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Abstract: Bilinear mixture model-based methods have recently shown promising capability in
nonlinear spectral unmixing. However, relying on the endmembers extracted in advance, their
unmixing accuracies decrease, especially when the data is highly mixed. In this paper, a strategy
of geometric projection has been provided and combined with constrained nonnegative matrix
factorization for unsupervised nonlinear spectral unmixing. According to the characteristics of
bilinear mixture models, a set of facets are determined, each of which represents the partial
nonlinearity neglecting one endmember. Then, pixels’ barycentric coordinates with respect to every
endmember are calculated in several newly constructed simplices using a distance measure. In this
way, pixels can be projected into their approximate linear mixture components, which reduces greatly
the impact of collinearity. Different from relevant nonlinear unmixing methods in the literature,
this procedure effectively facilitates a more accurate estimation of endmembers and abundances
in constrained nonnegative matrix factorization. The updated endmembers are further used to
reconstruct the facets and get pixels’ new projections. Finally, endmembers, abundances, and pixels’
projections are updated alternately until a satisfactory result is obtained. The superior performance
of the proposed algorithm in nonlinear spectral unmixing has been validated through experiments
with both synthetic and real hyperspectral data, where traditional and state-of-the-art algorithms
are compared.

Keywords: hyperspectral imagery; unsupervised spectral unmixing; bilinear mixture model;
hyperplane; projection; nonnegative matrix factorization

1. Introduction

In spite of the extensive applications of hyperspectral remote sensing imagery over the decades,
the issue associated with mixed pixels always leads to a considerable drop in the pixel-level application
accuracy. Mixed pixels exist widely because of the intrinsically low spatial resolution of current sensors,
which usually makes more than one pure material appear in each pixel’s corresponding observed
area. These pixels are the collections of different material spectra; furthermore, a pixel is called
an endmember if it only contains one material. To address this issue, spectral unmixing has been
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investigated, which targets pixels for decomposition into a group of spectrally pure signatures and
their associated fractions over the given scenes, known as endmember extraction and abundance
estimation, respectively [1,2].

Depending on the specific mixture models, physical mixing processes of distinct substances’
spectra can be characterized mathematically, which provides an efficient method for the
implementation of spectral unmixing methods. Typically, as the most popular model, the linear
mixture model (LMM) assumes that the radiance reflected by each material is directly received without
multiple interactions, resulting in that pixels are the linear combinations of endmembers according
to their respective abundances. This simple assumption often makes the LMM-based unmixing
algorithms computationally tractable and capable of providing sufficient accuracy in most cases,
especially when the observed scenarios are mainly occupied by macroscopic mixtures [2]. For example,
methods including the N-FINDR [3], vertex component analysis (VCA) [4], and orthogonal bases
algorithm (OBA) [5] usually serve for the endmember extraction; and the fully constrained least
squares (FCLS) [6] and geometric G-Wang FCLS method [7] could perform the abundance inversion
well. However, endmembers are often wrongly extracted when there are no pure pixels in the images
due to the low spatial resolution. In addition, an increased error in abundance estimation commonly
stems from the use of inaccurate endmembers.

To deal with this problem, minimum-volume-based methods have been proposed for
unmixing [8–12]. In [11,12], nonnegative matrix factorization (NMF) [13] was combined with simplex
volume regularizers to estimate the endmembers and abundances simultaneously for highly-mixed
data. NMF is usually adopted for solving the blind source separation (BSS) problem, but the cost
function’s non-convexity impedes its direct use in unsupervised unmixing. Therefore, besides the
volume constraints, various physical constraints have also been designed and incorporated into the
NMF framework to mitigate the problem of local minima and obtain better unmixing results [14–25].
For instance, a smoothness constraint was adopted in [16,17], and spatial information of the data
manifold was exploited in [18,19] to construct the constraints. Moreover, some algorithms have also
provided promising unmixing results by combining the sparsity with other constraints to reformulate
the optimization problem of NMF [20–25].

Although the LMM-based unmixing algorithms have shown good unmixing performances,
unsatisfactory results may be obtained in some scenarios where the LMM fails in explaining the
nonlinear mixing effect [26,27]. “Nonlinear mixing effect” often refers to the multiple scattering
and absorption phenomena of light. Intimate mixtures at a microscopic scale and multilayered
mixtures in vegetated and urban areas are two typical situations where the nonlinear mixing
effect is prominent [28]. To cope with this issue, nonlinear mixture models with different forms
have been proposed to provide an appropriate alternative for accounting for the nonlinearity of
natural scenes. Formulating a nonlinear function between the reflectance and physical parameters,
the Hapke model [29] is popular for the intimate mixtures. While, in the case of the multilayered
mixtures, bilinear mixture models (BMMs) with much simpler mathematical expressions have shown
promising abilities for nonlinear spectral unmixing [27]. The BMMs can be considered as the nonlinear
extensions of the LMM, added with only the second-order scatterings between every two endmembers.
Most commonly used BMMs, such as the Fan model (FM) [30], generalized bilinear model (GBM) [31],
and polynomial post-nonlinear model (PPNM) [32] actually differ from each other in their nonlinear
parts. Their performances have been validated by the convincing field experiments in [33,34]. For more
complex scenarios such as urban areas, higher-order scatterings have been taken into account [35–37].
Heylen et al. [37] presented a multilinear mixing (MLM) model by introducing a probability parameter
of light undergoing further interactions, and all orders of multiple scatterings can be included.

Due to the simplicity and effectiveness of the BMMs, the BMM-based nonlinear unmixing methods
are gaining more attention. Besides the traditional Bayesian algorithm and gradient descent algorithm
(GDA) [30–32], many state-of-the-art BMM-based algorithms have appeared, such as the GBM-based
semi-nonnegative matrix factorization (semi-NMF) [38]; algorithms with improvements to the
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parameter constraint handling [39,40]; spatial information, and sparsity regularized methods [41,42];
and robust optimization approaches like the Hopfield neural-network-based algorithm [43].
Moreover, kernel-based methods [44,45] have also shown potential in nonlinear spectral unmixing,
depending on no specific model assumptions. Nevertheless, it is noted that most nonlinear spectral
unmixing methods are supervised at present, and have only been developed for estimating abundances.
Geometric algorithms such as VCA are still used to extract endmembers for nonlinear data [31].
Thus, as stated earlier, the accuracy of endmembers will explicitly influence the obtained abundances,
and the propagation of errors within the chain of spectral unmixing cannot be ignored. Unfortunately,
the estimated abundances are particularly sensitive to the endmembers under the assumption of
the BMMs. Since the main contributors to the nonlinear parts of BMMs are the products of every
two endmembers in each band and corresponding abundances, endmembers’ errors will make it
more difficult to determine the true nonlinear parts, resulting in the decrease of unmixing accuracy.
Therefore, unsupervised BMM-based nonlinear hyperspectral unmixing, without the requisite presence
of pure pixels, remains a challenging and meaningful issue.

Recently, some researchers have made attempts to cope with this issue. Heylen et al. [46] made
use of the graph-geodesic distance to capture data’s nonlinearity, and combined it with linear methods
for nonlinear spectral unmixing. Altmann et al. [47] proposed an unsupervised unmixing method
based on the PPNM using a Bayesian algorithm and a Hamiltonian Monte Carlo algorithm, but it is
computationally intensive and subject to the parameters’ prior distributions. In [48,49], the bilinear
terms of FM were integrated into the computational structure of NMF (Fan-NMF), so that NMF
can be further used. Nevertheless, the collinearity resulting from the high correlation between true
endmembers and second-order scattering virtual endmembers (namely every two true endmembers’
Hadamard products), will dramatically decrease the unmixing accuracy, especially when the number
of endmembers increases, even if true endmembers are known [50–53]. The authors in [54] proposed
a robust NMF (RNMF), which treated the nonlinearity as a sparse residual term and calculated it
alternately during the iteration. However, the result may be sensitive to noise and unstable due to
the uncertainty of the residual term’s form. In addition, as no extra constraints were introduced in
these NMF-based algorithms, they may also easily fall into local minima. Kernel NMF was used
in [55–57] with the idea that a nonlinearly-mixed hyperspectral dataset could be linearly mixed
in the high-dimensional feature space through the implicit mappings induced by kernel functions.
Thus, nonlinear spectral unmixing could be achieved by the traditional constrained NMF in the kernel
feature space. However, although the kernel NMF is model-free, it is usually susceptible to the form of
kernel functions and corresponding parameters, and it is also computationally expensive.

In this paper, the intention is to combine the BMMs with the constrained NMF
framework for BMM-based unsupervised unmixing. To this end, three issues must be properly
tackled. Firstly, the BMMs should be transformed into a similar mathematical form to NMF.
Secondly, the nonlinear parts of BMMs should be dealt with carefully to reduce the impact of
collinearity. It should be noted that the collinearity may be the most crucial issue that deteriorates
the performances of most nonlinear unmixing methods in literature [51–53]. Finally, appropriate
constraints are required to be added in NMF for alleviating the local minima and unmixing highly
mixed data.

Motivated by the geometric characteristics of BMMs, a novel, constrained NMF algorithm,
simultaneously suitable for FM-, GBM- and PPNM-based nonlinear spectral unmixing is presented,
and the above three issues can be addressed effectively. Specifically, the motivation of addressing
the collinearity comes from the authors’ previous work [58] which concludes that all the virtual
endmembers can be replaced by a single nonlinear vertex p in the r (the number of endmembers)
dimensional feature subspace. It acts as a true endmember and has effectively concentrated the common
nonlinearity. Thus, BMM pixels turn out to be affinely represented by the p and r true endmembers,
inducing that their normalized barycentric coordinates (i.e., approximate abundances) [59–62] with
respect to r true endmembers can be directly calculated by traditional linear methods. In this way,
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BMM pixels are naturally projected onto their approximate linear mixture components, getting rid of
the collinearity’s negative influence. This idea still functions in the proposed method.

In order to facilitate the update of endmembers in later unsupervised unmixing, instead of
calculating p in a reduced r-dimensional feature subspace referring to [58], Theorem 1 (details are
given in Section 3) is only adopted to determine r (r− 1)-dimensional hyperplanes defined by p and
every (r− 1) endmembers in this space [63–66]. Each of these hyperplanes (called nonlinear planes
in this paper) represents the partial nonlinearity with the absence of one endmember. Then, with the
use of a geometric distance measure [7], BMM pixels’ normalized barycentric coordinates with
respect to each endmember are geometrically estimated, leading to the acquisition of the pixels’
linear mixture components. In this sense, the first two aforementioned issues are addressed,
and unsupervised linear spectral unmixing becomes the following task. In particular, through this
procedure, the collinearity will not seriously deteriorate the nonlinear spectral unmixing. It can
be explained that virtual endmembers no longer participate in the estimation of abundances,
leading to the significant increase of unmixing accuracy (details are explained in Sections 3 and 4.1).
Finally, the endmember-distance-constrained NMF [12] is used to unmix the pixels’ linear projections,
which further alleviates the local minima of standard NMF and is suitable for highly mixed data.
Both endmembers and abundances are updated simultaneously through balancing the minimization of
the projections’ reconstruction error and the endmembers’ distances to their centroid. In an alternating
iterative way, updated endmembers are used to calculate pixels’ new projections again until satisfactory
unmixing results are obtained.

In a word, the main contributions of this paper can be briefly summarized as follows:

1. The negative effect of collinearity in BMM-based nonlinear unmixing methods can be addressed.
To be specific, this goal is reached by adopting a distance measure to project pixels onto their
approximate linear mixture components based on the geometric characteristics of the BMMs.
This procedure reduces effectively the virtual endmembers’ impact on nonlinear unmixing,
which is a remarkable advantage compared with other relevant unmixing methods.

2. The issue of local minima in standard NMF can be well alleviated, and highly mixed nonlinear
hyperspectral data can be unmixed accurately. To be specific, the procedure of geometric
projection facilitates the direct use of NMF in nonlinear unmixing, and the incorporation of
a minimum endmember distance constraint into the NMF framework enables the accurate
estimation of endmembers and abundances when pixels are highly mixed.

3. A general unsupervised nonlinear unmixing strategy is built which is simultaneously suitable for
unmixing under the assumptions of three BMMs including the FM, GBM, and PPNM.

It should be noted that this paper is quite different from our previous published conference
paper [67] which only gave a simple and immature description of the method. In this paper, a more
detailed and comprehensive motivation is explained. In particular, an essential theory (Theorem 1 and
Property 1 in Section 3) of constructing nonlinear hyperplanes and geometric projection to address
the collinearity is provided with a proof. Several key issues of projection in theoretical and technical
parts are also carefully discussed and further improved. Moreover, more reasonable experiments
with simulated and real hyperspectral data are carried out here to validate the proposed algorithm’s
superiority in unsupervised nonlinear unmixing compared with other state-of-the-art methods.

