
remote sensing

Article

Deep Cube-Pair Network for Hyperspectral
Imagery Classification

Wei Wei 1,* ID , Jinyang Zhang 1, Lei Zhang 1,*, Chunna Tian 2 and Yanning Zhang 1

1 School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China;
zhangjinyang@mail.nwpu.edu.cn (J.Z.); ynzhang@nwpu.edu.cn (Y.Z.)

2 School of Electronic and Engineering, Xidian University, Xi’an 710071, China; chnatian@xidian.edu.cn
* Correspondence: weiweinwpu@nwpu.edu.cn (W.W.); zhanglei211@mail.nwpu.edu.cn (L.Z.);

Tel.: +86-137-7253-8134 (W.W.); +86-187-2922-5124 (L.Z.)

Received: 17 March 2018; Accepted: 16 May 2018; Published: 18 May 2018
����������
�������

Abstract: Advanced classification methods, which can fully utilize the 3D characteristic of
hyperspectral image (HSI) and generalize well to the test data given only limited labeled training
samples (i.e., small training dataset), have long been the research objective for HSI classification
problem. Witnessing the success of deep-learning-based methods, a cube-pair-based convolutional
neural networks (CNN) classification architecture is proposed to cope this objective in this study,
where cube-pair is used to address the small training dataset problem as well as preserve the 3D
local structure of HSI data. Within this architecture, a 3D fully convolutional network is further
modeled, which has less parameters compared with traditional CNN. Provided the same amount of
training samples, the modeled network can go deeper than traditional CNN and thus has superior
generalization ability. Experimental results on several HSI datasets demonstrate that the proposed
method has superior classification results compared with other state-of-the-art competing methods.

Keywords: hyperspectral imagery; convolutional neural network; deep learning; datacube;
spatial-spectral

1. Introduction

A hyperspectral image (HSI) is a 3D (three dimensional) datacube containing both spectral
and spatial information [1–7]. Compared with the traditional image (e.g., RGB image), an HSI
contains a continuous spectrum at each pixel, which facilitates many remote-sensing-related
applications [8–17], such as resource exploration, environment monitoring, land-use mapping, and
water pollution detection.

HSI classification has been one of the most popular research areas for HSI analysis in the past
several decades, which aims at assigning each pixel a pre-defined class label. Numerous methods thus
have been proposed for HSI classification, which can be roughly divided into non-deep-earning-based
and deep-learning-based methods [18–26]. Classifiers and feature extractions are two ingredients of
non-deep-learning-based HSI classification methods [27], among which typical classifiers include
k-nearest neighbor (k-NN) [28,29], logistic regression (LR) [30–32], and support vector machine
(SVM) [33–36]. By evaluating the distances between the training samples/pixels and the test sample,
the k-NN method selects k training samples that have the smallest distance to the test sample and
then assigns the test sample a label which dominates the selected k training samples. The logistic
regression method is proposed for HSI classification considering it has the merit to estimate class
probabilities directly using the logit transform. The SVM seeks to trace an optimal hyperplane
that linearly separates features into two groups with a maximum margin, which shows a powerful
capability of classifying hyperspectral data. In addition, for non-deep-learning-based HSI classification

Remote Sens. 2018, 10, 783; doi:10.3390/rs10050783 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-0655-056X
http://www.mdpi.com/2072-4292/10/5/783?type=check_update&version=1
http://dx.doi.org/10.3390/rs10050783
http://www.mdpi.com/journal/remotesensing

Remote Sens. 2018, 10, 783 2 of 18

methods, feature extraction methods, such as principal component analysis (PCA) [37], independent
component analysis (ICA) [38], and minimum noise fraction (MNF) [39], are always used together with
the above classifiers to cope with the high-dimensionality and nonlinearity of the data. However, two
problems limit the performance of non-deep-learning-based HSI classification methods. (1) They use
shallow structures (i.e., the SVM can be attributed to a single-layer classifier, while PCA can be seen
as a single-layer feature extractor), which have limited nonlinear representation capability and may
not be able to represent the nonlinearity in the HSI. (2) The features adopted are usually hand-crafted,
which may not fit the classification task very well.

In contrast, deep learning methods [40–49] are based on multi-layer structures and thus
have superior nonlinear representation ability. The stack autoencode (SAE) [44,48,50,51] and the
convolutional neural network (CNN) [40–42,45,52] are two representative categories. A commonly
used strategy in building an SAE model includes unsupervised pretraining over the unlabeled
samples first and then a supervised fine-tuning over the labeled samples. The deep belief network
(DBN) [53,54] also belongs to this category, where unsupervised pretraining over the unlabeled
samples is accomplished via the DBN instead of the SAE. Compared with the SAE, the CNN is a
completely supervised deep learning method and shows a more powerful classification capability since
it intergrates feature extraction and a classifier naturally into one framework (i.e., the extracted feature
is specific to the classifier). Thus, we focus on CNN-based HSI classification method in this study. Some
CNN-based methods have been proposed. Hu et al. [42] proposes a CNN-based method based on
spectral information only. Slavkovikj et al. [46] incorporates both spatial and spectral information into
CNN within a local patch structure. Zhang et al. [41] proposes a dual-stream CNN, where one stream
extracts the spectral feature and the other stream extracts the spatial-spectral feature. Chen et al. [47]
and Li et al. [45] propose a 3D CNN network to consider the 3D structure of HSI data.

Two characteristics are considered important for HSI classification. First, an HSI is inherently a
3D datacube, which contains both spectral and spatial structure. However, the majority of existing
CNN-based HSI classification methods consider spectral only, or destroy the original correlation
between spatial and spectral without fully considering the useful 3D structure. Second, since labeling
an HSI is tedious, expensive, and can only be accomplished by experts, labeled pixels provided for HSI
classification are limited. However, all CNN-based methods demand large amounts of labeled samples
due to a huge amount of parameters in the network, and more parameters will be generated as CNN
has a deeper structure. Given limited labeled samples, many CNN-based methods cannot be fully
trained, i.e., the generalization ability of the neural network is unsatisfactory with insufficiently labeled
data. To address these problems, inspired by the newly proposed pixel-pair feature [40], we propose
a cube-pair-based CNN classification architecture in this study, where cube-pair is used to enhance
the training sample and to model the local 3D structure simultaneously. Within this architecture, a 3D
fully convolutional network (FCN) is further modeled, which has fewer parameters compared with
the traditional CNN. Provided the same amount of training samples, the modeled network can go
deeper than the traditional CNN and thus has superior generalization ability for HSI classification.
The main ideas and contributions are summarized as follows.

(1) Cube-pair is used when modeling CNN classification architecture. The advantage of using
cube-pair is that it can not only generate more samples for training but can also utilize the local
3D structure directly.

