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Abstract: Mapping the historical occurrence of flood water in time and space provides information
that can be used to help mitigate damage from future flood events. In Canada, flood mapping
has been performed mainly from RADARSAT imagery in near real-time to enhance situational
awareness during an emergency, and more recently from Landsat to examine historical surface
water dynamics from the mid-1980s to present. Here, we seek to integrate the two data sources
for both operational and historical flood mapping. A main challenge of a multi-sensor approach
is ensuring consistency between surface water mapped from sensors that fundamentally interact
with the target differently, particularly in areas of flooded vegetation. In addition, automation of
workflows that previously relied on manual interpretation is increasingly needed due to large data
volumes contained within satellite image archives. Despite differences between data received from
both sensors, common approaches to surface water and flooded vegetation mapping including
multi-channel classification and region growing can be applied with sensor-specific adaptations for
each. Historical open water maps from 202 Landsat scenes spanning the years 1985–2016 generated
previously were enhanced to improve flooded vegetation mapping along the Saint John River in
New Brunswick, Canada. Open water and flooded vegetation maps were created over the same
region from 181 RADARSAT 1 and 2 scenes acquired between 2003–2016. Comparisons of maps
from different sensors and hydrometric data were performed to examine consistency and robustness
of products derived from different sensors. Simulations reveal that the methodology used to map
open water from dual-pol RADARSAT 2 is insensitive to up to about 20% training error. Landsat
depicts open water inundation well, while flooded vegetation can be reliably mapped in leaf-off
conditions. RADARSAT mapped approximately 8% less open water area than Landsat and 0.5% more
flooded vegetation, while the combined area of open water and flooded vegetation agreed to within
0.2% between sensors. Derived historical products depicting inundation frequency and trends were
also generated from each sensor’s time-series of surface water maps and compared.

Keywords: RADARSAT; Landsat; surface water; time-series

1. Introduction

Water is both a vital resource and a hazard during flooding whose distribution simultaneously
influences and is a result of land use and climate. Mapping the location of water and how frequently
it is present is critical to all water-related issues. At the ends of the location-frequency spectrum are
permanently inundated water bodies and permanently dry land that is never inundated. Between these
two extremes are areas where surface water is ephemeral. The timing of ephemeral water is often
seasonal as in the case of springtime flooding due to snowmelt at high latitudes or monsoon in
the tropics, while its occurrence is becoming more difficult to predict due to increasingly frequent
extreme weather events [1]. Although many regions in Canada flood annually during the spring melt
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season including the Saint John River Basin in New Brunswick, in recent years severe and unexpected
flooding has occurred in major cities including Calgary and Toronto in late-spring and summer of
2013, and Ottawa and Montreal in the spring of 2017, all caused primarily by record rainfall events.
Floodplain characterization that provides knowledge of the location and frequency of flooding caused
by both seasonal and extreme weather events is critical for public safety, as well as land use planning,
land valuation and insurance.

Geospatial products mapping surface water and its dynamics have been generated at regional [2,3],
continental [4] and global scales [5–8]. While all of these products have been created using medium
resolution optical imagery from the Landsat archive due to its long record and data availability,
operational flood mapping in Canada relies mainly on imagery from Canada’s RADARSAT-2 satellite
with plans to migrate to the RADARSAT Constellation Mission (RCM) once launched in 2018.
Member countries of the International Charter on Space and Major Disasters including Canada
also use ALOS, ENVISAT, Sentinel-1 and TerraSAR-X among other radar satellites as primary data
sources for flood mapping.

Radar is a preferred sensor for operational flood mapping because it is able to penetrate cloud
cover that often persists during flood events, and it has the added benefit of performing well for
surface water mapping [9]. Its ability to penetrate cloud increases the likelihood of imaging peak flood
conditions that are critical to map the full extent of historical inundation. However, the RADARSAT
image archive does not extend as far back in time as Landsat, and a lack of standard coverage
due to satellite tasking has rendered the record sparse in some regions. Nonetheless, combining
optical and radar for both operational and historical surface water mapping provides timelier flood
information, and a more complete range of historical surface water extents than either sensor on its
own. Generating consistent information from multiple sensors is challenging however, especially
between those that fundamentally interact with the target differently as in the case of optical and radar.