In terms of unsupervised spectral unmixing methods in the literature, their main drawbacks are
in three aspects: (1) LMM-based unsupervised unmixing methods fail in explaining the nonlinear
mixing effect; (2) Existing BMM-based unsupervised nonlinear unmixing methods always suffer from
the negative effect of collinearity; (3) The issue of local minima is commonly serious for unsupervised
nonlinear unmixing algorithms via NMF which may perform worse in unmixing highly mixed data.

The precise objective of this work is to propose a BMM-based unsupervised nonlinear unmixing
algorithm via geometric projection and NMF, which could overcome the problem of the collinearity,
and give better unmixing results when the pixels are nonlinearly and highly mixed.
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The rest of this paper is organized as follows. The LMM, three BMMs, and NMF are introduced
in Section 2. In Section 3, the issue of collinearity is analyzed, geometric projection for generating
pixels’ approximate linear components is described, and the proposed algorithm combining geometric
projection with constrained NMF for nonlinear unmixing is presented. In Section 4, in comparison with
traditional and state-of-the-art algorithms, the proposed algorithm is evaluated through experiments.
Finally, experimental results and future research directions are discussed in Section 5, and this paper is
concluded in Section 6.

2. Related Works

2.1. Mixture Models

Generally, a hyperspectral image can be denoted as a matrix X ∈ Rn×m, each column of which
corresponds to a pixel vector xj ∈ Rn×1 (j = 1, 2, . . . , m) with n spectral bands. m denotes the number of
pixels. In this paper, three typical BMMs, including the FM [30], GBM [31], and PPNM [32], have been
taken into account. It is noted that the LMM is these models’ common part, which is linearly combined
by endmembers [1]. The nonlinearity is denoted as the sum of the products of every two endmembers,
abundances, and corresponding nonlinear parameters. Therefore, these mixture models can be easily
given a general expression for simplicity:

xj =
r

∑
i=1

aisi,j +
t1

∑
i=1

r

∑
k=t2

bi,k, j(ai � ak)si,jsk,j + εj (1)

si,j ≥ 0,
r

∑
i=1

si,j = 1 (2)

Table 1 lists the specific definitions of general parameters t1, t2 and bi,k, j in Equation (1) with
respect to four mixture models. If bi,k, j = 0, Equation (1) is the LMM. When t1 = r− 1 and t2 = i + 1,
Equation (1) becomes the FM if bi,k, j = 1, while it is the GBM if bi,k, j = γi,k,j. Equation (1) denotes the
PPNM when t1 = r, t2 = 1 and bi,k, j = ξ j.

Table 1. Parameters of different mixture models.

Models t1 t2 bi,k,j

LMM [1] − − 0
FM [30] r− 1 i + 1 1

GBM [31] r− 1 i + 1 0 ≤ γi,k,j ≤ 1
PPNM [32] r 1 ξ j ∈ R

In Equation (1), ai ∈ Rn×1 is the ith endmember vector and si,j is its abundance in the pixel
xj. r is the number of endmembers. To be physically meaningful, abundances of these models
should satisfy the nonnegative constraint (ANC) and sum-to-one constraint (ASC) in Equation (2).
� represents the Hadamard product operation and ai � ak = (ai,1ak,1, . . . , ai,nak,n)

T denotes the
second-order interactions between endmember ai and ak, which is a so-called virtual endmember [50–52].
Both γi,k,j ∈ [0, 1] and ξ j ∈ R are bilinear parameters used for scaling the nonlinearity, which make the
GBM and PPNM more flexible than the FM. εj ∈ Rn×1 is the additive noise. It can be seen that when
γi,k,j = 0 and ξ j = 0, ∀i, k, j, both the GBM and PPNM transform into the LMM, and when γi,k,j = 1,
∀i, k, j, the GBM is equivalent to the FM. In Figure 1, it can be observed how pixels based on four
models distribute in a three-dimensional feature subspace, respectively.
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Figure 1. Geometric distribution of the data according to each model described by the three
most significant principle components (PCs): (a) linear mixture model (LMM); (b) Fan model FM;
(c) generalized bilinear model (GBM); (d) polynomial post-nonlinear model (PPNM).

2.2. NMF

NMF [13] aims to approximate a nonnegative matrix V ∈ Rn×m with the product of two unknown
low rank, nonnegative matrices W ∈ Rn×r and H ∈ Rr×m in Equation (3). The square of the Euclidean
distance between V and WH in Equation (4) is often used to quantify the approximation.

V ≈WH (3)

min
W,H

1
2
‖V−WH‖2

F, s.t.W ≥ 0, H ≥ 0 (4)

Clearly, NMF has the same structure as the LMM. In terms of the LMM-based spectral unmixing,
V is the hyperspectral data, W can be regarded as the endmember matrix, and H represents the
abundance matrix. Then, both the endmembers and abundances can be achieved simultaneously using
the alternate update rules of NMF [13,68] and the nonnegative constraint is naturally satisfied.

3. Proposed Algorithm for Unsupervised Nonlinear Spectral Unmixing

3.1. Motivation for the Proposed Algorithm

Spectral unmixing is a process of multiple regression in some sense, where endmembers function
as the explanatory variables and abundances are the regression coefficients [51–53]. The collinearity
exists as a common problem for regression analysis when some explanatory variables can be largely
explained by the others, causing the accretion of estimation error. In terms of the LMM-based spectral
unmixing, it is often considered that true endmembers of different ground covers are usually affinely
independent [2]. So sufficient accuracy can usually be provided, ignoring the effect of collinearity
when executing the linear spectral unmixing.

However, this is not the case for the BMM-based nonlinear spectral unmixing, where the virtual
endmembers are highly correlated with true endmembers. A virtual endmember [50–52] is the product
of two true endmembers in each band. Although the high correlation between virtual and true
endmembers (close to being linearly dependent) may make them have spectral similarity (see Figure 2),
virtual endmembers have no physical meaning in terms of ground covers.

Moreover, since virtual endmembers are commonly used as the explanatory variables to estimate
abundances with true endmembers, the negative impact of collinearity is inevitable, though no
perfect collinearity exists [51]. Specifically, there will be a dramatic drop in the accuracy of estimated
abundances, because a1, . . . , ar, a1 � a2, . . . , at1 � ar in Equation (1) may produce a matrix approaching
singularity, resulting in the results being unstable and sensitive to noise [50–53]. This situation can get
worse when numerous nonlinear parameters should be estimated and true endmembers are unknown.
The degree of collinearity induced by virtual endmembers will be discussed using a quantitative
measure named variance inflation factors (VIFs) [51,52] in Section 4.1.
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Figure 2. An example of virtual endmember’s spectral curve.

One intuitive idea for nonlinear spectral unmixing which always comes into being is that if the
nonlinearly-mixed pixels can be transformed into the linearly mixed ones, or their nonlinearity can be
removed, the conventional linear methods can be used for unmixing. If so, this not only provides the
possibility of carrying out the unsupervised unmixing via the constrained NMF, but the collinearity
will also not affect the unmixing. To this end, the geometric characteristics of BMMs are exploited to
achieve that goal.

Geometrically, each pixel can be considered as a point in an n-dimensional space. Under the
assumption of the LMM, endmembers {a1, a2, . . . , ar} construct a (r − 1)-dimensional simplex
∆r−1 = {x = ∑r

i=1 aisi|∑r
i=1 si = 1, si ≥ 0} in the feature subspace to meet the constraints in

Equation (2) and enclose all the pixel points. Abundances are equivalent to the pixels’ normalized
barycentric coordinates with respect to the endmembers on ∆r−1 [59,61,62]. As shown in Figure 1a,
the simplex ∆2 spanned by three endmembers is a triangle [65–68].

On the other hand, in terms of the BMMs, the contribution of the nonlinear part will explicitly lead
pixel points to move out of ∆r−1 and distribute in a higher dimension space forming different nonlinear
manifold structures in Figure 1b–d. It is known that the linear mixture part xLMM

j = ∑r
i=1 aisi,j

of a BMM-pixel is equivalent to the definition of LMM, so the xLMM
j of a pixel xj belongs to the

∆r−1 constructed by {a1, a2, . . . , ar}. As a result, a BMM pixel point xj can be simply regarded as
the result by pulling the point xLMM

j out from ∆r−1 to an r-dimensional affine hull along the vector
corresponding to xj’s nonlinear part. Mathematically, BMM pixels belong to the linear subspace
spanned by both true and virtual endmembers, whose dimension is r(r + 1)/2 for the FM and GBM
and r(r + 3)/2 for the PPNM. However, in the r-dimensional feature subspace, BMM pixels actually
lie on the same r-dimensional affine hull constructed by r true endmembers and an additional affinely
independent vector.

According to the BMMs’ geometric characteristics, the following Property 1 and Theorem 1 were
concluded in the authors’ previous work [58]. A brief introduction is provided here.

Property 1. In the r-dimensional feature subspace, a BMM pixel xj can be affinely represented on

an r-dimensional affine hull Cr = aff
{

a1, a2, . . . , ar, pj
}

=
{

xj = ∑r
i=1 aihi + pjhr+1

∣∣∑r+1
i=1 hi = 1

}
constructed by r true endmembers and an extra vertex pj (called the nonlinear vertex). Moreover, xj’s abundances

sj and its normalized barycentric coordinates hj =
(
h1,j, h2,j, . . . hr+1,j

)T on the Cr (hr+1,j is xj’s normalized
barycentric coordinate with respect to pj) satisfy si,j = hi,j/∑r

k=1 hk,j, when this pj also lies on the line defined
by xj and its corresponding linear mixture component xLMM

j .

This property can be easily obtained according to the geometric theory of simplex [59–62].
As shown in Figure 3, if xj’s affine-projection yj on the ∆r−1 is equal to xLMM

j , yj’s normalized

barycentric coordinates
(

h1,j/∑r
k=1 hk,j, h2,j/∑r

k=1 hk,j, . . . , hr,j/∑r
k=1 hk,j, 0

)T
on the Cr is equal to
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(
s1,j, s2,j, . . . , sr,j, 0

)T. However, it can be deduced that the vertex pj is pixel-dependent, and each
pixel can have an infinite number of satisfactory nonlinear vertices as long as such a pj is not only
affinely independent of {a1, a2, . . . , ar}, but also lies on the line defined by the points xLMM

j and

xj (see Figure 3). On the other hand, xLMM
j is unknown for most pixels, and determining each xj’s own

correct nonlinear vertex pj is impossible.
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Figure 3. Geometric interpretation of Property 1. x is a BMM pixel, y is x ’s projection on the line of two
endmembers a1 and a2. If p lies on the line of x and its linear mixture component xLMM = a1s1 + a2s2,
y has the same abundances with respect to a1 and a2 as x [59–62] (i.e., y = xLMM). The case can be
extended to a high-dimensional space as well.

In order to circumvent this issue, a unique and common nonlinear vertex p was constructed in
the authors’ previous work [58] to project all the pixels onto the ∆r−1 simultaneously. This single
vertex p can concentrate most nonlinear components from the virtual endmembers, and BMM pixels’
projections deviate slightly from their true linear mixture components [58]. Theorem 1 has illustrated
the construction of such a single nonlinear vertex p based on the idea of computer-aided geometric
design [63].

Theorem 1. Given r endmembers in the r-dimensional feature subspace, and assuming that a vertex p is
the intersection of r (r − 1)-dimensional hyperplanes Hr−1

1 , . . . , Hr−1
r , each of which is formed by (r − 1)

endmembers and the corresponding BMM pixels constituted by them (e.g., {a1, a2} and ω3 define the plane
H2

3 in Figure 4), p will span an r-dimensional affine hull Cr = aff{a1, a2, . . . , ar, p} with r endmembers to
affinely represent these pixels (see Property 1).
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(b) geometric distance measure-based projection using nonlinear planes.

Proof. Let a pixel in Equation (1) xj’s nonlinear part xNMM
j = ∑t1

i=1 ∑r
k=t2

bi,k, j(ai � ak)si,jsk,j and

xj = xLMM
j + xNMM

j , when the endmembers’ number r = 2 (see Figure 3), xNMM
j = a1 � a2s1,js2,jb1,2,j

for the FM and GBM. In this case, the linear part xLMM
j = a1s1,j + a2s2,j lies on the ∆1 that is a line
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segment defined by a1 and a2. It is clear that xj and two endmembers {a1, a2} are located on the
same two-dimensional plane H2 in the three-dimensional feature subspace. The vertex p can be the
intersection of two tangential (or vertical) lines (i.e., H1

1 and H1
2 ) passing through the endmember a1 and

a2, respectively. Then, a two-dimensional affine hull aff{a1, a2, p} is always obtained to represent
all the pixels. It is noted that by using such a vertex p, xj can be largely projected to xLMM

j on the

∆1 [58]. In terms of the PPNM, xNMM
j = ∑2

i=1 ∑2
k=1 bi,k, j(ai � ak)si,jsk,j and the coplanarity is still

reliable because ai � ai is very likely to be highly dependent on ai.
When r = 3 (see Figure 4a), in the three-dimensional feature subspace, two-endmember

sets {a1, a2}, {a1, a3}, and {a2, a3} form three two-dimensional hyperplanes H2
3 , H2

2 , and H2
1 with

corresponding pixels in the same way, respectively. If noise is ignored, BMM pixels constituted by
all three endmembers {a1, a2, a3} (i.e., affected by all virtual endmembers) must be located in the
local space enclosed by

{
H2

1 , H2
2 , H2

3
}

. In this case, the vertex p becomes the intersection of planes{
H2

1 , H2
2 , H2

3
}

, and {a1, a2, a3, p} span a three-dimensional affine hyperplane C3, including all the
pixels in the feature subspace.