(2) A 3D FCN is modeled within a cube-pair-based HSI classification architecture, which is a deep
end-to-end 3D network pertinent for the 3D structure of HSI. In addition, it has fewer parameters
than the traditional CNN. Provided the same amount of training samples, the modeled network
can go deeper than traditional CNN and thus has superior generalization ability.

(3) The proposed method obtains the best classification results, compared with the pixel-pair CNN
and other deep-learning-based methods.

Remote Sens. 2018, 10, 783 3 of 18

The remainder of this paper is structured as follows. Section 2 describes the deep cube-pair
network for HSI classification including the cube-pair-based CNN classification architecture and the
cube-pair-based FCN. Experimental results and analysis are provided in Section 3. Section 4 concludes
the paper.

2. The Deep Cube-Pair Network for HSI Classification

First, we categorize the existing CNN-based methods into three categories in Section 2.1, which
include pixel-based architecture, pixel-pair-based architecture, and cube-based architecture. We
then propose a new cube-pair-based HSI classification architecture that takes advantage of both
cube-based and pixel-pair-based methods in Section 2.2. Since any kind of 3D deep neural network
can be used within this architecture (i.e., acting as a cube-pair network), we give a brief introduction of
cube-pair-based HSI classification architecture including cube-pair generation for training and test
procedures, and the class label inference for the test data. Finally, we model a specific 3D deep neural
network in Section 2.3. We introduce the structure of the modeled 3D fully convolutional network in
detail and briefly introduce its training and test strategies.

2.1. Mathematical Formulation of Commonly Used CNN-Based HSI Classification Architecture

In this study, we denote X ∈ Rw×h×d as an HSI dataset, where w, h, and d represent the width,
height, and bands (i.e., spectral channels/wavelengths), respectively. Among the total number of
w × h pixels, N pixels are labeled and denoted as training set T = {xi, yi}N

i=1, where xi ∈ Rd is a
d-dimensional spectrum of one pixel, and yi is its corresponding label chosen from K = {1, · · · , K}. K
is the total number of classes.

Pixel-level-based HSI classification architecture is a commonly used architecture, which is on the
pixel level. Specifically, a prediction function as follows is learned.

f : xi 7→ yi, where i ∈ {1, · · · , N} . (1)

Then, the learned function f is used to assign labels for unlabeled pixels xj 6∈ T. In this study,
f represents CNN-based methods.

A pixel-pair-based architecture is proposed to address the small training dataset problem. For an
HSI, only limited labeled samples can be provided in real conditions (i.e., N is small) since labeling HSI
is tedious and expensive, and can only be accomplished by experts. However, the CNN (i.e., f) always
demands large amounts of labeled training samples (i.e., where N is large) to train the parameters,
especially when the network goes deeper. To address this contradiction, Li et al. [40] proposed a
pixel-pair-based HSI classification architecture, where they reformulated pixel-level classification
architecture as

f : (xi, xt) 7→ yit, where i, t ∈ {1, · · · , N} . (2)

The label yit for the pixel-pair {xi, xt} in [40] is determined by

yit =

{
l i f yi = yt = l,

0 i f yi 6= yt.
(3)

Though the number of labeled pixels may be limited, it can be seen that the number of labeled
pixel-pairs can be huge since the combination of pixels in the training set is larger than the number
of training pixels (square-level magnitude for pixel-pair versus the original number for pixel), which
mitigates the gap between the number HSI can be provided for training and the number deep learning
methods demanded. Then, a pixel-pair network (e.g., f) is constructed based on pixel-pairs. Finally,
a voting strategy is proposed to obtain the final classification result for the test pixel based on the
value output from f . Though it can effectively increase the training sample, the useful 3D structure is
ignored for a pixel-pair-based architecture.

Remote Sens. 2018, 10, 783 4 of 18

Cube-based architecture is proposed to directly use 3D structure of HSI for classification, which
can be represented as

f : C(xi) 7→ yi, where i ∈ {1, · · · , N} . (4)

C(xi)
k ∈ Rk×k×d represents a local cube centered at xi, whose width k equals the height. The basic

idea using Equation (4) is that spatial neighboring pixels tend to have the same class label. However, a
cube-based architecture alone does not address the small training dataset problem, i.e., f in Equation (4)
still needs a large amount of training samples. In addition, though a cube-based architecture is
proposed to model 3D structure of HSI, the majority of existing CNN-based HSI classification methods
do not model 3D data directly. Those methods reshape the original 3D tensor structure of HSI into
vectors and matrices first, then construct a 1D or 2D CNN network based on the reshaped data.
Though those methods capture spectral and spatial information to some extent, the original 3D
structure (e.g., the correlation between spatial and spectral) is destroyed accomplished with reshaping,
which influences the performance of HSI classification results.

2.2. The Cube-Pair-Based CNN Classification Architecture

2.2.1. The Proposed Architecture

A small sample and a 3D structure are two important characteristics of an HSI. However, as shown
above, pixel-pair-based and cube-based architecture address only one. To the best of our knowledge,
no existing architecture utilizes them simultaneously, which inspires us to propose cube-pair-based
HSI classification architecture as

f : (C(xi)
k, C(xt)

k) 7→ yit, where i, t ∈ {1, · · · , N} . (5)

From Equation (5), we can see cube-pair-based architecture is suitable for 3D data. In addition,
more samples can be generated for training within this architecture, which addresses the small training
dataset problem. Different strategies can be used to determine the label of cube-pair {Ci, Ct}, which
is denoted as yit in this paper. Considering that neighboring pixels in HSI are prone to be from the
same class label, for simplification, we selected the pixel centered at the cube and determined yit based
on the selected pixels. The strategy proposed in [40] could then be used to determine yit, shown as
Equation (3). If the selected pixels were from the same class, we assigned yit a class label same with
the selected pixels. If the pixels were from different classes, a new class label was generated, which is
denoted as Class 0 in this paper. Thus, yit varies from 0 to K.

2.2.2. Training and Test Procedures of the Proposed Architecture

Since cube-pair architecture is different with other architectures, we briefly summarize its training
and test procedures in this subsection. Considering the proposed cube-pair-based architecture is a
general framework, i.e., any kind of 3D deep neural network can be used within this architecture, we
introduce the training and test procedures without assigning a specific CNN network.

Training procedure. Given a training set T = {xi, yi}N
i=1, the training procedure consists of the

following steps, which is also illustrated in the top half of Figure 1.
Step (1). We sample cubes centered at the training pixels in T one by one by preserving their

spatial neighoring pixels in the original HSI (in the following, we use cubes with a 3 × 3 spatial size as
an example).

Step (2). We generate cube-pairs from the sampled cubes and determine their labels by Equation (3).
Step (3). We train classifier f using the generated cube-pairs and their labels as Equation (5) shows.

(f can be any 3D deep neural network and a specifically modeled FCN can be seen from Section 2.3).