During severe events, flooding often occurs beneath vegetation and in the case of several of
the worst events in Canada in recent years, extensively in developed areas. Mapping flooded
vegetation from optical sensors is mature and has known limitations [10], while research to map
flooded vegetation from radar has been active in recent years [11,12]. Detecting water beneath
vegetation in optical imagery is challenging during the growing season because the canopy obscures
the water surface [13–15], however sufficient absorption generally occurs to detect water during leaf-off
in early spring or late fall in wavelengths from visible to infrared. Landsat’s look direction within
±7.5◦ of nadir [16] enhances its ability to sense water in leaf-off conditions due to the predominantly
vertical structure of vegetation, while radar is able to detect water at an oblique angle beneath
leaf-on canopies under certain conditions, depending on leaf size, shape and orientation, as well as
wavelength, polarization and incidence angle. Longer wavelengths relative to leaf size [14] and
shallower incidence angles [17] generally provide greater signal penetration through the canopy.
Once the incident radar signal has penetrated the canopy, double-bounce scattering [18] off the water
surface and vertical stems and trunks acting as corner reflectors generates a high intensity return to
the sensor [19]. Backscatter generally decreases with increasing incidence angle for different forest
types; however, separation between flooded and non-flooded forest remains relatively constant with
incidence angle [20].

To date, open water that is usually dark in radar due to specular reflection has been mapped
using single polarization thresholding, even when multiple polarizations are available [21,22].
While thresholding has been shown to perform well for open water under ideal conditions, water
surface roughness is mainly caused by wind and waves as well as wet ice [23,24] that is sometimes
present during the spring flood season. These conditions can produce diffuse reflection that increases
backscatter to a level where a single threshold value cannot reliably separate water from land [25].
Automated methods used to determine optimal threshold values are compromised by these factors,
while manual thresholding can be better tuned to minimize errors of omission and commission.
Even still, a significant amount of post-processing is often required to reduce errors to an acceptable
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level [26]. The current application of generating dynamic surface water information from Earth
Observation data requires a time-series of surface water maps as input, each of which needs to be
classified independently. While manual supervised methods including thresholding exist to reliably
extract surface water information from both optical and radar data, automated methods are preferred
due to the number of scenes required to generate a dynamic map representative of historical surface
water conditions.

Information contained in multiple radar polarizations can help reduce errors in open water
extraction, though making use of this information requires a classification approach other than
single channel image thresholding. Supervised multispectral classification has long been used in
terrestrial remote sensing applications [27], but has been under-utilized for surface water extraction
from radar. One challenge is that supervised classification approaches require spectral signatures for
each class to train the classifier; in the case of water extraction, signatures representing land and water.
Classifying land and water with standard spectra will not achieve an optimal classification result for
several reasons. First, the spectral variability of water in radar due to wind and ice leads to confusion
between water and land. Second, the spectra of land also varies due to the presence of several land
cover types that change in time because of vegetation phenology, moisture and atmosphere [28,29].
An additional complicating factor is that in order to perform a traditional supervised classification
such as minimum distance or maximum likelihood, separate signatures must be obtained for all land
cover types present in the scene. To deal with these limitations across hundreds of scenes, an automated
open surface water extraction methodology that is an extension of one already developed in [3] is
implemented in this paper. The approach makes use of recently available inundation frequency
products from historical Landsat data [3,30] to sample scene-specific signatures representing land and
water that are input into machine learning for classification.

Once open water has been mapped, flooded vegetation is detected next by exploiting the fact that
it normally occurs adjacent to open water and has a high intensity return caused by double bounce
in radar. Applying a single high threshold value to an entire scene to extract flooded vegetation
generally produces high commission error, as other bright double bounce targets unrelated to flooding
such as buildings are often falsely included as flooded vegetation. Therefore, as recommended by [31],
the approach developed in this paper minimizes commission error by combining thresholding with
region growing seeded in open water.

This paper presents integration between optical and radar sensor data for mapping historical
surface water dynamics. A similar approach was used to extract consistent information from both
sensor types that uses machine learning for open water and region growing for flooded vegetation.
We automated the classification of 181 historical RADARSAT 1 and 2 images from 2003–2016 into
land, open water and flooded vegetation, and stacked them to generate dynamic surface water maps
representing historical inundation frequency and trends. Maps generated from 202 Landsat scenes
from 1985–2016 used to create inundation frequency products in [3] were enhanced to better represent
flooded vegetation in leaf-off conditions and stacked to generate the same dynamic surface water
products as radar. Comparisons of coincident maps were performed for both open water and flooded
vegetation as well as with hydrometric water gauge levels. Finally, dynamic surface water products
were compared against each other, and against global water occurrence mapped in [30].