When r ≥ 4, the formation of a simplex that any ∆r−1 is enclosed by r (r − 2)-dimensional
simplices, and ∆r−1 is a facet of ∆r [9,59] can be applied for understanding. p is the intersection of
r (r− 1)-dimensional hyperplanes Hr−1

1 , . . . , Hr−1
r in the r-dimensional feature subspace. Hr−1

q is
defined by (r − 1) endmembers

{
a1, . . . , aq−1, aq+1, . . . , ar

}
and any corresponding BMM pixels

constructed by them in Equation (1). For instance, {a1, a2, a3, a4, p} span a four-dimensional affine
hyperplane C4 where the vertex p is the intersection of planes

{
H3

1 , H3
2 , H3

3 , H3
4
}

and H3
4 is actually the

plane of the previous C3. Thus, all the pixels are affinely represented on an r-dimensional affine hull
aff{a1, . . . , ar, p}. Hr−1

1 , . . . , Hr−1
r will always intersect at a single point because they intersect each

other and their normal vectors are linearly independent in the r-dimensional subspace [59]. In [58],
the conclusion that the system of linear equations for calculating the nonlinear vertex p always has
a unique non-trivial solution also demonstrates the uniqueness. �

In this paper, Theorem 1 is partly utilized to estimate the BMM-pixels’ normalized barycentric
coordinates h with respect to {a1, a2, . . . , ar} on the affine hull Cr. One way to solve h is to calculate
the nonlinear vertex p directly, and then using the traditional linear unmixing methods such as the
constrained least squares [6] to get h. In fact, after the hyperplanes Hr−1

1 , . . . , Hr−1
r are determined,

pixels’ projection coordinates can be obtained by volume- or distance-based geometric linear unmixing
methods (see Figure 4b) [7].

A hyperplane Hr−1
q actually represents the nonlinearity not relevant to the endmember aq, which is

called a nonlinear hyperplane in the rest of the paper. As discussed earlier, the abundances of the
BMM pixels on Hr−1

q with respect to aq should be equal to zero. Specifically, following the simplex
theory [7,59–66], the ratio of the distances (signed distance measure in [7] is used in this paper)
from the pixel xj and aq to the Hr−1

q is xj’s normalized barycentric coordinate hq,j with respect to aq.
In this sense, hq,j is also xj’s projection coordinate ŝq,j, which is approximately equal to the abundance
sq,j. Then, hj can be used to obtain a pixel’s projection yj on the ∆r−1 spanned by {a1, a2, . . . , ar},
which is its approximate linear component yj = ∑r

i=1 aihi,j ≈ ∑r
i=1 aisi,j. It allows the further use of the

conventional linear unmixing methods to obtain more accurate results.
Accordingly, the virtual endmembers are absent from the abundance estimation, leading to

the decrease of collinearity’s negative effect to a much lower level [58]. As a result, the unmixing
accuracy will get great improvement. On the other hand, it is worthy of noting that by exploiting the
distance measure, projections can be achieved without determining the nonlinear vertex p or reducing
the dimension of data to r. This advantage makes the later proposed method able to update the
endmembers in their original space, which will reduce not only the computational burdens, but also
the estimation errors of endmembers in unsupervised unmixing.

The goal of this paper is to unmix the BMM pixels in an unsupervised way. In this sense,
both endmembers and abundances are unknown and, as stated in the previous section, algorithms
such as VCA may wrongly extract endmembers when pure pixels do not exist in the hyperspectral data.
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For example, in Figure 5, the FM-based pixels close to the true endmembers are wrongly extracted
as the endmembers. Moreover, as shown in Figure 6, when endmembers are not true, pixels’ projections
will move out of the simplex spanned by endmembers. Nevertheless, since pixels’ projections
are linearly mixed, they can be substituted into the constrained NMF framework to update the
endmembers and abundances. Then, updated endmembers can be further used to calculate the new
projections until the endmembers’ simplex ∆r−1 can contain all the pixels’ projections compactly.
By doing this, more accurate endmembers can be found even if hyperspectral pixels are highly mixed,
and better unmixing results will be obtained in an unsupervised way. Figure 7 depicts the main
procedure of the proposed method.
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3.2. Nonlinear Hyperplanes and Geometric Projection

In this section, the method of determining the aforementioned nonlinear hyperplanes
Hr−1

1 , . . . , Hr−1
r and the approach to calculate BMM pixels’ normalized barycentric coordinates with

respect to endmembers {a1, a2, . . . , ar} is introduced, as well as their projections on the bottom affine
plane (see Figures 5 and 6) defined by {a1, a2, . . . , ar}.

Firstly, according to the previous analysis and Theorem 1, a nonlinear hyperplane Hr−1
q in the

r-dimensional feature subspace is defined by the (r− 1)-endmember subset
{

a1, . . . , aq−1, aq+1, . . . , ar
}

and corresponding BMM pixels constituted by these (r − 1) endmembers. In other words, only a
proper BMM pixel (named the control point) constituted by

{
a1, . . . , aq−1, aq+1, . . . , ar

}
is needed to

further determine the hyperplane Hr−1
q .

To be specific, the idea of computer-aided geometric design [63] is used here to determine the
nonlinear hyperplanes. As shown in Figure 4, r nonlinear midpoints ωq (q = 1, . . . , r) are chosen
as the control points [63]. They consist of every (r − 1) endmembers with the same abundances,
i.e., s1,ωq = . . . = sq−1,ωq = sq+1,ωq = . . . = sr,ωq = 1/(r− 1). Based on Equation (1), ωq can be
expressed as:

ωq =
1

r− 1

r

∑
i=1

ai +
1

(r− 1)2

t1

∑
i=1

r

∑
k=t2

(ai � ak) (5)

where i 6= q and k 6= q, q = 1, . . . , r. When t1 = r− 1 and t2 = i + 1, Equation (5) is the case of the FM
and GBM, and when t1 = r, t2 = 1, it corresponds to the PPNM. Then, we use the constructed nonlinear
midpoint ωq to determine the hyperplane Hr−1

q with (r− 1) endmembers
{

a1, . . . , aq−1, aq+1, . . . , ar
}

.
For instance, H2

2 in both Figures 4 and 8b refers to the plane defined by {a1, ω2, a3}. At the same
time, the selection of nonlinear midpoints {ω1, ω2, . . . , ωr} as the control points also guarantees the
formation of r non-degenerate r-dimensional simplices [59]. As depicted in Figure 4b, {a1, a2, a3, ω1},
{a1, a2, a3, ω2}, and {a1, a2, a3, ω3} form three three-dimensional simplices ∆̃3

1, ∆̃3
2, and ∆̃3

3, respectively.
A facet of ∆̃3

2 is on the H2
2 . In the feature subspace, the qth simplex ∆̃r

q is constructed by the point set

Mq =
(

m1,q, . . . , ml,q, . . . , mr,q, m(r+1),q

)
=
(
a1, . . . , ar, ωq

)
, Mq ∈ Rn×(r+1), l = 1, 2, . . . , r + 1.
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Figure 8. Diagram of geometric projection onto hyperplanes. (a) LMM; (b) bilinear mixture models (BMMs).

Secondly, according to the geometric explanation of the LMM, for example, if a pixel xj is linearly
mixed by four endmembers (see Figure 8a), a2’s fractional abundance in xj is equal to the ratio
(i.e., projection coordinates [7]) of distances from xj and a2 to the plane of the bottom triangle defined
by {a1, a3, a4}. Similarly, on the constructed r-dimensional simplex ∆̃r

q, the distances from each BMM
pixel point to the nonlinear hyperplane Hr−1

q can be used to calculate pixels’ projection coordinates
with respect to endmember aq. When the BMM pixels’ projection coordinates are obtained, they will
be approximately projected to their linear parts on the ∆r−1 constructed by {a1, a2, . . . , ar}.

Assuming that an endmember matrix A = (a1, . . . , ar) ∈ Rn×r is given, the signed distance
measure proposed in [7] is adopted to calculate pixels’ projection coordinates. In line with the least
squares criterion, this distance measure enables the abundance estimation to be implemented in
a subspace at a high speed, without dimension reduction. In our method, the whole process of
estimating BMM pixels’ projection coordinates are split into r sub-steps. Specifically, the distance
measure is applied for r constructed simplices ∆̃r

1, ∆̃r
2, . . . , ∆̃r

r, respectively. For the ∆̃r
q, only pixels’

projection coordinates associated with endmember aq are calculated, and the distance measure has the
following form: {

kT
l,qml,q + bl,q = 1

kT
l,qmτ,q(τ 6=l) + bl,q = 0

, l = 1, . . . , r + 1 (6)

where kl,q ∈ Rn×1 represents the weight vector of the lth facet of ∆̃r
q. The scalar bl,q is a threshold

value. ml,q is the lth column of Mq =
(
a1, . . . , ar, ωq

)
. One can see that Equation (6) is definitely

an extended version of the single simplex under the assumption of LMM in [7]. It should be noted
that kq,q corresponds to the weight vector of the hyperplane Hr−1

q opposite to the endmember aq.
For instance, Figure 8b shows a constructed simplex ∆̃3

2 spanned by M2 = (a1, a2, a3, ω2), where k2,2 is
the weight vector of the hyperplane H2

2 containing the nonlinear midpoint ω2. Based on Equation (6),
the distance from a2 to H2

2 is 1, while the distances from {a1, ω2, a3} to H2
2 are equal to zero because

they actually lie on H2
2 . Therefore, when k2,2 and b2,2 in Equation (6) are calculated, a BMM

pixel xj’s projection coordinate ŝ2,j with respect to the endmember a2 can be further produced by
ŝ2,j = kT

2,2xj + b2,2.
For the ∆̃r

q, let Vq = (m1,q −m(r+1),q, m2,q −m1,q, . . . , m(r+1),q −mr,q) ∈ Rn×r. All the column
vectors of Vq can be regarded as the base vectors spanning the r-dimensional subspace in which
kl,q (l = 1, . . . , r + 1) must lie. kl,q can be linearly represented by r column vectors of Vq, which is
further written as:

kl,q = Vqβl,q,βl,q =
(

β1
l,q, . . . , βr

l,q

)T
∈ Rr×1. (7)

In Equation (7),βl,q denotes the coefficients of kl,q with respect to Vq’s column vectors, and at least one

nonzero coefficient exists [7]. By substituting (7) into (6), and letting Kq =
(

k1,q, . . . , k(r+1),q

)
∈ Rn×(r+1),

bq =
(

b1,q, . . . , b(r+1),q

)T
∈ R(r+1)×1, and Bq =

(
β1,q, . . . ,β(r+1),q

)
∈ Rr×(r+1), Equations (8) and (9) are

obtained: (
MT

q Vq

)
Bq + bq1T

r+1 = I(r+1)×(r+1) (8)
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(
Bq

bT
q

)
=
(

MT
q Vq, 1r+1

)−1
, Kq = VqBq. (9)

where 1r+1 is a column vector of all 1s and I(r+1)×(r+1) is a unit matrix.
Finally, after kq,q and bq,q are obtained, pixels’ projection coordinates of the qth endmember aq can

be obtained, which are equal to kT
q,qX + bq,q1T

m. Furthermore, different from [7], let zq = kq,q and
cq = bq,q, and the whole projection coordinate vector ŝj of a BMM pixel xj in our modified method is
given as:

ŝj = ZTxj + c (10)

where Z = (z1, . . . , zr) ∈ Rn×r and c = (c1, . . . , cr)
T ∈ Rr×1. The projection of xj is derived:

yj = Aŝj (11)

It is noted that if the used endmembers are true, they will construct a compact simplex ∆r−1 to
enclose all the pixels’ projections yj (see Figure 6a) [1–5]. However, if endmembers are unknown or
wrongly extracted (see Figure 6b), we should further estimate the endmembers. Fortunately, with the
use of the obtained linearly-mixed projections of pixels, the minimum-volume-constrained NMF [8–12]
can be further adopted to update the endmembers and abundances simultaneously for highly-mixed
data. The newly-updated endmembers can be applied to project pixels to their new linear mixture
components (i.e., Equation (11)), alternately.