Remote Sens. 2018, 10, 783 5 of 18

Figure 1. Cube-pair-based convolutional neural network (CNN) classfication architecture.

We take classification problem that has 9 classes as an example, where each class has 200 cubes.
For the classes from 1 to 9, we can obtain 200× 199 cube-pairs for each class (it should be noted that
the generated cube-pairs are sensitive to the order of the chosen cubes). For Class 0, we can obtain
much more cube-pairs, since the cube combination from different classes is much more than that from
the same class. To ensure the balance of the data from different classes, only part of the cube-pairs
from Class 0 are generated in the experiment. Specifically, from Class 1 to Class 9, we repeatedly
conduct the following operation to generate cube-pairs for Class 0. We used all 200 cubes in one class
and randomly selected 3 cubes from 8 other classes to generate the cube-pairs. Thus, we obtained
9× 200× 8× 3 cube-pairs. Since 9× 200× 8× 3 equals 200× 216, the number of cube-pairs generated
from different classes is close to 200× 199 (i.e., the cube-pairs generated from the same class) .

Test procedure. Once we obtain f , the procedure of inferring the label of the unlabeled pixel
xj 6∈ T can be summarized as follows based on [40], which is illustrated in the bottom half of Figure 1.

Step (1). We sample an extended-cube, which centered at xj and has larger spatial-size than the
size used in the training procedure (e.g., 5 × 5 for the extended-cube versus 3 × 3 for training).

Step (2). We generate all cube-pairs within the extended-cube. For each generated cube-pair, one
cube is from the central pixel (i.e., xj) and the other is from non-central pixels. Both cubes are of the
same size as the cubes generated in the training procedure (i.e., 3 × 3).

Step (3). We apply f , which is obtained in the training procedure, on all cube-pairs generated in
Step 2) one by one. We obtain a set of logit outputs, and each output is a (k + 1) dimensional vector.

Step (4). We remove the first dimension from the obtained logit output, and use the remaining
k-th vector to predict the label of each cube-pair with a softmax function. When obtaining predicted
labels from all cube-pairs, we assign xj the class label, which dominates the predicted labels.

2.3. The Proposed Deep Cube-Pair Network

The proposed cube-pair-based architecture is a general framework. Thus, any kind of 3D deep
neural network can be used within this architecture. The existing HSI classification method always
adopts a CNN network. However, a CNN contains many parameters and thus demands a large
amount of labeled training data, which is beyond an HSI can provide. Thus, our motivation is to
model a 3D network that has fewer parameters. The traditional CNN-based method is composed of
convolutional layers, pooling layers, and a fully connected layer. Considering most parameters are in

Remote Sens. 2018, 10, 783 6 of 18

the fully connected layer of the CNN network, we use FCN, which omits the fully connected layer and
thus has fewer parameters compared with the CNN. On the one hand, with the modeled FCN, we
have the chance to guarantee that the network can be well trained given a smaller amount of training
data compared with the CNN. On the other hand, when we use the FCN in the cube-pair architecture,
we have the chance to build a much deeper network with superior generalization ability.

To cope with the 3D structure of the HSI data without flattening it into a matrix or a vector,
we model the 3D FCN, which we termed a deep cube-pair network (DCPN) in this study. Since a
convolution layer is only used to construct the network, we emphasize how the 3D convolution layer
works first. We then introduce the constructed DCPN, and its training and test strategies.

2.3.1. The Structure of the DCPN

We denote the l-th convolution kernel as Kl and the activation function as Φ. The relation between
the input I and the output O of the convolution layer can be represented as

Ol
uvt = Φ

(
∑

z1,z2,z3

Kl
z1z2z3

I(u+z1)(v+z2)(t+z3) + b

)
(6)

where Ol represents the output (i.e., feature map) using the l-th convolution kernel and Ol
uvt is the

feature at position (u, v, t). I(u+z1)(v+z2)(t+z3) denotes the input of the convolution layer at the position
(u + z1, v + z2, t + z3) in which (z1, z2, z3) denotes its offset to (u, v, t). Kl

z1z2z3
represents the kernel

weight connected to I(u+z1)(v+z2)(t+z3), and b is the bias. Rectified linear units (ReLUs) is adopted as
an activation function Φ, since it can improve model fitting without extra computational cost and
over-fitting risk, which can be represented as

Φ (I) = max(0, I). (7)

By concatenating cube-pair {Ci, Ct} together as [Ci, Ct] ∈ R(2×k)×k×d, we use it as the input I for
the first convolution layer. It is noticable that the order of subscript i and t matters to the data, i.e.,
Cit 6= Cti. In addition, considering that the spectrum is essential to discriminate different classes, d
is set equally to the spectrum dimensionality of the HSI to preserve the global correlation along the
spectrum. For clarification, we use the Pavia dataset as an example to show the modeled DCPN, which
adopts a nine-layer structure (shown in Figure 2). By removing the absorption bands, we adopted 103
bands for the Pavia dataset and set k equal to 3 (classification results with different k are analyzed in
Section 3.4), and the resulted input I is in the size of 6× 3× 103.

In the first convolution layer, considering that a small convolution kernel with size 1× 1× 1 has
advantages to increase the depth of the network [55], six different small convolution kernels were
utilized in the first convolution layer.

In the second convolution layer, six different 3D convolution kernels with size 3× 1× 8 were
used, and the stride size was set to 1× 1× 3. Multiple 3D convolution kernels were used to explore
different kinds of spectral and local spatial feature patterns. The stride was used for dimensionality
reduction, which was accompanied with a convolution kernel. According to Equation (6), six feature
maps can be obtained, and each map is a 4× 3× 32 tensor.

A structure similar to that of the second convolution layer was adopted from Layers 3 to 8, where
the output from (n− 1)-th layer was used as the input of the n-th layer. The difference between those
layers and the first layer only comes from the number of the convolution kernel, as well as the size of
the convolution kernel and the convolution stride, which are listed in Table 1.

Remote Sens. 2018, 10, 783 7 of 18

Table 1. Parameter settings of different layers in the deep cube-pair network (DCPN) model for PaviaU.

Layer ID. Input Size Kernel Size Stride Output Size Convolution Kernel Num

1 6× 3× 103 1× 1× 1 1× 1× 1 6× 3× 103 6
2 6× 3× 103 3× 1× 8 1× 1× 3 4× 3× 32 6
3 4× 3× 32 1× 2× 3 1× 1× 1 4× 2× 30 12
4 4× 2× 30 3× 1× 3 1× 1× 2 2× 2× 14 24
5 2× 2× 14 2× 1× 3 1× 1× 1 1× 2× 12 48
6 1× 2× 12 1× 2× 3 1× 1× 2 1× 1× 5 48
7 1× 1× 5 1× 1× 3 1× 1× 1 1× 1× 3 96
8 1× 1× 3 1× 1× 3 1× 1× 1 1× 1× 1 96
9 1× 1× 1 1× 1× 1 1× 1× 1 1× 1× 1 10

For the last layer, the softmax function instead of activation function was used together with the
convolution operation. Specifically, the input of this layer (i.e., the output from the eighth convolution
layer) convolved with the convolution kernels in this layer first. A softmax fucntion was then exploited
on the convolution results. We set the number of convolution kernel equally to the class number K + 1
in this layer. Thus, the output of the softmax function can be used to represent the probability input
cubes [Ci, Ct] belonging to a different class, which we denote as y′it.

