (AOT) were used as ground truth from
AERONET stations within the study area (accessed 2017-03-29; Level 2.0, cloud-screened and
quality-assured data; Version 2.0 Direct Sun Algorithm):

Aerosol optical thickness (AOT)

Appendix A.2.2. MAIAC Variables

The following variables were extracted without alteration (except where noted) from the MAIAC
status_QA HDF formatted files and further details are available in the MAIAC data specification:

AOT uncertainty (AOT_Uncertainty)
Column water vapor (Column_WV)
Relative Azimuth down-sampled from 5 km2 resolution to 1 km2 (RelAZ)
Cloud mask (maskcloud)
Adjacency mask (maskadj)
Aerosol model (aerosolmod)

Two additional variables from the MAIAC quality control data (maskland and clouddetect)
were considered and excluded because they took only one value within the measurement error
correction dataset.
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Appendix A.2.3. Meteorologic Variables

Meteorologic variables were derived from the NCEP North American Regional Reanalysis dataset
and the daily average of the nearest measure was assigned to each grid centroid. The included variables,
units, and shortened name were as follows:

Air Temperature at 2 m (expressed as ◦C) (air.2m)
Accumulated total evaporation (kg/m2) (evap)
Planetary boundary layer height (meters) (hpbl)
Surface pressure (Pa) (pres.sfc)
Precipitable water for the entire atmosphere (kg/m2) (pr_wtr)
Specific humidity at 2 m (kg/kg) (shum.2m)
U-wind at 10 m (m/s) (uwnd.10m)
V-wind at 10 m (m/s) (vwnd.10m)
Visibility (meters) (vis)

Appendix A.2.4. Land Use Variables

Elevation was derived from the Shuttle Radar Topography Mission as the average of all 250 m
resolution SRTM raster cells within each 1 km grid cell:

Average elevation (elev)

Two land cover variables were derived from the National Land Cover Database 2011 as the
percentage of each 1 km grid cell covered by the following land cover categories:

% Water based on category 11-Open Water (Water_P1km)
% Forest based on categories 41-Deciduous Forest, 42-Evergreen Forest and 43-Mixed Forest

(forestProp_1km)

Appendix A.2.5. Distance to an Edge

Visualizations of MAIAC AOD over the study region seemed to show that high AOD values were
often near missing grid cells and therefore these might be falsely elevated related to edge effects near
masked regions (e.g., cloud contamination). A new variable was constructed using raster processing
as the distance in km to the nearest missing value for each non-missing AOD grid cell:

Distance to edge (distedge)

Appendix A.2.6. Focal Variables

To facilitate contrasts in AOD magnitude and characterization of missingness of AOD, relative
to nearby values over various moving windows, a series of additional variables were constructed
with raster processing. In addition to the standard deviation (sdwin3km) and number of non-missing
(nwin3km) values within a 3 × 3 km window, three main variables (number of non-missing “nwin”,
mean of non-missing AOD “meanwin”, and AOD at the centroid minus the mean of the non-missing
AOD “diffwin”) were calculated for each grid cell for each day using square moving windows of
varying side-lengths (30 km, 50 km, 110 km, 210 km, 310 km, 410 km, 510 km). The focal variable list
with variables names was as follows:

Standard deviation of non-missing AOD in 3 × 3 km2 window (sdwin3km)
# non-missing AOD in 3 × 3 km2 window (nwin3km)
# non-missing AOD in 30 × 30 km2 window (nwin30km)
# non-missing AOD in 50 × 50 km2 window (nwin50km)
# non-missing AOD in 110 × 110 km2 window (nwin110km)
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# non-missing AOD in 210 × 210 km2 window (nwin210km)
# non-missing AOD in 310 × 310 km2 window (nwin310km)
# non-missing AOD in 410 × 410 km2 window (nwin410km)
# non-missing AOD in 510 × 510 km2 window (nwin510km)
AOD mean in 30 × 30 km2 window (meanwin30km)
AOD mean in 50 × 50 km2 window (meanwin50km)
AOD mean in 1100 × 110 km2 window (meanwin110km)
AOD mean in 210 × 210 km2 window (meanwin210km)
AOD mean in 310 × 310 km2 window (meanwin310km)
AOD mean in 410 × 410 km2 window (meanwin410km)
AOD mean in 510 × 510 km2 window (meanwin510km)
AOD–AOD mean in 30 × 30 km2 window (diffwin30)
AOD–AOD mean in 50 × 50 km2 window (diffwin50)
AOD–AOD mean in 110 × 110 km2 window (diffwin110)
AOD–AOD mean in 210 × 210 km2 window (diffwin210)
AOD–AOD mean in 310 × 310 km2 window (diffwin310)
AOD–AOD mean in 410 × 410 km2 window (diffwin410)
AOD–AOD mean in 510 × 510 km2 window (diffwin510)

Appendix A.2.7. Regional Variables

Given prior work showing that the calibration of AOD relative to surface conditions can benefit
from considering sub-regions within such a large multi-state area, additional variables were constructed
that compared each AOD value to the remainder of AOD values within fixed polygons that characterize
larger regions. The sets of polygons employed were derived from the Forest Service ecoregions, as well
as a simplified set of political boundaries that divide the Northeastern US into ten regions, as previously
used in our air pollution modeling. The derived variables included the mean AOD value within a
given region, the percentage that each AOD measure was relative to the distribution within the region
in which it falls, and the difference between each AOD value and the mean within the region in which
it falls. The regional variable list with variable names was as follows:

Percentage of political region (percreg10)
Percentage of ecoregion (percecoreg)
Mean of political region (meanreg10)
Mean of ecoregion (meanecoreg)
AOD–AOD mean in political region (diffreg10)
AOD–AOD mean in political region (diffecoreg)

Appendix A.2.8. Cluster Variables

Because visualizations suggested that contiguous clusters of non-missing AOD seemed to be
more correlated than AOD grid cells that were not contiguous (with missing values in between), raster
processing was used to clump non-missing AOD values per day with Queen’s adjacency rules and
then two summary statistics were calculated for each cluster and assigned to each of the grid cells
within that cluster. The cluster variable list with variables names was as follows:

Number of non-missing in contiguous cluster (clumpn)
Mean of AOD in contiguous cluster (clumpmean)
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Appendix A.2.9. Temporal Variables

To allow for temporal trends in measurement error and the other features in the model, two terms
were added: an integer date included for long term trends and a six-level indicator variable for seasonal
patterns based on collapsing months into bimonthly periods (e.g., Jan/Feb, Mar/Apr). The temporal
variable list with variable names was as follows:

Integer days since 1970-01-01 (dayint)
Bimonthly indicator (bimon)
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