According to the discussion in Section 3.1, there is a minor bias between a BMM pixel xj’s
projection yj in Equation (11) and its true linear mixture component xLMM

j . This bias is mainly induced
by two aspects: constructing several hyperplanes to produce a single nonlinear vertex p to replace
all the virtual endmembers, and the noise interference. This bias has been carefully analyzed in [58],
which further utilized two different strategies to do the de-biasing. The process of removing bias is
iterative and has a larger calculation burden, and its performance relies on true endmembers already
being known.

Therefore, the de-biasing is not taken into account in the proposed algorithm of this paper,
based on two reasons. Firstly, the endmembers are assumed to be unknown here, and should be
estimated in the later unsupervised unmixing. In this sense, the de-biasing should be executed
at every iteration once endmembers are updated, resulting in high computational complexity.
Secondly, using the inaccurate endmembers to do the de-biasing will not only fail in removing
the bias, but also transfer the error into the estimation of endmembers and abundances. On the
other hand, the accurate update of endmembers and abundances can be entirely implemented
by using the obtained pixels’ projections due to their close proximity to the corresponding linear
mixture components. In Section 4.1, with the use of true endmembers, the geometric projection
coordinates (10) are quantitatively evaluated to illustrate the reasonability of omitting de-biasing in
the proposed algorithm.

3.3. BMM-Based Constrained NMF

When addressing the issue of unsupervised unmixing, the noncovexity of standard NMF’s
bi-affine objective function makes the solution nonunique, and an unsatisfied local minimum is
always produced for unmixing [11,13]. In order to obtain more accurate results, additional physical
constraints on endmembers or abundances should be incorporated into the objective function besides
the ANC and ASC [11–25]. Consistent with the idea of using minimum-volume-constrained NMF for
unmixing highly mixed data [11,12], ∆r−1 spanned by endmembers {a1, a2, . . . , ar} should contain all
the pixels’ projections compactly in the proposed algorithm. This implies that the reconstruction error
in Equation (4) should be as small as possible, and the volume of ∆r−1 should decrease at the same
time. Therefore, the endmember distance (EMD) in [12] is added into the standard NMF objective
function (i.e., Equation (4)) as an auxiliary constraint, which is convex and represents the sum of
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distances from each endmember to their common centroid. Different from the optimization problem
of constrained NMF for traditional linear unmixing, each pixel’s projection yj instead of pixel xj itself
is adopted in the following situation:

min
A, S

f (A, S) =
1
2
‖Y−AS‖2

F + λ·EMD(A), s.t.A ≥ 0, S ≥ 0, 1T
r S = 1T

n (12)

EMD(A) =
r

∑
i=1
‖ai − a‖2

2, a =
1
r

r

∑
i=1

ai. (13)

where S = (s1, s2, . . . , sm) ∈ Rr×m is the abundance matrix and Y = (y1, . . . , ym) ∈ Rn×m represents
the matrix of pixels’ projections. The purpose of the endmember distance constraint EMD defined in
(13) is to keep the simplex ∆r−1 of endmembers as compact as possible so as to limit the solution space.
If the reconstruction error ‖Y−AS‖2

F becomes smaller, ∆r−1’s volume will increase to include all the
projections, while, if EMD decreases, ∆r−1’s volume will shrink. λ is a regularization parameter to
balance the tradeoff between two terms in (12) to provide accurate endmembers.

Some existing algorithms such as the multiple update rule [13] and projected gradient (PG)
method [48,57,68] can solve the optimization problem in (12). In this paper, the PG method is
adopted to update endmembers A and abundances S alternately in the framework of constrained NMF.
The gradients of f in (12) with respect to S and A are provided in Equations (14) and (15), respectively:

∇S f (At, St) = (At)
T
(AtSt − Yt) (14)

∇A f (At, St) = (AtSt − Yt)(St)
T
+ λ·

(
At − a1T

r

)
(15)

Specifically, the current values of St+1 or At+1 are updated using their corresponding values at
the last iteration t. Following the PG update rules, St+1 and At+1 are updated in Equations (16) and
(17) to satisfy the ANC.

St+1 = P
[
St − αt·∇S f (At, St)

]
(16)

At+1 = P
[
At − βt·∇A f (At, St)

]
(17)

X̃ =

[
X

δ1T

]
, Ã =

[
A

δ1T

]
(18)

In Equations (16) and (17), P[·] represents the operator for projecting S and A to be nonnegative.
αt and βt are the updating steps which can be determined using the Armijo rule [48,57,68]. In simple
terms, αt and βt decrease to give a better convergence when the relative error condition between
two contiguous iterations in [68] is satisfied, or they will increase to accelerate the search. At+1 is
further substituted into the geometric projection scheme (6)–(11) to generate the new projections
Yt+1. The convergence analysis on the PG has been well analyzed in [68]. An experimental analysis
is also provided for discussion of the convergence and complexity of the proposed algorithm in
Section 4.1. Moreover, in order to satisfy the ASC, abundances should be normalized and two formulas
in (18) [11–25] are substituted for operations (14)–(17) instead, where δ is used for balancing the effect of
the ASC. Endmembers and abundances with sufficient accuracy will be obtained when the maximum
number of iterations is reached, or the error between two iterations is less than a given threshold τ.

The nonlinear coefficients of the GBM and PPNM are not estimated in the proposed algorithm.
In the case of the PPNM, if two pixels xj and xj+1 have the same abundances s but different nonlinear
scalar coefficients ξ j and ξ j+1 (see Table 1), they still have the same projection y after being projected.
In the case of the GBM, although the nonlinear coefficients γi,k,j affect every virtual endmember,
their influence on the projection is still minor because most nonlinear components have been explained
by the nonlinear vertex p. On the other hand, endmembers and abundances are actually the core
goals of unmixing, which are directly estimated in this work. When accurate endmembers and
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abundances are obtained, the nonlinear coefficients will be easily calculated by linear programming [65].
According to the flowchart in Figure 7, the proposed BMM-based constrained NMF algorithm (BCNMF)
for the unsupervised nonlinear spectral unmixing is summarized in Algorithm 1.

Algorithm 1: BMM-based constrained NMF (BCNMF)

Input: Hyperspectral data X ∈ Rn×m and initial endmember matrix A0 obtained by VCA.
Output: Abundance matrix S ∈ Rr×m and endmember matrix A ∈ Rn×r.
Step 1. Set t = 0, initialize S0 and Y0 with Equations (10) and (11).
while stopping conditions are not met, do
Step 2. Update endmembers and abundances in the constrained NMF framework
(2a) Update St+1 with Equation (16) [48,57,68].
(2b) Update At+1 with Equation (17) [48,57,68].
Step 3. Calculate pixels’ projections
(3a) Calculate r nonlinear midpoints ωq with Equation (5) [58].
(3b) Update pixels’ projections Yt+1 using Equation (11).
Step 4. t = t + 1.
End

4. Experimental Results

In this section, the unmixing performance of the proposed algorithm BCNMF is evaluated by
carrying out five experiments with the synthetic data, one experiment with a virtual citrus orchard
data, and two experiments with real hyperspectral images, respectively. Moreover, to demonstrate the
robustness of BCNMF, it is compared with a group of traditional and state-of-the-art linear or nonlinear
spectral unmixing algorithms. Accordingly, four supervised algorithms, including the famous linear
algorithm FCLS [6], GBM-based semiNMF [38], PPNM-based GDA [32], and MLM [37] are compared
for the abundance estimation by using true endmembers or the endmembers extracted by VCA [4].
Besides, four state-of-the-art unsupervised nonlinear spectral unmixing algorithms, including the
Fan-NMF [30], distance-based nonlinear simplex projection unmixing (DNSPU) [46], RNMF [54],
and bi-objective kernel NMF (Bio-KNMF) [57] have also been considered. Most of these algorithms
have been briefly described in the introduction. DNSPU adopts the geodesic distance to exploit the
data manifold and estimate both endmembers and abundances. Bio-KNMF combines the objective
functions of kernel NMF and NMF to formulate a bi-objective problem to be solved for unmixing.
In the following experiments when the true endmembers are unknown, the endmembers extracted
by VCA and abundances estimated by FCLS are used as the initialization for the Fan-NMF, RNMF,
Bio-KNMF, and the proposed algorithm.

According to the recommendatory parameter settings reported in the compared algorithms’
corresponding references, we make their configurations as follows to produce the best results.
The maximum numbers of iteration in Fan-NMF, RNMF, Bio-KNMF, and BCNMF are set to 300 and
τ = 1e− 5. δ that controls the ASC in GBM-semiNMF, BCNMF, and Fan-NMF is set to 10. λ that
balances the additional constraints in BCNMF and RNMF is equal to 0.1 (detailed discussions are given
in Section 4.1.5). For the DNSPU, the geodesic distance is used and K = 20 for the nearest-neighbor
graph [46]. A Gaussian kernel with parameter σ = 3 is applied in Bio-KNMF, and the weight α is
carefully selected from {0, 0.1, . . . , 0.9, 1} through cross-validation to obtain the best performance.
The experiments were performed on a computer with a 4-GHz Intel Core i7 CPU and 32 GB of memory.

Since BCNMF is an unsupervised algorithm, both the accuracies of estimated endmembers and
abundances should be analyzed. In order to provide the quantitative evaluation for different algorithms’
experimental results, two classical performance metrics are defined, i.e., endmembers mean spectral
angle distance (MSAD) [11] in Equation (19) and root mean square error (RMSE) [6] of abundance
in Equation (20). Over the years, they have been widely used for evaluating unmixing results in
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numerous published works [6–12,15–25]. MSAD measures the similarity between true and estimated
endmembers, while RMSE denotes the approximation error between true and estimated abundances.

MSAD =
1
r

r

∑
i=1

cos−1(
aT

i ãi

‖ai‖‖ãi‖
) (19)

RMSE =

√
1

mr

m

∑
i=1
‖si − s̃i‖2

2 (20)

In Equations (19) and (20), ai and ãi represent a true endmember and an estimated endmember,
respectively. si and s̃i are the true abundance and estimated abundance, respectively. Since the FCLS,
GBM-semiNMF, PPNMGDA, and MLM are all supervised unmixing algorithms, only six algorithms’
MSADs of extracted endmembers are compared.

On the other hand, it is noted that the issue of unavailable true endmembers and abundances in
real hyperspectral images always hinders convincible quantitative evaluation in practice. Many works
had to use a metric-like reconstruction error (RE) or signal-to-reconstruction error (SRE) [69] as
a reference criterion for evaluation. However, a small value of RE does not really mean that accurate
endmembers and abundances are obtained due to the possible occurrence of over-fitting [34,38].
Therefore, we first use a recent physical-based simulated data of a virtual citrus orchard [33,34,70]
for unmixing in Section 4.2. It can be considered as a quasi-real hyperspectral data for studying
nonlinearity, and true endmembers and abundances are known. Then, in the case of two real
hyperspectral images, the reconstructed linear mixture components (i.e., ÃS̃) instead of the
reconstructed images are used to calculate the SRELMM(dB) in Equation (21) to give a fair comparison.
A large SRELMM indicates that an algorithm may not reflect the sufficient nonlinear components.

SRELMM = 10 log10

(
E
(
‖X‖2

2

)
/E
(
‖X− ÃS̃‖2

2

))
(21)

4.1. Experiments with Synthetic Data

Three types of synthetic data based on the FM, GBM, and PPNM are generated. Nine material
spectra are selected as the endmembers from the US Geological Survey (USGS) digital spectral library.
Trees, grass, and several minerals are included (see Figure 9) which are common ground covers
associated with the nonlinear mixing effect [26,27]. According to the Dirichlet distribution [4],
2000 pixels’ abundances are randomly generated for each data type. Generally, the maximum
abundance is set to 0.8 so that no pure pixels exist, and data is highly mixed. Moreover, data with
different degrees of mixing is also provided in the third experiment to evaluate the sensitivity
of algorithms. In terms of the GBM, the nonlinear parameter γi,k,j is uniformly drawn in the
set [0, 1], while, the parameter ξ j of the PPNM is uniformly drawn from (−0.3, 0.3) as reported
in the reference [32]. Finally, the endmembers, abundances, and nonlinear parameters are substituted
into three BMMs to produce the corresponding pixels, and additive white Gaussian noise is further
added to the data.

As illustrated in the previous sections, the collinearity acts as an essential obstacle in nonlinear
spectral unmixing, because the virtual endmembers are highly correlated to true endmembers.
Therefore, before conducting the experiments, the true endmembers’ minimum VIFs [51,52] are first
adopted to compare the collinearity quantitatively when true and virtual endmembers are regarded
as the explanatory variables. If a true endmember’s VIF is smaller, it is hard to be explained by
other variables, and the effect of collinearity on it is negligible [51–53]. In Table 2, as the number
of endmembers increases, VIFs always increase; but when only true endmembers are considered as
the explanatory variables, VIFs are very small. On the contrary, when the virtual endmembers are
used, VIFs increase dramatically to very high values, and it is much easier for true endmembers to be
explained by the other variables because of the serious collinearity, resulting in the larger errors for
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unmixing. Even if there are only three endmembers, the collinearity is prominent when considering the
virtual endmembers. Accordingly, in the proposed algorithm, since the geometric projection enables
the virtual endmembers to be ignored, a great improvement in accuracy can be observed in the results
of subsequent experiments.
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Figure 9. Endmember spectra. (a) Maple_Leaves DW92-1; (b) Olivine GDS70.a Fo89 165 um;
(c) Calcite CO2004; (d) Quartz GDS74 Sand Ottawa; (e) Grass_dry.9+.1green AMX32;
(f) Muscovite GDS107; (g) Alunite GDS82 Na82; (h) Uralite HS345.3B; (i) Mascagnite GDS65.a.