2. Materials and Methods

2.1. Data

2.1.1. Study Area

The Saint John River flows from Maine to the Bay of Fundy and forms the Canada-US border
along parts of its length (Figure 1). Most of the river’s 673 km length is located in the province of
New Brunswick, and is nearly 3 km across at its widest point just north of the City of Saint John near
the Bay of Fundy. Annual springtime flooding occurs along much of its length, but is most severe along
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a 55 km stretch from Fredericton to Gagetown where ice jams form in an area of expansive floodplains
with low relief. Hydrometric flood gauge data from Environment Canada show that maximum water
depth was generally reached between mid-April to early May from 1985 to 2016 at the Maugerville
station. A study mask covering a 3065 km2 area including the main river system and floodplains
from Fredericton to Saint John was used to extract open water and flooded vegetation extents for
comparison between sensors and hydrometric water depth data described below.
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Figure 1. Study area along the Saint John River including the floodplain mask and hydrometric stations
at Maugerville and Oak Point.

2.1.2. Landsat

The same Landsat open water products presented in [3] were used in the current analysis.
Scenes are 30 m resolution from path 10, row 28 covering the Saint John River Basin including
Fredericton and Saint John at the mouth to the Bay of Fundy. A total of 202 scenes from 1985–2016 from
Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI acquired in the spring and summer between the
months of March and August were downloaded from the USGS Earth Explorer archive. Images were
selected to include only those with a minimum 40% clear-sky area within the scene. Each scene was
cloud screened using FMask [32], calibrated to Top-of-Atmosphere reflectance [33], and then classified
to open water and land using multispectral See5 decision tree [34] classification with 1:50 k National
Hydrographic Network (NHN) water base data for training. Validation of summer 2002 open water
Landsat maps was performed against orthophotos acquired during the same summer, generating over
97% overall classification accuracy. Water extents from individual maps were also significantly related
to coincident hydrometric water depth at p < 0.001 [3].

2.1.3. RADARSAT

RADARSAT 1 is a Canadian C-band synthetic aperture radar (SAR) satellite that operated between
1995 and 2013 acquiring data in single HH polarization. RADARSAT 2 is the follow-on mission that
was launched in 2007, representing a significant improvement over RADARSAT 1 by providing the
ability to acquire data in four polarizations (quad-pol:HH, HV, VH, VV:HH, HV, VH, VV where H



Remote Sens. 2018, 10, 780 5 of 19

is horizontal polarization and V is vertical polarization; the first polarization is transmitted and the
second received).

A total of 72 RADARSAT 1 scenes were ordered over the same region as Landsat path 10/row
28 between 2003 and 2012 from the RADARSAT archive through the Canadian Space Agency.
Scenes were delivered as SAR Georeferenced Fine Resolution (SGF) products at 12.5 m resolution.
Anniversary dates were as early as 5 March, with a median anniversary date of 5 May for all 72 scenes.
Upon inspection of the data after initial processing, it was noted that most RADARSAT 1 scenes were
acquired too early in the spring, causing significant overlap between land and water in single-pol
intensity due to diffuse reflection caused by wind and/or ice. Therefore, a set of 21 scenes with an
earliest date of 4 May and a median anniversary date of 5 June was selected based on visual assessment
of initial water classifications.

An additional 162 12.5 m resolution RADARSAT 2 scenes were downloaded through the National
Earth Observation Data Framework (NEODF-https://neodf.nrcan.gc.ca/neodf_cat3/) catalog, four of
which were single HH polarization, while the remaining 158 were either HH/HV or VV/VH
dual-polarization. Of these 162 scenes, only two were deemed unsuitable to include in the stack analysis
based on high omission or commission error determined from a visual inspection of initial results, one
of which was single-polarization. The earliest anniversary date for the remaining 160 RADARSAT
2 scenes was 9 April, with a median anniversary date on 29 June, which is one week later than the
median date for Landsat on 22 June (Table 1). In some cases, two to three RADARSAT 2 scenes were
acquired on the same day, producing 131 dates of imagery from all 181 RADARSAT 1 and 2 scenes.
All images were either path (SGF) or path image plus (SGX) products acquired in either standard
or wide mode. Near range incidence angles varied between 19.2 and 48.7 degrees, while far angles
ranged from 27.2 to 52.2 degrees.