Figure 2. Structure of the proposed DCPN.

2.3.2. Training and Test Schemes of DCPN

Since the DCPN is a feedforward network, i.e., the output from the (n− 1)-th layer was used
as the input of the n-th layer, it can be seen that the mapping function f (defined in Equation (5)) for
the whole network equals f = φ(9)(φ(8)(...(φ(1)))), where φ(n) denotes the mapping function from the
n-th convolutional layer. Considering that the parameters including the kernel weights K and the bias
b from different layers decide f , we should first address how those parameters are effectively set.

Cross entropy was used to estimate those parameters in this study, which can be calculated as

Crossentropy = −ŷitlog(y′it) (8)

where ŷit represents one-hot code of the true class label yit (e.g., we code 3 as [0, 0, 1, 0, 0] for a
classification problem with five classes in total).

Remote Sens. 2018, 10, 783 8 of 18

For the training scheme, we initialized kernel weights K and bias b from different layers randomly.
Afterward, based on the training data, forward propagation and back propagation strategies were
conducted iteratively to update those parameters until convergence. For forward propagation, we
calculated the class label y′it for each cube-pair [Ci, Ct] first and then calculated the cross entropy
between y′it and the true class label yit. Finally, we cumulated the cross entropy from all cube-pairs in
the training set. While for back propagation we minimized the cross entropy loss (i.e., the cumulated
cross entropy) over all kernel weights K and the bias b, the ones that have a minimum loss value were
adopted as the updated kernel weights and bias.

The test scheme was rather simple once we determined the kernel weights K and the bias b. That
is, we fed the test cube-pair into the network and obtained an output. The index, which has the largest
value in the output, was assigned as the class label for the test cube-pair.

3. Experimental Results and Discussion

We conducted extensive experiments on three public hyperspectral datasets to evaluate the
proposed model.

3.1. Dataset Description

We tested the proposed model and competing methods on three public HSI datasets, which are
given as follows.

Indiana Pines Dataset: The Indiana Pines dataset was acquired by an Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) sensor over the agricultural Indian Pine test site in the northwest of
Indiana. Its spatial size is 145× 145, i.e., there are 145× 145 pixels in the Indiana Pines dataset, among
which 10,366 pixels from 16 classes were labeled. As done in other works [40], we chose 9 out of 16
classes, which included 9234 labeled samples in total for the experiment. Each pixel had 220 bands
ranging from 0.38 to 2.5 µm. All bands were used in the experiment.

University of Pavia Dataset (PaviaU): PaviaU was acquired by the ROSIS sensor over the
University of Pavia, Italy. Its spatial resolution is 1.3 m. There are 610× 340 pixels from 9 classes,
among which 42,776 pixels were labeled and used for the experiment. Each pixel has 115 bands whose
coverage ranges from 0.43 to 0.86 µm. We discarded 12 water absorption bands and kept 103 bands in
the experiment.

Salinas Scene Dataset: The Salinas scene dataset was also collected by the 224-band AVIRIS sensor
over Salinas Valley, California. There are 512× 217 pixels, among which 54,129 pixels were labeled
and used for the experiment. The water absorption bands were also discarded, and we kept 204 bands
in the experiment.

3.2. Experimental Setup

We compared the proposed DCPN with k-NN, SVM, and several deep-learning-based methods,
including the 1D-CNN [42], pixel-pair features(PPFs) based network [40], the 2D-CNN [41], and the
3D-CNN [45]. 1D-CNN is a pixel-level-based architecture. PPFs is a pixel-pair-based architecture.
2D-CNN [41] and 3D-CNN [45] are cube-based architectures. 3D-CNN is a truly 3D-structure-based
method. Though 2D-CNN captures spatial and spectral information, it is a pesudo-3D CNN, since it
treated the spatial information and spectral information, separately.

Before using these methods, we normalized the data first in order to guarantee the input value
ranging from 0 to 1. The Libsvm toolbox was used to implement SVM, where radial basis kernel was
adopted. All CNN-based methods were implemented via Tensorflow. For the proposed method, an
Adam optimizer was used to minimize cross entropy, from which we obtained the parameters of the
DCPN. The learning rate and the training epoch number (iteration number) of the proposed method
was set to 0.001 and 100 in the experiments, respectively. Since the cube-pairs from Class 0 are much
more than those from other classes, we selected only part of the cube-pairs from Class 0 to balance the
data from different classes (see Section 2.2.2 for details). We set the spatial size of the cube and the

Remote Sens. 2018, 10, 783 9 of 18

extented-cube as 3× 3 and 5× 5, respectively. For a fair comparison, we set the spatial size to 3× 3 for
those competing methods, which consider spatial information into account.

In this study, we chose overall accuracy (OA), which defines the ratio of correctly labeled samples
to all test samples, to measure HSI classification results.

3.3. Comparison with Other Methods

In this section, we first chose 200 samples from each class as the training set and used the
remaining samples for test. The number of training and test samples for each dataset can be seen from
Table 2. We then conducted experiments, where the number of training sample varied.

Table 2. Training and test numbers for three datasets (Indiana Pines, PaviaU, and Salinas) used in this paper.

No. Indiana Pines PaviaU Salinas
Class Name Train Test Class Name Train Test Class Name Train Test

1 Corn-notill 200 1228 Asphalt 200 6431 Brocoli_1 200 1809
2 Corn-mintill 200 630 Meadows 200 18,449 Brocoli_2 200 3526
3 Grass-pasture 200 283 Gravel 200 1899 Fallow 200 1776
4 Grass-trees 200 530 Trees 200 2864 Fallow_plow 200 1194
5 Hay-win. 200 278 Sheets 200 1145 Fallow_smooth 200 2478
6 Soy.-notill 200 772 Bare Soil 200 4829 Stubble 200 3759
7 Soy.-mintill 200 2255 Bitumen 200 1130 Celery 200 3379
8 Soy.-clean 200 393 Bricks 200 3482 Grapes 200 11,071
9 Woods 200 1065 Shadows 200 747 Soil_vinyard 200 6003
10 Corn_weeds 200 3078
11 Lettuce_4wk 200 868
12 Lettuce_5wk 200 1727
13 Lettuce_6wk 200 716
14 Lettuce_7wk 200 870
15 Vinyard_un. 200 7068
16 Vinyard_ve. 200 1607

Sum 1800 7434 1800 40,976 3200 50,929

3.3.1. Experimental Results with 200 Training Samples

Given 200 training samples, the classification accuracies on three datasets are illustrated in
Tables 3–5. It can be seen that our method obtains the best classification results on all datasets
compared with all competing methods, which demonstrates the effectiveness of the proposed method.
Based on the experimental results, some observations are achieved as follows.