Table 2. Comparison of minimum variance inflation factors (VIFs) under different numbers
of endmembers.

Number of Endmembers True Endmembers True and Virtual Endmembers

3 5.1 5191.6
5 19.5 113,198.5
7 21.2 253,791.4
9 21.9 882,106.4

Using the synthetic data, five experiments have been designed for evaluating the compared
algorithms. In the first experiment, the effect of collinearity on unmixing is first analyzed by
using different numbers of known true endmembers. In this sense, the procedures of updating
endmembers in five unsupervised nonlinear unmixing algorithms FanNMF, DNSPU, RNMF,
Bio-KNMF, and the proposed BCNMF are omitted. Only the results of estimated abundances
are compared. Then, algorithms’ robustness to the number of endmembers is analyzed when
endmembers are unknown. In the second experiment, the robustness of the algorithms to noise
are compared by changing the Signal Noise Ratio (SNR = 10 log10(E[xTx]/E[εTε])) [2]. Next, the third
experiment is carried out to evaluate the influence of the degree of mixing on the algorithms’
unmixing performances. These experiments have been executed independently twenty times, and the
results’ averages and standard deviations are listed in the subsequent tables. The complexity and
convergence of the proposed algorithm are analyzed, and the computational time is also compared in
the fourth experiment. Finally, the impact of regularization parameter λ on BCNMF is discussed in the
last experiment.

4.1.1. Robustness to the Collinearity and the Number of Endmembers

In order to illustrate the proposed BCNMF’s advantage in addressing the collinearity,
true endmembers are first adopted for each algorithm to compare the accuracy of the abundance
estimation. The SNR is 40 dB in this experiment. The endmembers are not updated in five unsupervised
algorithms. Particularly, geometric projection coordinates (i.e., Equation (10)) obtained by BCNMF are



Remote Sens. 2018, 10, 801 18 of 34

directly used as the estimated abundances without any iterations. Table 3 displays the corresponding
results when the numbers of endmembers are changed. It can be observed that BCNMF always
performs much better than the other three state-of-the-art unsupervised algorithms. Compared with
the supervised algorithms such as PPNMGDA which resort to multiple iterations, BCNMF is just slightly
worse when the number of endmembers is three or five. It seems that the projection bias turns to be
remarkable in this case, because the de-biasing process is omitted in BCNMF (more accurate results
obtained by using de-biasing are provided in [58]).

However, if there are more endmembers (seven and nine) when the collinearity is more serious
(see Table 2), BCNMF has the best results compared with other algorithms. It can be concluded that
when true endmembers are known (i.e., doing the supervised unmixing), the procedure of geometric
projection in the proposed algorithms is still able to produce satisfactory estimated abundances without
de-biasing. Moreover, the effect of collinearity is reduced through projecting BMM pixels into their
approximate linear mixture components.

Next, data with the maximum abundance 0.8 are generated to evaluate the algorithms by changing
the number of endmembers, and SNR is 40 dB. Table 4 shows the endmember extraction results.
BCNMF performs the best, and it is clear that accurate endmembers can always be obtained because of
the combination of geometric projection and constrained NMF. Geometric projection enables BCNMF
to get over the collinearity. Using the linearly-mixed projections, minimum-distance-constrained NMF
helps to find the endmembers and alleviate the local minima for highly-mixed data. VCA and
DNSPU could not provide endmembers as accurate as other algorithms. This is because these
two algorithms are based on the assumption that pure pixels exist in the data, which may be not
suitable for the highly-mixed data. Moreover, in Table 5, the accuracies of estimated abundances are
compared. Although algorithms like GBM-semiNMF, PPNMGDA and RNMF have shown competitive
performances especially for their corresponding model-based data, BCNMF always provides the most
accurate abundances. Comparing with the results in Table 3, it is observed that when endmembers
are inaccurate, a large drop appears in the accuracies of estimated abundances produced by all other
supervised or unsupervised algorithms. Nevertheless, this situation does not significantly impact the
BCNMF’s results. Experimental results imply that the number of endmembers does not affect the
BCNMF much. This can be explained because the issue of collinearity seems to be addressed by the
process of geometric projection, and local minima have been alleviated by adding useful constraints
into the NMF framework.

4.1.2. Noise Robustness Analysis

In this experiment, three different BMM-based synthetic data are generated by five endmembers,
and the SNR is set as 60 dB, 50 dB, 40 dB, 30 dB and 20 dB, respectively, to study the noise’s impact on
the proposed algorithm. In Tables 6 and 7, MSADs and RMSEs of the compared algorithms are given.
The proposed algorithm BCNMF has shown the best unmixing performance no matter what the data
is. As the SNR decreases, both the accuracies of estimated endmembers and abundances provided
by most algorithms tend to be worse. From the results, one can see that RNMF can obtain accurate
endmembers for three types of data because it is a model robust algorithm. DNSPU seems to be affected
by noise at a high level, especially when SNR is equal to 20 dB. For this case it also needs the presence
of pure pixels, and the calculation of geodesic distance is sensitive to noise. Bio-KNMF has a good
accuracy of abundances, but the estimated endmembers are the worst, indicating that endmembers
may be mapped into the high-dimensional feature space in an inappropriate way. In terms of specific
model-based algorithms such as the GBM-semiNMF and PPNMGDA, more accurate results appear in
the unmixing for the corresponding model-based data. Since the MLM is a general model including all
degrees of multiple scatterings, it shows good performances in unmixing different BMM-based data
as well. Compared with RNMF and BCNMF, Fan-NMF does not add extra constraints into the NMF,
which often makes it perform worse and fall into local minima easily. In this experiment, it can be seen
that BCNMF is superior for all BMM-based data, and has good robustness to noise.
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Table 3. Root mean square errors (RMSEs) of all algorithms with different numbers of true endmembers (supervised).

Models Number of
Endmembers FCLS [6] FanNMF [48] GBMsemiNMF

[38] PPNMGDA [32] MLM [37] DNSPU [46] RNMF [54] Bio-KNMF [57] BCNMF

RMSE

FM

3 0.0611 ± 0.0000 0.0110 ± 0.0000 0.0322 ± 0.0001 0.0297 ± 0.0001 0.1042 ± 0.0001 0.0689 ± 0.0006 0.0492 ± 0.0005 0.0731 ± 0.0000 0.0340 ± 0.0340
5 0.1132 ± 0.0000 0.0774 ± 0.0000 0.0987 ± 0.0001 0.0186 ± 0.0003 0.0888 ± 0.0001 0.1710 ± 0.0126 0.1081 ± 0.0000 0.1056 ± 0.0000 0.0265 ± 0.0265
7 0.1317 ± 0.0000 0.0927 ± 0.0000 0.1161 ± 0.0000 0.0223 ± 0.0008 0.1352 ± 0.0000 0.1719 ± 0.0081 0.1236 ± 0.0001 0.1255 ± 0.0000 0.0194 ± 0.0194
9 0.1325 ± 0.0000 0.0973 ± 0.0000 0.1169 ± 0.0001 0.0225 ± 0.0011 0.1285 ± 0.0000 0.1615 ± 0.0136 0.1263 ± 0.0002 0.1285 ± 0.0000 0.0162 ± 0.0162

GBM

3 0.0345 ± 0.0000 0.0359 ± 0.0001 0.0210 ± 0.0001 0.0192 ± 0.0000 0.0535 ± 0.0001 0.0529 ± 0.0007 0.0298 ± 0.0005 0.0418 ± 0.0000 0.0214 ± 0.0000
5 0.0662 ± 0.0000 0.0573 ± 0.0000 0.0587 ± 0.0001 0.0139 ± 0.0002 0.0472 ± 0.0001 0.2003 ± 0.0070 0.0636 ± 0.0000 0.0598 ± 0.0001 0.0179 ± 0.0000
7 0.0789 ± 0.0000 0.0637 ± 0.0000 0.0717 ± 0.0001 0.0160 ± 0.0003 0.0732 ± 0.0001 0.1613 ± 0.0072 0.0755 ± 0.0001 0.0754 ± 0.0000 0.0149 ± 0.0001
9 0.0806 ± 0.0000 0.0660 ± 0.0001 0.0735 ± 0.0001 0.0158 ± 0.0005 0.0742 ± 0.0001 0.1631 ± 0.0115 0.0779 ± 0.0001 0.0783 ± 0.0000 0.0132 ± 0.0001

PPNM

3 0.0594 ± 0.0000 0.0725 ± 0.0000 0.0484 ± 0.0001 0.0029 ± 0.0011 0.0547 ± 0.0001 0.0932 ± 0.0004 0.0730 ± 0.0001 0.0525 ± 0.0000 0.0112 ± 0.0000
5 0.0768 ± 0.0000 0.0691 ± 0.0000 0.0652 ± 0.0001 0.0081 ± 0.0007 0.0495 ± 0.0001 0.1975 ± 0.0099 0.0795 ± 0.0000 0.0673 ± 0.0000 0.0146 ± 0.0001
7 0.0786 ± 0.0000 0.0739 ± 0.0000 0.0696 ± 0.0000 0.0146 ± 0.0006 0.0621 ± 0.0001 0.1829 ± 0.0175 0.0800 ± 0.0001 0.0705 ± 0.0000 0.0123 ± 0.0001
9 0.0727 ± 0.0000 0.0681 ± 0.0000 0.0656 ± 0.0000 0.0156 ± 0.0005 0.0613 ± 0.0001 0.1660 ± 0.0166 0.0734 ± 0.0000 0.0674 ± 0.0000 0.0121 ± 0.0001

Table 4. MSADs of all algorithms with different numbers of endmembers.

Models Number of
Endmembers VCA [4] Fan-NMF [48] DNSPU [46] RNMF [54] Bio-KNMF [57] BCNMF

MSAD

FM

3 8.8265 ± 0.3536 5.2502 ± 0.3473 9.0515 ± 0.0190 5.0690 ± 0.2925 6.8671 ± 0.3421 2.0462 ± 0.2358
5 5.6533 ± 0.7541 5.7124 ± 0.6451 7.7206 ± 0.4463 5.1270 ± 1.0004 6.9426 ± 0.6995 1.1358 ± 0.0226
7 5.0358 ± 0.7853 5.2417 ± 0.4250 6.6328 ± 0.6447 4.6294 ± 0.4233 5.8363 ± 0.3533 1.4401 ± 0.4295
9 6.7803 ± 0.4831 6.7997 ± 0.3673 8.4783 ± 0.8827 6.5700 ± 0.6705 7.0620 ± 0.3964 2.1292 ± 0.6556

GBM

3 8.0771 ± 0.1951 5.1468 ± 0.2066 9.1713 ± 0.3667 4.9098 ± 0.4338 6.6004 ± 0.0406 1.6405 ± 0.1271
5 5.0001 ± 0.3321 5.3684 ± 0.2490 7.0954 ± 0.8766 4.2958 ± 0.3425 5.8363 ± 0.2128 1.0418 ± 0.0545
7 4.4557 ± 0.6821 4.4152 ± 0.6657 6.5340 ± 0.3408 4.2153 ± 1.1267 4.8520 ± 0.0995 0.9470 ± 0.0655
9 6.5236 ± 0.2947 6.5768 ± 0.2435 7.3865 ± 0.3825 6.2732 ± 0.3615 6.3688 ± 0.3057 2.3192 ± 0.0915

PPNM

3 6.8858 ± 0.2760 4.4980 ± 0.8266 8.3913 ± 0.3780 4.6595 ± 0.2908 6.3666 ± 0.6336 1.1441 ± 0.3204
5 4.7601 ± 0.6423 4.7758 ± 0.4575 6.9357 ± 0.5677 4.1588 ± 0.4930 5.1088 ± 0.3059 1.0886 ± 0.3378
7 4.9075 ± 0.4970 5.2785 ± 0.4148 9.4223 ± 0.2541 4.6159 ± 0.4678 5.5037 ± 0.0872 1.7113 ± 0.2294
9 6.1033 ± 0.3987 6.5077 ± 0.2628 7.6376 ± 0.2784 5.8120 ± 0.3507 6.2541 ± 0.3128 1.6238 ± 0.1240
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Table 5. RMSEs of all algorithms with different numbers of endmembers.