(1) The majority of deep-learning-based methods have superior performance than the
non-deep-learning-based HSI classification methods. Specifically, 2D-CNN, 3D-CNN, PPFs,
and DCPN have superior performance than KNN and SVM. These experimental results verify the
powerful capability of CNN-based methods for HSI classification.

(2) Compared with the pixel-level-based CNN method, i.e., 1D-CNN, the proposed method improves
the overall accuracy dramatically, e.g., 17.42% for the Indiana Pine dataset. Considering the
difference between the proposed CNN architecture and pixel-level-based CNN architecture,
we attribute the improvement mainly from the integration of 3D local structure and the
cube-pair strategy.

(3) It can be seen that pixel-pair-based method (i.e., PPFs) also improves the classification performance
of HSI significantly, compared with the pixel-level-based method. This reflects the effectiveness of
the pair-based strategy. However, the performance of PPFs inferiors to the proposed method, e.g.,
nearly 3% for the Indiana Pine dataset, which demonstrates that the local 3D structure is helpful
to improve the HSI classification accuracy.

Remote Sens. 2018, 10, 783 10 of 18

(4) Though cube-based methods including 3D-CNN and 2D-CNN have superior performance than
pixel-level-based methods, these methods are inferior to both the proposed method and the
pixel-pair-based method. This phenomenon is caused by limited training samples, which makes
3D-CNN and 2D-CNN not well trained. Thus, it generalizes poorly on the test data. On the
contrary, both cube-pair and pixel-pair strategies increase the training samples effectively, which
guarantee that the network can be well trained.

Table 3. Classification accuracy (%) of different methods on the Indiana Pines dataset.

No. KNN SVM 1D-CNN 2D-CNN 3D-CNN PPFs DCPN

1 63.07 80.92 74.56 84.53 83.70 92.99 95.32
2 61.38 85.10 59.34 74.70 73.06 96.66 98.55
3 91.52 96.61 84.21 89.42 93.01 98.58 99.68
4 98.81 99.06 95.07 98.44 98.82 100 99.87
5 99.46 99.68 98.58 99.89 99.75 100 100
6 74.70 86.76 65.06 74.15 76.49 96.26 97.91
7 51.74 74.17 84.66 92.33 93.92 87.80 94.42
8 57.18 89.24 66.27 78.99 76.19 98.98 98.93
9 92.66 98.62 98.77 99.56 99.33 99.81 99.86

OA 69.62 85.40 79.68 87.71 87.87 94.34 97.1097.1097.10

Table 4. Classification accuracy(%) of different methods on the PaviaU dataset.

No. KNN SVM 1D-CNN 2D-CNN 3D-CNN PPFs DCPN

1 75.45 86.35 94.32 97.84 97.80 97.42 98.95
2 76.51 92.38 95.38 96.71 98.06 95.76 98.24
3 76.94 86.08 60.14 84.68 82.01 94.05 97.19
4 92.21 96.76 74.96 91.68 91.49 97.52 97.81
5 99.38 99.65 99.07 98.57 99.77 100 100
6 76.54 92.35 68.66 83.82 85.02 99.13 98.94
7 92.12 93.95 56.51 91.02 82.12 96.19 98.99
8 76.12 86.44 75.05 90.71 90.03 93.62 98.87
9 99.95 99.99 99.01 99.27 99.92 99.60 99.75

OA 78.93 91.32 84.12 93.58 93.76 96.48 98.5198.5198.51

Table 5. Classification accuracy(%) of different methods on the Salinas dataset.

No. KNN SVM 1D-CNN 2D-CNN 3D-CNN PPFs DCPN

1 98.10 99.57 99.93 98.06 99.81 100 99.86
2 99.38 99.78 99.27 99.42 99.91 99.88 99.79
3 99.32 99.66 98.69 97.71 98.36 99.60 99.66
4 99.66 99.56 97.26 99.53 99.37 99.49 99.71
5 99.26 97.69 97.85 97.75 98.13 98.34 99.65
6 99.51 99.78 99.76 99.49 99.87 99.97 99.97
7 99.08 99.54 98.82 99.29 98.13 100 99.91
8 64.69 83.79 81.30 91.42 85.09 88.68 89.89
9 96.91 99.34 99.32 99.06 99.32 98.33 99.92
10 90.21 94.49 95.66 90.29 91.89 98.60 98.42
11 97.43 98.29 98.73 89.82 93.85 99.54 99.48
12 99.92 99.92 98.81 96.24 97.99 100 99.91
13 98.32 99.37 99.20 91.24 98.04 99.44 100
14 94.21 98.77 93.76 90.91 95.07 98.96 99.71
15 67.82 70.60 66.47 72.84 77.08 83.53 91.41
16 98.48 99.04 98.80 91.58 97.52 99.31 99.28

OA 86.26 91.68 89.80 91.69 92.30 94.80 96.3996.3996.39

Remote Sens. 2018, 10, 783 11 of 18

Typical classification maps on three datasets are given in Figures 3–5, where (a) represents the
ground truth and (b)–(h) represent the classification maps from different methods. We use different
colors to denote different categories in these figures, which are illustrated in Figure 6. We can see
that the proposed method has the best classification results, which is consistent with the results
analyzed above.

(a) GroundTruth (b) KNN (c) SVM (d) 1D-CNN

(e) 2D-CNN (f) 3D-CNN (g) PPFs (h) DCPN

Figure 3. Classification maps of different methods on the Indiana Pine dataset.

(a) GroundTruth (b) KNN (c) SVM (d) 1D-CNN

Figure 4. Cont.

Remote Sens. 2018, 10, 783 12 of 18

(e) 2D-CNN (f) 3D-CNN (g) PPFs (h) DCPN

Figure 4. Classification maps of different methods on the PaviaU dataset.

(a) groundtruth (b) KNN (c) SVM (d) 1D-CNN

(e) 2D-CNN (f) 3D-CNN (g) PPFs (h) DCPN

Figure 5. Classification maps of different methods on the Salinas dataset.

Remote Sens. 2018, 10, 783 13 of 18

(a) Indian_pines (b) PaviaU (c) Salinas

Figure 6. Colors represent different classes for three different datasets.

3.3.2. Experimental Results with Different Number of Training Samples

The classification results with different numbers of training samples are shown in Figures 7–9,
where the number varied from 50 to 200 with an interval of 50. From the experimental results,
we can see the classification results of deep-learning-based methods increase when more samples are
introduced for training, which is natural since the classifier can be well trained with more training
samples. Nevertheless, the proposed method outperforms all competing methods stably given any
amount of training samples.

From the above results, we can conclude that the proposed method has superior performance
than any other competing methods.

Figure 7. Classification performance with different numbers of training samples on the Indiana Pines dataset.

Remote Sens. 2018, 10, 783 14 of 18

Figure 8. Classification performance with different numbers of training samples on the PaviaU dataset.

Figure 9. Classification performance with different numbers of training samples on the Salinas dataset.

3.4. Discussion

Considering that the cube size and layer number (i.e., depth) are two important parameters of the
DCPN, to further testify the influence of these two parameters on classification results, the following
two experiments are described and discussed.

In the first experiment, we fixed the layer number but set a different cube size. The experimental
results on the Indiana Pines dataset can be seen in Table 6, where ecs denotes the size of the
extended-cube and k denotes the size of the cube, respectively. It is noticeable that, when we set
the cube size k as 1, the proposed method degenerates to a pixel-pair-based method. When we increase
the cube size k from 1 to 3, the classification accuracy is also improved, which demonstrates local
neighboring pixels are indeed helpful for classification. However, when we increase the cube size k

Remote Sens. 2018, 10, 783 15 of 18

further (e.g., from 3 to 5), the classification performance drops slightly. This phenomenon is caused by
pixels from different categories, which are prone to be included with a larger cube size and decrease the
classification accuracy. Thus, we set the size of cube k and extended-cube ecs as 3 and 5, respectively,
and fixed them in all experiments.

In the second experiment, we fixed the cube size but set a different layer number. The experimental
results of the proposed DCPN and 3D-CNN on the Indiana Pines dataset can be seen in Table 7, where
the layer number is chosen as 3, 5, 7, and 10. It can be seen that, with the increase in layer number,
the classification accuracy of the DCPN improves, whereas the classification accuracy of 3D-CNN
decreases. The comparison results are consistent with the above analysis. FCN has fewer parameters;
thus, given the same amount of training samples, it can go deeper than CNN and has a superior
nonlinear representation ablility.

Table 6. Classification accuracy with different cube sizes on the Indiana Pines dataset.

ecs
k 1 3 5

3 94.45 / /

5 94.71 96.18 /

7 95.57 97.10 96.16

9 / 97.04 96.88

11 / / 97.21

Table 7. The classification accuracy with different layer numbers on the Indiana Pines dataset.

Layers 3 5 7 10

3D-CNN 87.87 83.61 77.79 75.86

DCPN 93.40 96.22 97.09 97.10

4. Conclusions

In this paper, we propose a cube-pair-based HSI classification architecture. The proposed
architecture can utilize the 3D characteristic of HSI and generalize well to the test data given
only limited labeled training samples. Within this architecture, a 3D fully convolutional network
is further modeled, which has fewer parameters than CNN. Thus, the proposed network has
superior generalization ability compared with CNN when given the same amount of training
samples. Experimental results on several HSI datasets demonstrate the proposed method has superior
classification result compared with other state-of-the-art competing methods.

Author Contributions: W.W. and L.Z. conceived and designed the experiments; J.Z. performed the experiments;
W.W., C.T., and Y.Z. analyzed the data; W.W. and J.Z. wrote the paper.

Funding: This research was funded bythe National Natural Science Foundation of China (No. 61671385,
No. 61231016, No. 61571354), the Natural Science Basis Research Plan in Shaanxi Province of China (No.
2017JM6021), the China Postdoctoral Science Foundation under Grant (No. 158201), and the Innovation
Foundation for Doctoral Dissertation of Northwestern Polytechnical University (No. CX201521).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ghamisi, P.; Yokoya, N.; Li, J.; Liao, W.; Liu, S.; Plaza, J.; Rasti, B.; Plaza, A. Advances in Hyperspectral Image
and Signal Processing: A Comprehensive Overview of the State of the Art. IEEE Geosci. Remote Sens. Mag.
2018, 5, 37–78. [CrossRef]

2. Wei, W.; Zhang, L.; Tian, C.; Plaza, A.; Zhang, Y. Structured Sparse Coding-Based Hyperspectral Imagery
Denoising With Intracluster Filtering. IEEE Trans. Geosc. Remote Sens. 2017, 55, 6860–6876. [CrossRef]

http://dx.doi.org/10.1109/MGRS.2017.2762087
http://dx.doi.org/10.1109/TGRS.2017.2735488

Remote Sens. 2018, 10, 783 16 of 18

3. He, L.; Li, J.; Liu, C.; Li, S. Recent Advances on Spectral-Spatial Hyperspectral Image Classification:
An Overview and New Guidelines. IEEE Trans. Geosci. Remote Sens. 2017, 56, 1579–1597. [CrossRef]

4. Guerra, R.; Barrios, Y.; Díaz, M.; Santos, L.; López, S.; Sarmiento, R. A New Algorithm for the On-Board
Compression of Hyperspectral Images. Remote Sens. 2018, 10, 428. [CrossRef]

5. Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in Spectral-Spatial
Classification of Hyperspectral Images. Proc. IEEE 2013, 101, 652–675. [CrossRef]

6. Zhang, L.; Wei, W.; Shi, Q.; Shen, C.; Hengel, A.v.d.; Zhang, Y. Beyond Low Rank: A Data-Adaptive Tensor
Completion Method. arXiv 2017, arXiv:1708.01008.

7. Rasti, B.; Ghamisi, P.; Plaza, J.; Plaza, A. Fusion of Hyperspectral and LiDAR Data Using Sparse and
Low-Rank Component Analysis. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6354–6365. [CrossRef]

8. Zhang, L.; Wei, W.; Zhang, Y.; Shen, C.; van den Hengel, A.; Shi, Q. Cluster Sparsity Field:
An Internal Hyperspectral Imagery Prior for Reconstruction. Int. J. Comput. Vis. 2018, 1–25,
doi:10.1007/s11263-018-1080-8.