Models Number of
Endmembers FCLS (VCA) [6] FanNMF [48] GBMsemiNMF

(VCA) [38]
PPNMGDA
(VCA) [32]

MLM (VCA)
[37] DNSPU [46] RNMF [54] Bio-KNMF [57] BCNMF

RMSE

FM

3 0.0982 ± 0.0042 0.0623 ± 0.0019 0.1023 ± 0.0038 0.0957 ± 0.0089 0.1398 ± 0.0071 0.0725 ± 0.0005 0.0814 ± 0.0038 0.0949 ± 0.0038 0.0407 ± 0.0034
5 0.1294 ± 0.0271 0.1051 ± 0.0110 0.1188 ± 0.0307 0.0862 ± 0.0314 0.1191 ± 0.0220 0.1922 ± 0.0092 0.4016 ± 1.0598 0.1305 ± 0.0307 0.0168 ± 0.0002
7 0.1391 ± 0.0256 0.1202 ± 0.0154 0.1259 ± 0.0236 0.0864 ± 0.0232 0.1319 ± 0.0164 0.1719 ± 0.0118 0.4827 ± 0.9507 0.1571 ± 0.0236 0.0137 ± 0.0039
9 0.1342 ± 0.0190 0.1333 ± 0.0167 0.1262 ± 0.0183 0.1175 ± 0.0185 0.1350 ± 0.0145 0.1515 ± 0.0078 0.3043 ± 0.5374 0.1407 ± 0.0183 0.0140 ± 0.0096

GBM

3 0.0984 ± 0.0026 0.0691 ± 0.0016 0.0956 ± 0.0052 0.0856 ± 0.0043 0.1032 ± 0.0065 0.0688 ± 0.0026 0.0824 ± 0.0022 0.0955 ± 0.0052 0.0353 ± 0.0021
5 0.1097 ± 0.0332 0.1007 ± 0.0323 0.1033 ± 0.0347 0.0802 ± 0.0223 0.0873 ± 0.0179 0.1963 ± 0.0056 0.1700 ± 0.1802 0.0972 ± 0.0347 0.0166 ± 0.0007
7 0.0988 ± 0.0142 0.0940 ± 0.0119 0.0922 ± 0.0136 0.0719 ± 0.0134 0.0966 ± 0.0116 0.1667 ± 0.0122 0.0980 ± 0.0151 0.0967 ± 0.0136 0.0144 ± 0.0006
9 0.1405 ± 0.0124 0.1315 ± 0.0110 0.1333 ± 0.0130 0.1246 ± 0.0115 0.1389 ± 0.0090 0.1578 ± 0.0074 0.1440 ± 0.0192 0.1287 ± 0.0130 0.0165 ± 0.0320

PPNM

3 0.1328 ± 0.0281 0.1122 ± 0.0215 0.1372 ± 0.0385 0.1018 ± 0.0102 0.1029 ± 0.0107 0.1457 ± 0.0013 0.1164 ± 0.0184 0.1169 ± 0.0385 0.0402 ± 0.0060
5 0.1393 ± 0.0180 0.1269 ± 0.0156 0.1289 ± 0.0197 0.0794 ± 0.0145 0.0881 ± 0.0184 0.2021 ± 0.0088 0.1352 ± 0.0170 0.1282 ± 0.0197 0.0290 ± 0.0029
7 0.1300 ± 0.0078 0.1246 ± 0.0080 0.1225 ± 0.0085 0.0806 ± 0.0091 0.0964 ± 0.0070 0.1798 ± 0.0116 0.1278 ± 0.0078 0.1302 ± 0.0085 0.0265 ± 0.0024
9 0.1317 ± 0.0132 0.1331 ± 0.0107 0.1289 ± 0.0125 0.1059 ± 0.0130 0.1194 ± 0.0125 0.1579 ± 0.0085 0.1341 ± 0.0139 0.1338 ± 0.0125 0.0183 ± 0.0010

Table 6. MSADs of all algorithms with different SNRs.

Models SNR VCA [4] Fan-NMF [48] DNSPU [46] RNMF [54] Bio-KNMF [57] BCNMF

MSAD

FM

60 dB 5.1928 ± 0.8362 5.1790 ± 0.6528 7.0513 ± 0.1545 4.3165 ± 0.3696 6.0327 ± 0.1460 0.9740 ± 0.5282
50 dB 5.3686 ± 0.8261 5.6142 ± 0.6142 6.8207 ± 0.0189 4.8229 ± 0.6007 6.2430 ± 0.2802 1.0818 ± 0.8847
40 dB 5.6533 ± 0.7541 5.7124 ± 0.6451 7.7206 ± 0.4463 5.1270 ± 1.0004 6.9426 ± 0.6995 1.1358 ± 0.0226
30 dB 5.9726 ± 0.8138 5.4218 ± 0.6051 8.0765 ± 0.4096 5.2381 ± 1.2090 6.4824 ± 0.7723 1.3058 ± 0.1420
20 dB 6.5694 ± 1.2014 6.1931 ± 0.9105 11.7315 ± 1.5761 5.3623 ± 1.3975 6.3718 ± 0.5830 2.4998 ± 0.4998

GBM

60 dB 5.4980 ± 0.5312 5.7940 ± 0.5142 6.8903 ± 0.0024 4.7873 ± 0.7274 6.4455 ± 0.1232 0.9570 ± 0.2143
50 dB 5.1095 ± 0.8606 5.1122 ± 0.8300 6.8639 ± 0.5065 4.4089 ± 1.0767 5.8294 ± 0.5911 0.7909 ± 0.0658
40 dB 5.0001 ± 0.3321 5.3684 ± 0.2490 7.0954 ± 0.8766 4.2958 ± 0.3425 5.8363 ± 0.2128 1.0418 ± 0.0545
30 dB 5.5078 ± 0.9006 5.7078 ± 0.7290 9.1409 ± 0.6889 4.7647 ± 0.8881 5.9193 ± 0.6545 0.7008 ± 0.2155
20 dB 5.9762 ± 0.8217 6.0560 ± 0.6121 12.3400 ± 1.3026 4.6946 ± 1.0708 6.8835 ± 0.7300 3.2856 ± 0.5320

PPNM

60 dB 4.0249 ± 0.8929 4.3834 ± 0.3254 8.3420 ± 0.0742 3.6025 ± 0.5287 5.0740 ± 0.1237 1.5931 ± 0.2954
50 dB 4.8456 ± 0.5121 5.1456 ± 0.3779 9.0909 ± 0.0072 4.3166 ± 0.5222 6.1868 ± 0.4230 2.0639 ± 0.1513
40 dB 4.7601 ± 0.6423 4.7758 ± 0.4575 6.9357 ± 0.5677 4.1588 ± 0.4930 5.1088 ± 0.3059 1.0886 ± 0.3378
30 dB 4.1925 ± 0.5707 4.9437 ± 0.4154 10.8538 ± 1.2705 3.7890 ± 0.4622 5.8690 ± 0.4303 1.8610 ± 0.2670
20 dB 6.5477 ± 1.1170 6.2704 ± 0.7471 12.9161 ± 0.8390 5.0067 ± 1.2445 6.8309 ± 1.1485 3.2091 ± 1.1020
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Table 7. RMSEs of all algorithms with different SNRs.

Models SNR FCLS (VCA) [6] Fan-NMF [48] GBM-semiNMF
(VCA) [38]

PPNMGDA
(VCA) [32]

MLM (VCA)
[37] DNSPU [46] RNMF [54] Bio-KNMF [57] BCNMF

RMSE

FM

60 dB 0.1415 ± 0.0371 0.1184 ± 0.0329 0.1346 ± 0.0460 0.0899 ± 0.0342 0.1185 ± 0.0280 0.1874 ± 0.0086 0.1591 ± 0.0932 0.1293 ± 0.0460 0.0164 ± 0.0037
50 dB 0.1455 ± 0.0461 0.1180 ± 0.0293 0.1413 ± 0.0618 0.0872 ± 0.0359 0.1171 ± 0.0246 0.2146 ± 0.0006 0.1541 ± 0.1233 0.1308 ± 0.0618 0.0172 ± 0.0096
40 dB 0.1294 ± 0.0271 0.1051 ± 0.0110 0.1188 ± 0.0307 0.0862 ± 0.0314 0.1191 ± 0.0220 0.1922 ± 0.0092 0.4016 ± 1.0598 0.1305 ± 0.0307 0.0168 ± 0.0002
30 dB 0.1346 ± 0.0238 0.1095 ± 0.0165 0.1242 ± 0.0258 0.0880 ± 0.0141 0.1124 ± 0.0120 0.1851 ± 0.0076 0.4072 ± 0.6097 0.1430 ± 0.0258 0.0235 ± 0.0011
20 dB 0.1393 ± 0.0316 0.1152 ± 0.0230 0.1305 ± 0.0314 0.1237 ± 0.0258 0.1367 ± 0.0205 0.1881 ± 0.0096 0.3870 ± 0.4029 0.1369 ± 0.0314 0.0527 ± 0.0093

GBM

60 dB 0.1007 ± 0.0113 0.0918 ± 0.0092 0.0941 ± 0.0130 0.0743 ± 0.0089 0.0877 ± 0.0113 0.1797 ± 0.0007 0.2201 ± 0.5056 0.1089 ± 0.0130 0.0170 ± 0.0041
50 dB 0.1190 ± 0.0268 0.1015 ± 0.0124 0.1147 ± 0.0364 0.0811 ± 0.0284 0.0963 ± 0.0199 0.2028 ± 0.0131 0.1566 ± 0.1563 0.1151 ± 0.0364 0.0167 ± 0.0004
40 dB 0.1097 ± 0.0332 0.1007 ± 0.0323 0.1033 ± 0.0347 0.0802 ± 0.0223 0.0873 ± 0.0179 0.1963 ± 0.0056 0.1700 ± 0.1802 0.0972 ± 0.0347 0.0166 ± 0.0007
30 dB 0.1268 ± 0.0563 0.1150 ± 0.0507 0.1232 ± 0.0656 0.0846 ± 0.0326 0.0943 ± 0.0285 0.1896 ± 0.0102 0.1679 ± 0.1234 0.1360 ± 0.0656 0.0224 ± 0.0009
20 dB 0.1103 ± 0.0244 0.1000 ± 0.0182 0.1051 ± 0.0248 0.1082 ± 0.0225 0.1174 ± 0.0229 0.1881 ± 0.0096 0.2124 ± 0.3105 0.1317 ± 0.0248 0.0587 ± 0.0092

PPNM

60 dB 0.1235 ± 0.0158 0.1163 ± 0.0109 0.1097 ± 0.0163 0.0676 ± 0.0138 0.0804 ± 0.0111 0.2035 ± 0.0049 0.1205 ± 0.0145 0.1290 ± 0.0163 0.0278 ± 0.0030
50 dB 0.1185 ± 0.0171 0.1101 ± 0.0108 0.1065 ± 0.0199 0.0713 ± 0.0134 0.0854 ± 0.0118 0.2146 ± 0.0001 0.1160 ± 0.0158 0.1192 ± 0.0199 0.0227 ± 0.0033
40 dB 0.1393 ± 0.0180 0.1269 ± 0.0156 0.1289 ± 0.0197 0.0794 ± 0.0145 0.0881 ± 0.0184 0.2021 ± 0.0088 0.1352 ± 0.0170 0.1282 ± 0.0197 0.0290 ± 0.0029
30 dB 0.1220 ± 0.0183 0.1124 ± 0.0142 0.1083 ± 0.0217 0.0700 ± 0.0141 0.0800 ± 0.0137 0.2260 ± 0.0189 0.1202 ± 0.0183 0.1253 ± 0.0217 0.0338 ± 0.0018
20 dB 0.1583 ± 0.0327 0.1448 ± 0.0238 0.1439 ± 0.0308 0.1402 ± 0.0379 0.1463 ± 0.0292 0.1961 ± 0.0083 0.1501 ± 0.0287 0.1535 ± 0.0308 0.0681 ± 0.0127
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4.1.3. Analysis of Sensitivity to the Degree of Mixing

In this experiment, the performance of the compared algorithms for the BMM-based data with
different degrees of mixing (max abundance) is discussed, especially when data are highly mixed and
when pure pixels exist. To produce the synthetic data, max abundance ranges from 0.7 to 1, the number
of endmembers is five and SNR is 40 dB. From Table 8, it can be seen that as the max abundance
decreases, an obvious drop appears in the accuracy of endmembers extracted by VCA. Moreover,
Fan-NMF, RNMF, and Bio-KNMF also show a similar tendency, because they are initialized by VCA
but fail to get much better results. On the other hand, although endmembers extracted by VCA are
also used for the initiation of BCNMF, it has not been affected because the pixels’ linearly-mixed
projections motivate the update of endmembers to work in a reasonable way under the constrained
NMF framework. The minimum distance constraint enables NMF to find accurate endmembers for
data in different mixing degrees. Similar situations happen in the abundance estimation, and related
results are shown in Table 9. When the degree of mixing is high, VCA could not find the correct
endmembers, and RMSEs of estimated abundances decrease as well. In this experiment, BCNMF still
performs the best, owing to the combination of geometric projection and constrained NMF, which has
considerably decreased the negative effect of the collinearity and local minima on the unsupervised
nonlinear spectral unmixing.
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Table 8. MSADs of all algorithms with different degrees of mixing.