9. Lanaras, C.; Baltsavias, E.; Schindler, K. Hyperspectral Super-Resolution with Spectral Unmixing Constraints.
Remote Sens. 2017, 9, 1196. [CrossRef]

10. Yang, J.; Zhao, Y.; Yi, C.; Chan, C.W. No-Reference Hyperspectral Image Quality Assessment via
Quality-Sensitive Features Learning. Remote Sens. 2017, 9, 305. [CrossRef]

11. Transon, J.; d’Andrimont, R.; Maugnard, A.; Defourny, P. Survey of Hyperspectral Earth Observation
Applications from Space in the Sentinel-2 Context. Remote Sens. 2018, 10, 157. [CrossRef]

12. Zhang, L.; Wei, W.; Zhang, Y.; Shen, C.; Hengel, A.V.D.; Shi, Q. Dictionary Learning for Promoting Structured
Sparsity in Hyperspectral Compressive Sensing. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7223–7235.
[CrossRef]

13. Li, J.; Bioucas-Dias, J.M.; Plaza, A.; Liu, L. Robust Collaborative Nonnegative Matrix Factorization for
Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6076–6090. [CrossRef]

14. Zhang, L.; Wei, W.; Tian, C.; Li, F.; Zhang, Y. Exploring structured sparsity by a reweighted laplace prior for
hyperspectral compressive sensing. IEEE Trans. Image Process. 2016, 25, 4974–4988. [CrossRef]

15. Ertürk, A.; Plaza, A. Informative Change Detection by Unmixing for Hyperspectral Images. IEEE Geosci.
Remote Sens. Lett. 2017, 12, 1252–1256. [CrossRef]

16. Zhang, L.; Zhang, Y.; Yan, H.; Gao, Y.; Wei, W. Salient Object Detection in Hyperspectral Imagery using
Multi-scale Spectral-Spatial Gradient. Neurocomputing 2018, 291, 215–225. [CrossRef]

17. Xue, J.; Zhao, Y.; Liao, W.; Kong, S.G. Joint Spatial and Spectral Low-Rank Regularization for Hyperspectral
Image Denoising. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1940–1958. [CrossRef]

18. Camps-Valls, G.; Bruzzone, L. Kernel-based methods for hyperspectral image classification. IEEE Trans.
Geosci. Remote Sens. 2005, 43, 1351–1362. [CrossRef]

19. Wang, Q.; Lin, J.; Yuan, Y. Salient Band Selection for Hyperspectral Image Classification via Manifold
Ranking. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1279. [CrossRef] [PubMed]

20. Rajadell, O.; García-Sevilla, P.; Pla, F. Spectral–Spatial Pixel Characterization Using Gabor Filters for
Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2013, 10, 860–864. [CrossRef]

21. Wang, Q.; Meng, Z.; Li, X. Locality Adaptive Discriminant Analysis for Spectral–Spatial Classification of
Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2077–2081. [CrossRef]

22. Ahmad, M.; Khan, A.M.; Hussain, R. Graph-based spatial–spectral feature learning for hyperspectral image
classification. IET Image Process. 2017, 11, 1310–1316. [CrossRef]

23. Majdar, R.S.; Ghassemian, H. A probabilistic SVM approach for hyperspectral image classification using
spectral and texture features. Int. J. Remote Sens. 2017, 38, 4265–4284. [CrossRef]

24. Samat, A.; Li, J.; Liu, S.; Du, P.; Miao, Z.; Luo, J. Improved hyperspectral image classification by active
learning using pre-designed mixed pixels. Pattern Recognit. 2016, 51, 43–58. [CrossRef]

25. Medjahed, S.A.; Saadi, T.A.; Benyettou, A.; Ouali, M. Gray Wolf Optimizer for hyperspectral band selection.
Appl. Soft Comput. 2016, 40, 178–186. [CrossRef]

26. Wang, Q.; Wan, J.; Yuan, Y. Locality Constraint Distance Metric Learning for Traffic Congestion Detection.
Pattern Recognit. 2017, 75. [CrossRef]

27. Liu, L.; Wang, P.; Shen, C.; Wang, L.; Van Den Hengel, A.; Wang, C.; Shen, H.T. Compositional model based
fisher vector coding for image classification. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2335–2348.
[CrossRef] [PubMed]

http://dx.doi.org/10.1109/TGRS.2017.2765364
http://dx.doi.org/10.3390/rs10030428
http://dx.doi.org/10.1109/JPROC.2012.2197589
http://dx.doi.org/10.1109/TGRS.2017.2726901
http://dx.doi.org/10.3390/rs9111196
http://dx.doi.org/10.3390/rs9040305
http://dx.doi.org/10.3390/rs10020157
http://dx.doi.org/10.1109/TGRS.2016.2598577
http://dx.doi.org/10.1109/TGRS.2016.2580702
http://dx.doi.org/10.1109/TIP.2016.2598652
http://dx.doi.org/10.1109/LGRS.2015.2390973
http://dx.doi.org/10.1016/j.neucom.2018.02.070
http://dx.doi.org/10.1109/TGRS.2017.2771155
http://dx.doi.org/10.1109/TGRS.2005.846154
http://dx.doi.org/10.1109/TNNLS.2015.2477537
http://www.ncbi.nlm.nih.gov/pubmed/27008675
http://dx.doi.org/10.1109/LGRS.2012.2226426
http://dx.doi.org/10.1109/LGRS.2017.2751559
http://dx.doi.org/10.1049/iet-ipr.2017.0168
http://dx.doi.org/10.1080/01431161.2017.1317941
http://dx.doi.org/10.1016/j.patcog.2015.08.019
http://dx.doi.org/10.1016/j.asoc.2015.09.045
http://dx.doi.org/10.1016/j.patcog.2017.03.030
http://dx.doi.org/10.1109/TPAMI.2017.2651061
http://www.ncbi.nlm.nih.gov/pubmed/28092518

Remote Sens. 2018, 10, 783 17 of 18

28. Blanzieri, E.; Melgani, F. Nearest Neighbor Classification of Remote Sensing Images With the Maximal
Margin Principle. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1804–1811. [CrossRef]

29. Ricardo, D.D.S.; Pedrini, H. Hyperspectral data classification improved by minimum spanning forests.
J. Appl. Remote Sens. 2016, 10, 025007.

30. Guccione, P.; Mascolo, L.; Appice, A. Iterative Hyperspectral Image Classification Using Spectral–Spatial
Relational Features. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3615–3627. [CrossRef]

31. Li, J.; Bioucas-Dias, J.M.; Plaza, A. Spectral–Spatial Hyperspectral Image Segmentation Using Subspace
Multinomial Logistic Regression and Markov Random Fields. IEEE Trans. Geosci. Remote Sens. 2012, 50,
809–823. [CrossRef]

32. Appice, A.; Guccione, P.; Malerba, D. Transductive hyperspectral image classification: toward integrating
spectral and relational features via an iterative ensemble system. Mach. Learn. 2016, 103, 343–375. [CrossRef]

33. Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines.
IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [CrossRef]

34. Sharma, S.; Buddhiraju, K.M. Spatial–spectral ant colony optimization for hyperspectral image classification.
Int. J. Remote Sens. 2018, 39, 2702–2717. [CrossRef]

35. Lopatin, J.; Fassnacht, F.E.; Kattenborn, T.; Schmidtlein, S. Mapping plant species in mixed grassland
communities using close range imaging spectroscopy. Remote Sens. Environ. 2017, 201, 12–23. [CrossRef]