Models Max Abundance VCA [4] Fan-NMF [48] DNSPU [46] RNMF [54] Bio-KNMF [57] BCNMF

MSAD

FM

0.7 7.7840 ± 1.0534 6.9663 ± 1.1162 7.5963 ± 0.2214 7.2176 ± 1.1828 7.4572 ± 0.1805 1.1660 ± 0.5538
0.8 5.6533 ± 0.7541 5.7124 ± 0.6451 7.7206 ± 0.4463 5.1270 ± 1.0004 6.9426 ± 0.6995 1.1358 ± 0.0226
0.9 4.3791 ± 0.8241 4.8034 ± 0.7321 5.1020 ± 0.5421 3.8174 ± 0.4699 5.7547 ± 0.3975 0.9011 ± 0.0733
1 4.7055 ± 1.0148 5.1588 ± 0.9478 7.6675 ± 0.4714 4.1536 ± 0.5129 5.7145 ± 0.1970 1.0095 ± 0.1880

GBM

0.7 7.7015 ± 0.5855 7.0277 ± 0.8111 8.8795 ± 1.1814 7.0326 ± 0.8482 7.7303 ± 0.3737 0.9683 ± 1.7619
0.8 5.0001 ± 0.3321 5.3684 ± 0.2490 7.0954 ± 0.8766 4.2958 ± 0.3425 5.8363 ± 0.2128 1.0418 ± 0.0545
0.9 4.2771 ± 1.0941 4.7508 ± 0.7525 8.4035 ± 0.0505 3.5803 ± 1.1407 5.6849 ± 0.6202 0.7750 ± 0.5719
1 2.6242 ± 0.1061 3.9734 ± 0.1708 4.0788 ± 0.5298 2.4895 ± 0.0869 4.9445 ± 0.1268 0.9758 ± 0.1239

PPNM

0.7 7.4006 ± 0.7382 6.8323 ± 0.7830 7.7807 ± 0.1733 6.5748 ± 0.7546 7.1743 ± 0.1597 1.1779 ± 0.3369
0.8 4.7601 ± 0.6423 4.7758 ± 0.4575 6.9357 ± 0.5677 4.1588 ± 0.4930 5.1088 ± 0.3059 1.0886 ± 0.3378
0.9 3.4342 ± 0.5611 3.9414 ± 0.5186 9.0882 ± 1.2471 3.2336 ± 0.4365 5.6435 ± 0.4376 1.5625 ± 0.1865
1 3.4667 ± 0.6525 4.1188 ± 0.4211 7.1567 ± 0.4224 3.1905 ± 0.5277 5.3384 ± 0.6197 1.3672 ± 0.1360

Table 9. RMSEs of all algorithms with different degrees of mixing.

Models Max
Abundance FCLS (VCA) [6] Fan-NMF [48] GBM-semiNMF

(VCA) [38]
PPNMGDA
(VCA) [32]

MLM (VCA)
[37] DNSPU [46] RNMF [54] Bio-KNMF [57] BCNMF

RMSE

FM

0.7 0.1724 ± 0.0358 0.1396 ± 0.0304 0.1691 ± 0.0474 0.1306 ± 0.0405 0.1567 ± 0.0384 0.1808 ± 0.0078 0.3704 ± 0.3597 0.1580 ± 0.0474 0.0169 ± 0.0367
0.8 0.1294 ± 0.0271 0.1051 ± 0.0110 0.1188 ± 0.0307 0.0862 ± 0.0314 0.1191 ± 0.0220 0.1922 ± 0.0092 0.4016 ± 1.0598 0.1305 ± 0.0307 0.0168 ± 0.0002
0.9 0.1271 ± 0.0396 0.1071 ± 0.0314 0.1204 ± 0.0458 0.0724 ± 0.0321 0.1056 ± 0.0265 0.1850 ± 0.0180 0.1637 ± 0.2366 0.1193 ± 0.0458 0.0168 ± 0.0008
1 0.1457 ± 0.0496 0.1273 ± 0.0408 0.1408 ± 0.0603 0.0913 ± 0.0378 0.1201 ± 0.0288 0.1903 ± 0.0119 0.5205 ± 0.9566 0.1245 ± 0.0603 0.0171 ± 0.0028

GBM

0.7 0.1443 ± 0.0291 0.1210 ± 0.0248 0.1351 ± 0.0312 0.1161 ± 0.0278 0.1247 ± 0.0312 0.2083 ± 0.0099 0.4591 ± 0.8457 0.1299 ± 0.0312 0.0176 ± 0.0213
0.8 0.1097 ± 0.0332 0.1007 ± 0.0323 0.1033 ± 0.0347 0.0802 ± 0.0223 0.0873 ± 0.0179 0.1963 ± 0.0056 0.1700 ± 0.1802 0.0972 ± 0.0347 0.0166 ± 0.0007
0.9 0.1043 ± 0.0277 0.0918 ± 0.0219 0.0987 ± 0.0306 0.0700 ± 0.0229 0.0834 ± 0.0195 0.1866 ± 0.0025 0.6296 ± 1.5157 0.1132 ± 0.0306 0.0167 ± 0.0049
1 0.0813 ± 0.0069 0.0764 ± 0.0058 0.0733 ± 0.0061 0.0413 ± 0.0031 0.0552 ± 0.0025 0.1930 ± 0.0075 0.0771 ± 0.0061 0.0908 ± 0.0061 0.0178 ± 0.0009

PPNM

0.7 0.1607 ± 0.0265 0.1418 ± 0.0196 0.1451 ± 0.0308 0.1172 ± 0.0277 0.1229 ± 0.0266 0.2025 ± 0.0079 0.1545 ± 0.0240 0.1515 ± 0.0308 0.0274 ± 0.0055
0.8 0.1393 ± 0.0180 0.1269 ± 0.0156 0.1289 ± 0.0197 0.0794 ± 0.0145 0.0881 ± 0.0184 0.2021 ± 0.0088 0.1352 ± 0.0170 0.1282 ± 0.0197 0.0290 ± 0.0029
0.9 0.1095 ± 0.0171 0.1055 ± 0.0156 0.0940 ± 0.0154 0.0558 ± 0.0180 0.0783 ± 0.0149 0.2342 ± 0.0040 0.1080 ± 0.0161 0.1151 ± 0.0154 0.0253 ± 0.0019
1 0.1230 ± 0.0263 0.1187 ± 0.0205 0.1044 ± 0.0316 0.0594 ± 0.0260 0.0719 ± 0.0204 0.1964 ± 0.0112 0.1204 ± 0.0252 0.1337 ± 0.0316 0.0235 ± 0.0022
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4.1.4. Complexity and Convergence Analysis

The complexity and convergence of the proposed algorithms are first analyzed in this experiment.
During t iterations of BCNMF, three update steps for calculating the pixels’ projections Y (5)–(11),
endmembers A (17), and abundances S (16) cost the most time. To be specific, in the process of
geometric projection, the computational costs of Equations (5), (9)–(11) are O(tr2n), O(t(r(r + 1)n2 +

(r + 1)3 + nr2(r + 1))), O(trmn2), and O(tr2mn), respectively. So, the computational complexity of
projection is O(t(r(r + 1)n2 + (r + 1)3 + nr2(r + 2) + rmn2 + r2mn)). On the other hand, under the
minimum-distance-constrained NMF framework, the total computational cost of updating A and
S based on the PG is O(2t(κr2(m + n) + rmn + rn)) where O(2trn) is the cost of calculating the
distance constraint (13). κ represents the average number of the checked condition [68] for updating
the step sizes αt and βt per iteration.

In order to further compare the computational time of the algorithms, the number of pixels
changes from 1000 to 4000 when the number of endmembers is five and SNR is 40 dB in the following
experiment. Table 10 displays the algorithms’ time costs for unmixing three different BMMs data. It can
be observed that as the number of pixels increases, more time is always needed for each algorithm.
In all cases, FCLS has the best speed without considering the nonlinearity. But nonlinear unmixing
methods such as PPNMGDA and Bio-KNMF need more time for calculation. Notably, the time cost
of BCNMF is considerably low compared with other NMF-based methods and the algorithms which
have good unmixing accuracies (e.g., PPNMGDA and MLM) in the previous experiments. It implies
that BCNMF may be a fast and efficient nonlinear unmixing algorithm.

Table 10. Time cost comparison of the algorithms (s).

Models Number
of Pixels

FCLS
[6]

FanNMF
[48]

GBM-semiNMF
[38]

PPNMGDA
[32]

MLM
[37]

DNSPU
[46]

RNMF
[54]

Bio-KNMF
[57] BCNMF

FM

1000 0.1239 4.1152 1.2758 53.5966 15.7729 1.5195 3.4219 148.6391 1.2356
2000 0.2273 5.2855 2.6185 99.8770 30.9716 5.9325 6.6961 291.4074 2.0923
3000 0.3489 9.1838 4.1724 135.5260 45.9855 12.1312 9.7336 431.4345 2.8586
4000 0.4403 17.1908 5.9542 161.9464 64.2482 25.9203 13.3124 639.6334 3.8118

GBM

1000 0.1200 2.3792 1.2907 41.7358 16.5592 1.6612 2.9935 154.0707 1.2892
2000 0.2000 4.9185 2.7440 90.5012 33.4882 5.8882 6.9182 300.5740 2.3254
3000 0.3958 9.6656 4.7533 88.6577 48.5171 13.1536 11.5889 448.1540 3.3518
4000 0.3981 16.7353 5.7010 138.8427 63.7448 24.6258 13.0360 632.6619 3.7500

PPNM

1000 0.1049 1.9698 1.2424 63.5584 17.0303 1.3595 3.4627 149.3477 1.1292
2000 0.1993 6.8100 2.6413 71.1788 34.0535 5.8834 6.7921 297.3334 2.0101
3000 0.3547 7.6955 4.2586 151.1831 46.1141 12.2787 9.6034 456.6310 2.7770
4000 0.3929 11.3194 5.5825 277.9795 85.2519 26.2875 11.1857 579.5540 3.6767

An experiment is further carried out to illustrate the convergence of BCNMF. Five endmembers
are used to generate three BMM-based data and the SNR is 40 dB. In Figure 10, the changing curves
of MSADs and RMSEs obtained by BCNMF for the FM, GBM, and PPNM based data are depicted.
Both the MSAD and RMSE have converged to the stable small values quickly. In Figure 10b, the initial
RMSEs are small because the abundances are initialized by the geometric projection, which has
the capability to project pixels onto their approximate linear mixture components (see details in
Section 3). Moreover, since the step of geometric projection is in line with the least squares [7] and the
convergence of PG to a stationary point for endmember-distance-constrained NMF is also satisfied,
referring to [12,68], the proposed algorithm BCNMF can always converge to get satisfactory unmixing
results after a sufficient number of iterations.
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Figure 10. Convergence analysis of BMM-based constrained NMF algorithm (BCNMF): (a) MSADs;
(b) RMSEs.

4.1.5. Parameter Sensitivity Analysis

This experiment is used to analyze the sensitivity of BCNMF’s performance to variations of
regularization parameter λ in Equation (12). A proper λ will help to find more accurate endmembers
even if pixels are highly mixed. The number of endmembers is five and SNR is 40 dB. The value of
λ is well selected from {0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2}. Figure 11a,b shows the change of the
accuracy of estimated endmembers and abundances, respectively. It can be observed that the overall
best unmixing results are obtained when λ is around 0.1 for three BMMs. A larger λ may quickly
decrease the accuracy. Although the RMSEs of abundances are still small when λ = 0, i.e., EMD in
Equation (12) is not considered, MSADs of estimated endmembers are worse than the case of λ = 0.1.
It is indicated that the use of minimum distance constraint in the NMF framework indeed helps to
alleviate the local minima and especially improve the endmember extraction for highly mixed data.
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4.2. Experiments with Virtual Orchard and Real Hyperspectral Images

A quasi-real hyperspectral data of virtual citrus orchard constituted by soil, weed, and trees
(see Figure 12a) [33,34,70] is first used for evaluation. It is simulated by an extended physically
based ray-tracing (PBRT) model [70] so that detailed light-rays’ transmission paths are known,
and multiple scattering effects can be modelled realistically. Illumination sources, sensor platforms,
geometry descriptions and material optical properties introduced in Table 11 construct the observed
scenes. Endmembers’ spectrum in Figure 12b are calibrated through replacing the remaining ground
covers with perfectly absorbing background, and averaging those pixels with abundances greater than
0.95 after rendering. This dataset was well calibrated by in situ data, and successfully adopted for
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evaluating nonlinear unmixing methods recently [34]. The water-vapor absorption bands (99–110,
143–161) were removed in the experiment.
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Figure 12. Virtual orchard dataset [34]: (a) high-resolution image (tree, soil and weed); (b) endmembers’
spectral curves.