36. Xue, Z.; Du, P.; Su, H. Harmonic Analysis for Hyperspectral Image Classification Integrated With PSO
Optimized SVM. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2131–2146. [CrossRef]

37. Zabalza, J.; Ren, J.; Yang, M.; Zhang, Y.; Wang, J.; Marshall, S.; Han, J. Novel Folded-PCA for improved
feature extraction and data reduction with hyperspectral imaging and SAR in remote sensing. ISPRS J.
Photogramm. Remote Sens. 2014, 93, 112–122. [CrossRef]

38. Mura, M.D.; Villa, A.; Benediktsson, J.A.; Chanussot, J.; Bruzzone, L. Classification of Hyperspectral Images
by Using Extended Morphological Attribute Profiles and Independent Component Analysis. IEEE Geosci.
Remote Sens. Lett. 2011, 8, 542–546. [CrossRef]

39. Nielsen, A.A. Kernel Maximum Autocorrelation Factor and Minimum Noise Fraction Transformations.
IEEE Trans. Image Process. 2011, 20, 612. [CrossRef] [PubMed]

40. Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral Image Classification Using Deep Pixel-Pair Features.
IEEE Trans. Geosci. Remote Sens. 2016, 55, 844–853. [CrossRef]

41. Zhang, H.; Li, Y.; Zhang, Y.; Shen, Q. Spectral-spatial classification of hyperspectral imagery using a
dual-channel convolutional neural network. Remote Sens. Lett. 2017, 8, 438–447. [CrossRef]

42. Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep Convolutional Neural Networks for Hyperspectral Image
Classification. J. Sens. 2015, 2015, 258619. [CrossRef]

43. Wang, P.; Wu, Q.; Shen, C.; Dick, A.; Hengel, A.V.D. FVQA: Fact-based Visual Question Answering.
IEEE Trans. Pattern Anal. Mach. Intell. 2017. [CrossRef] [PubMed]

44. Othman, E.; Bazi, Y.; Alajlan, N.; Alhichri, H.; Melgani, F. Using convolutional features and a sparse
autoencoder for land-use scene classification. Int. J. Remote Sens. 2016, 37, 2149–2167. [CrossRef]

45. Li, Y.; Zhang, H.; Shen, Q. Spectral-Spatial Classification of Hyperspectral Imagery with 3D Convolutional
Neural Network. Remote Sens. 2017, 9, 67. [CrossRef]

46. Slavkovikj, V.; Verstockt, S.; Neve, W.D.; Hoecke, S.V.; Walle, R.V.D. Hyperspectral Image Classification
with Convolutional Neural Networks. In Proceedings of the Acm International Conference on Multimedia,
Brisbane, Australia, 26–30 October 2015; pp. 1159–1162.

47. Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral
Images Based on Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251.
[CrossRef]

48. Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep Learning-Based Classification of Hyperspectral Data.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 7, 2094–2107. [CrossRef]

49. Wang, P.; Cao, Y.; Shen, C.; Liu, L.; Shen, H.T. Temporal Pyramid Pooling-Based Convolutional Neural
Network for Action Recognition. IEEE Trans. Circuits Syst. Video Technol. 2017, 27, 2613–2622. [CrossRef]

50. Zhang, X.; Liang, Y.; Li, C.; Ning, H.; Jiao, L.; Zhou, H. Recursive Autoencoders-Based Unsupervised
Feature Learning for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1928–1932.
[CrossRef]

http://dx.doi.org/10.1109/TGRS.2008.916090
http://dx.doi.org/10.1109/TGRS.2014.2380475
http://dx.doi.org/10.1109/TGRS.2011.2162649
http://dx.doi.org/10.1007/s10994-016-5559-7
http://dx.doi.org/10.1109/TGRS.2004.831865
http://dx.doi.org/10.1080/01431161.2018.1430403
http://dx.doi.org/10.1016/j.rse.2017.08.031
http://dx.doi.org/10.1109/JSTARS.2014.2307091
http://dx.doi.org/10.1016/j.isprsjprs.2014.04.006
http://dx.doi.org/10.1109/LGRS.2010.2091253
http://dx.doi.org/10.1109/TIP.2010.2076296
http://www.ncbi.nlm.nih.gov/pubmed/20840897
http://dx.doi.org/10.1109/TGRS.2016.2616355
http://dx.doi.org/10.1080/2150704X.2017.1280200
http://dx.doi.org/10.1155/2015/258619
http://dx.doi.org/10.1109/TPAMI.2017.2754246
http://www.ncbi.nlm.nih.gov/pubmed/28945588
http://dx.doi.org/10.1080/01431161.2016.1171928
http://dx.doi.org/10.3390/rs9010067
http://dx.doi.org/10.1109/TGRS.2016.2584107
http://dx.doi.org/10.1109/JSTARS.2014.2329330
http://dx.doi.org/10.1109/TCSVT.2016.2576761
http://dx.doi.org/10.1109/LGRS.2017.2737823

Remote Sens. 2018, 10, 783 18 of 18

51. Wang, C.; Zhang, L.; Wei, W.; Zhang, Y. When Low Rank Representation Based Hyperspectral
Imagery Classification Meets Segmented Stacked Denoising Auto-Encoder Based Spatial-Spectral Feature.
Remote Sens. 2018, 10, 284. [CrossRef]

52. Wang, Q.; Gao, J.; Yuan, Y. Embedding Structured Contour and Location Prior in Siamesed Fully
Convolutional Networks for Road Detection. IEEE Trans. Intell. Transp. Syst. 2018, 19, 230–241. [CrossRef]

53. Zhong, P.; Gong, Z.; Li, S.; Schönlieb, C.B. Learning to Diversify Deep Belief Networks for Hyperspectral
Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, PP, 1–15. [CrossRef]

54. Chen, Y.; Zhao, X.; Jia, X. Spectral–Spatial Classification of Hyperspectral Data Based on Deep Belief
Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2381–2392. [CrossRef]

55. Lin, M.; Chen, Q.; Yan, S. Network In Network. arXiv 2013, arXiv:1312.4400.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs10020284
http://dx.doi.org/10.1109/TITS.2017.2749964
http://dx.doi.org/10.1109/TGRS.2017.2675902
http://dx.doi.org/10.1109/JSTARS.2015.2388577
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Deep Cube-Pair Network for HSI Classification
	Mathematical Formulation of Commonly Used CNN-Based HSI Classification Architecture
	The Cube-Pair-Based CNN Classification Architecture
	The Proposed Architecture
	Training and Test Procedures of the Proposed Architecture

	The Proposed Deep Cube-Pair Network
	The Structure of the DCPN
	Training and Test Schemes of DCPN

	Experimental Results and Discussion
	Dataset Description
	Experimental Setup
	Comparison with Other Methods
	Experimental Results with 200 Training Samples
	Experimental Results with Different Number of Training Samples

	Discussion

	Conclusions
	References