Table 11. Description of virtual citrus orchard scene.

Scene Virtual Citrus Orchard

Illumination sources A directional light (direct light) and a skymap (diffuse light)

Sensor platforms

Full-range (350–2500 nm) analytic spectral devices Fieldspec JR
spectroradiometer with a 25 foreoptic;
sensor noise, drift, etc., are ignored; number of bands: 216;
spectral resolution: 10 nm; 20 × 20 pixels; spatial resolution: 2 m

Material optical properties

Description of photons’ interactions: bidirectional scattering distribution
function (BSDF) model
Ground covers’ spectrum: Tree (a calibrated citrus tree in [70]);
Weed (Lolium sp); Soil (dry Luvisol)

Geometry descriptions Leaves, branches and trunk are modeled as triangular meshes
Row spacing: 4.5 m; tree spacing: 2 m; tree height: 3 m; row azimuth: 7.3◦

With the use of true endmembers and abundances, quantitative unmixing results are provided
in Table 12. The proposed BCNMF under the assumptions of all three BMMs always obtained the
best MSADs and RMSEs. In particular, BCNMF based on the PPNM performs much better than other
methods. Moreover, it is noted that due to the big similarity of FM and GBM and the use of geometric
projection, BCNMF based on these two models obtained the same results. On the other hand, VCA also
extracted accurate endmembers because the spatial resolution is high and some pure pixels exist.

Table 12. Comparison of the algorithms for the virtual orchard and real hyperspectral datasets.

Dataset
Virtual Orchard AVIRIS HYDICE

MSAD RMSE SRELMM (dB)

VCA-FCLS [4,6] 7.0874 0.3494 28.4243 23.5525
Fan-NMF [48] 7.5851 0.3459 23.2673 20.0746

GBM-semiNMF [38] 7.0874 (VCA [4]) 0.3203 25.8111 28.6362
PPNMGDA [32] 7.0874 (VCA [4]) 0.2726 16.1437 17.5868

MLM [37] 7.0874 (VCA [4]) 0.2763 17.9693 19.6737
DNSPU [46] 7.5817 0.2886 21.6336 18.9756
RNMF [54] 8.3689 0.3491 28.4953 27.0158

Bio-KNMF [57] 7.7868 0.3480 29.3000 30.7360
BCNMF (FM) 7.0289 0.2681 13.5714 23.1293

BCNMF (GBM) 7.0289 0.2681 13.5714 23.1293
BCNMF (PPNM) 6.7619 0.2027 17.5071 19.5446
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Next, the performance of BCNMF is discussed using two well-chosen real hyperspectral images.
In the observed areas corresponding to them, ground cover mainly consists of vegetation, soil,
and so on, implying that the nonlinear mixing effect may be a non-negligible factor in spectral
unmixing [26–28,33,34]. Therefore, they are expected to provide a good test for the nonlinear unmixing
algorithms. The first image was acquired over Moffett Field, CA, by the Airborne Visible Infrared
Imaging Spectrometer (AVIRIS) in 1997. A region of interest (see Figure 13) with a size of 50×50 pixels
is selected, and the low SNR bands (1–7, 108–113, 152–169, 219–224) are removed, leaving the remaining
187 bands for the experiment. In fact, this dataset has been widely used for the algorithm evaluation of
both linear and nonlinear spectral unmixing in the past [31,32,49,54], the results in the previous works
provide the comparison and partial ground truth for the later discussion. Three types of ground cover,
including water, soil, and vegetation show a prominent presence in the sub-image of Figure 13.
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Figure 13. Region of interest in the Airborne Visible Infrared Imaging Spectrometer (AVIRIS)
Moffett image.

Since the detailed ground truth is not available, the endmembers’ spectral curves extracted
by BCNMF under the FM, GBM, and PPNM are provided in Figure 14, and compare the
estimated abundance maps of water, soil, and vegetation in Figure 15 according to the previous
results [31,32,49,54]. It can be observed from Figure 14 that three endmembers have been
determined well by BCNMF, and approach the real situations no matter what specific BMM is used.
Moreover, abundance maps in Figure 15 also display the similarity of the three materials’ distributions
to the published results and ground truth. In order to compare the unmixing results of BCNMF
with other algorithms’ and analyze the contribution of nonlinearity, the maps of differences between
the images reconstructed by the FCLS and other nonlinear spectral unmixing algorithms are further
provided in Figure 16. Pixels that are located on the boundary between water and soil (or vegetation)
can be easily observed in the corresponding results of BCNMF. Residual errors in these pixels are larger
because of the nonlinear mixing effect that has been effectively addressed in the proposed algorithm.
Other algorithms such as the PPNMGDA and RNMF also show good performances, but the Fan-NMF,
DNSPU and Bio-KNMF seem to be less robust for this dataset. SRELMM obtained by BCNMF with
respect to this dataset is shown in Table 12. Similar to the other nonlinear unmixing methods such as
PPNMGDA and MLM, obvious nonlinear components may be quantitatively reflected.
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Figure 14. Endmembers extracted by BCNMF based on three BMMs: (a) FM; (b) GBM; (c) PPNM.
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Imagery Collection Experiment (HYDICE) sensor over the Mall in Washington DC. After removing the
bands affected badly by noise and water absorption bands from the original dataset (210 bands),
100 × 100 pixels with 191 bands comprise the image for the experiment shown in Figure 17.
According to the report in [71] and the number of endmembers estimated by HySime [72], five materials
including the roofs, trees, water, roads, and grass are considered to be distributed in this area. Due to
the limited space, only abundance maps estimated by BCNMF are shown in Figure 18, and Table 12
shows the corresponding SRELMM of each algorithm. Five materials have been determined and can be
easily distinguished from each other. It can be seen that trees and grass occupy the largest area in the
image, and the nonlinear mixing effect is supposed to reach a high level between these two materials.
Therefore, the differences between the trees’ abundances estimated by the FCLS and other algorithms
are further compared in Figure 19. The fact that residual errors of trees’ abundances increase in the
area covered by both trees and grass is reflected by BCNMF as well.
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5. Discussion

In Section 4, both qualitative and quantitative evaluation of BCNMF and the compared algorithms
are presented in the experiments with synthetic data, virtual orchard data and real hyperspectral
remote sensing images. The comprehensive results can be very useful to validate BCNMF’s superiority
in unsupervised nonlinear unmixing.

5.1. Unmixing Accuracy Improvement by Addressing the Collinearity

Endmembers’ VIFs in Table 2 partly reflect that virtual endmembers can greatly increase the
collinearity’s negative influence in nonlinear unmixing. However, this issue can be well addressed
by the proposed BCNMF. It is mainly because that the procedure of geometric projection in
Equations (5)–(11) can prevent virtual endmembers from participating directly in the abundance
estimation. In this process, pixels’ approximate linear components can be obtained, and then
nonlinear unmixing is naturally transformed into the linear unmixing. Therefore, the impact
of collinearity is significantly reduced and the unmixing accuracy is improved in the proposed
method. Nevertheless, traditional algorithms such as Fan-NMF and PPNMGDA which rely on virtual
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endmembers for the parameter estimation will definitely suffer from the collinearity, resulting in larger
unmixing errors.

This viewpoint can be demonstrated by the results in Table 3 where true endmembers are assumed
to be known in advance. In this ideal situation, BCNMF shows better or competitive performance,
even if the projection coordinates (without any iterations) are directly adopted as the abundances for
comparison. We consider that the strong interference of virtual endmembers in unmixing is effectively
avoided because of the geometric projection. Moreover, it also implies that the impact of projection
bias seems to be weaker than the collinearity in most cases, partly leading to a reasonable explanation
of removing the de-biasing process in BCNMF. However, in the case of other compared algorithms,
the collinearity might affect seriously the abundance estimation, which cannot be actually addressed by
multiple iterations. Since the collinearity problem can be overcome, BCNMF still keeps its outstanding
unmixing performance in other experiments where more complex data (e.g., more endmembers and
lower SNRs) are considered. Quantitative results including endmembers’ MSADs and abundances’
RMSEs in Tables 4–9 prove reasonably that BCNMF is a robust and stable unsupervised nonlinear
unmixing algorithm.

Further, the proposed BCNMF is also validated in the experiments with a virtual orchard dataset
and two real hyperspectral images. Since true endmembers and abundances in the real hyperspectral
data are unknown, the virtual orchard physical-based dataset can be very useful for the quantitative
analysis. In Table 12, BCNMF has smaller RMSEs and MSADs than the other algorithms based on the
same BMMs, which indicates that it can obtain more accurate endmembers and abundances in this
quasi-real situation. In addition, the quantitative SRELMM with respect to the real data in Table 12 and
Figures 14–19 further illustrate that BCNMF is able to reflect the nonlinear components in practice like
other state-of-the-art methods (e.g., MLM). As stated earlier, we can also infer that the improvement of
accuracy in BCNMF mainly comes from the operation of geometric projection which decreases the
negative effect of collinearity.

5.2. Improvement of Endmember Extraction for Highly Mixed Nonlinear Data

Endmembers may be wrongly extracted by methods such as VCA especially when pixels
are highly mixed. The accuracy of the used endmembers can also influence the geometric
projection. Therefore, using the calculated pixels’ approximate linear components, NMF is further
exploited in BCNMF to update endmembers and abundances in an unsupervised way. In addition,
a minimum-endmember-distance constraint is incorporated into the framework of NMF to produce
better unmixing results.

Tables 8 and 9 show the algorithms’ sensitivities to the degree of mixing. BCNMF extracted the
most accurate endmembers no matter when the pixels were highly mixed or not. Besides, more accurate
abundances were also obtained by BCNMF. However, VCA failed to extract endmembers accurately,
especially when data was highly mixed. As a result, supervised methods (i.e., PPNMGDA,
GBM-semiNMF and MLM) using endmembers extracted by VCA could not obtain the abundances
as accurate as the results they produced when true endmembers were used in Table 3.
Moreover, other unsupervised NMF-based methods still could not outperform the proposed method.
It is because that the minimum distance constraint had alleviated the issue of local minima, and enabled
BCNMF to find accurate endmembers for data in different mixing degrees. The sensitivity analysis on
regularization parameter λ in Figure 11 further proves the necessity of this constraint. When the EMD
in Equation (12) is ignored (i.e., λ = 0), although RMSEs of the estimated abundances seem not to be
influenced, MSADs of the estimated endmembers are always worse than the case λ = 0.1 for all three
BMMs. Therefore, we can conclude that BCNMF could find more accurate endmembers compared
with other supervised or unsupervised unmixing algorithms, resulting from the incorporation of
minimum distance constraint in the NMF framework.

Moreover, Figure 10 proves that BCNMF has a good convergence for nonlinear unmixing. Table 10
further illustrates that the time cost of BCNMF is much lower than the algorithms like PPNMGDA and
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kernel-based Bio-KNMF. In comparison with the fast methods such as GBM-semiNMF and RNMF,
BCNMF’s computational speed can also be slightly better. We consider that the speed advantage of the
proposed method should come from both the low computational complexities of geometric projection
and constrained NMF.

5.3. Limitations

The combination of geometric projection and minimum distance constrained NMF enables
BCNMF to alleviate the collinearity and unmix highly mixed nonlinear hyperspectral data.
However, the following limitations should be overcome. (1) An effective scheme may be built to
reduce the complexity of de-biasing so that projection bias can be further removed to get better
unmixing results; (2) It is noted that we only exploited the geometric characteristics of BMM data
without considering the spatial information of hyperspectral imagery. Therefore, a proper spatial
regularizer should be adopted in the framework of BCNMF to improve unmixing performance.

6. Conclusions

This paper has presented an unsupervised nonlinear spectral unmixing algorithm by
exploiting the common geometric property of BMMs. Through a process of geometric projection,
pixels’ approximate linear mixture components are obtained, and then put into the framework
of CNMF for further unmixing. Using the given endmembers, pixels’ projections are obtained
by a signed distance measure for calculating pixels’ barycentric coordinates on the constructed
simplices. As a result, not only the negative effect of collinearity can be overcome, but unsupervised
linear spectral unmixing algorithms such as CNMF can also be used to unmix the projections and
update endmembers and abundances. Similar to the linear case, the objective function of standard
NMF is properly constrained to mitigate the problem of local minima by the endmember distance
constraint. After endmembers are updated, projections will be updated as well until the algorithm
converges. Compared with the traditional and state-of-the-art algorithms in the experiments with both
synthetic data and real hyperspectral images, the proposed algorithm has provided more accurate
unmixing results.

In the future work, we will deal with the drawbacks of the proposed method in ignoring
projection bias and spatial information of hyperspectral remote sensing imagery. Moreover, an implicit
assumption of the BMMs at present is that the strength of nonlinearity in different spectral bands is the
same, which is commonly not the case in practical applications. Therefore, a study on the band-wise
nonlinear spectral unmixing algorithms will also be an interesting and meaningful piece of work.
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