Table 1. Satellite data dates and coincident water depth by sensor.

Satellite/Sensor Scenes Resolution Earliest Median Year Range Mean Water Depth Max Water Depth

RADARSAT 1 21 12.5 m 4-May 5-June 2003–2012 2.90 m 6.50 m

RADARSAT 2 160 12.5 m 9-April 29-June 2008–2016 2.96 m (2008–2015) 7.09 m
(2008–2015)

Landsat 5 95 30 m 27-March 16-June 1985–2011

Landsat 7 82 30 m 11-March 28-June 1999–2016 2.50 m (1985–2015) 6.73 m
(1985–2015)

Landsat 8 25 30 m 10-April 7-July 2013–2016

2.1.4. Hydrometric Data

Daily hydrometric water level data were acquired through Environment Canada’s National
Hydrological Service web portal for Maugerville and Oak Point monitoring stations from 1985–2015.
These stations were selected because they are located upstream and downstream of the major floodplain
on the Saint John River, while providing a near continuous water level record for the 1985–2015 period.

2.1.5. High-Resolution Imagery

High-resolution images were sought to verify open water and flooded vegetation extraction
from Landsat and RADARSAT. Fifteen high-resolution scenes of the Saint John region were available
through the National Earth Observation Data Framework Catalogue (NEODF-https://neodf.nrcan.
gc.ca/neodf_cat3/), however none were acquired on the same date as any Landsat or RADARSAT
scenes. Hydrometric water depth was determined on acquisition dates for each Landsat, RADARSAT
and available high-resolution scene. Based on water depth and location, a single QuickBird scene
acquired on 25 April during the 2009 spring flood was found to have a similar water depth (6.706 m)
to a Landsat 5 and RADARSAT 2 scene both acquired on the same day during the 2008 spring flood
(6 May 2008–6.725 m water depth). While similar water depth does not guarantee similar flood
extent due to water movement, we assume that at a broad level and for visual comparison, a general

https://neodf.nrcan.gc.ca/neodf_cat3/
https://neodf.nrcan.gc.ca/neodf_cat3/
https://neodf.nrcan.gc.ca/neodf_cat3/
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depth-extent relation exists between dates. This QuickBird scene was available in natural color at
0.6 m resolution and included areas of flooded vegetation along a ~12 km stretch of the Saint John
River from Fredericton to Maugerville. Visual comparisons between QuickBird and classified Landsat
and RADARSAT open water and flooded vegetation were conducted to verify extraction methods.

2.2. Flood Mapping

2.2.1. Landsat

Landsat open water classifications produced in [3] were enhanced by region growing from open
water dark areas that generally represented flooded vegetation. Although no field data was available
to determine whether vegetation was flooded, the known spectral response of flooded vegetation in
Landsat and RADARSAT as well as high-resolution imagery in Google Earth showing shrub and treed
areas on the floodplain and other imagery from NEODF representing both flooded and non-flooded
states were visually interpreted to confirm flooded vegetation. Region growing in Landsat was
performed by evaluating and classifying adjacent pixels as flooded vegetation that simultaneously
satisfied the criteria of reflecting less than 1.5% in red, less than 1% in NIR and less than 0.2% in SWIR 1
in units of percent TOA reflectance. Region growing began in open water and continued iteratively to
classify flooded vegetation pixels to a maximum of 200 iterations or until adjacent pixels no longer
satisfied the dark threshold criteria.

2.2.2. RADARSAT

Machine learning such as Random Forest and See5 Decision Trees, Neural Networks and Support
Vector Machines have become increasingly popular to address remote sensing classification problems
in recent years [35]. These have advantages over more traditional classifiers such as maximum
likelihood largely because they are non-parametric and therefore perform well regardless of spectral
class distributions. This is especially advantageous when automating classifications without user
input, since class signatures do not need to be checked to see if they violate statistical assumptions.

Open water was classified in individual RADARSAT scenes using See5 decision trees and
scene-specific training data representing water and land. Permanent land and water masks were
produced from combined spring and summer 1985–2016 Landsat inundation frequency products
published in [3], where permanent water was assigned to water bodies that were permanently
inundated (100% inundation frequency) and permanent land where frequency was 0%. Training was
done using the See5 default parameters of 10 trials, a confidence factor of 0.25 and no winnowing.
In single-polarization imagery that included all 21 RADARSAT 1 images and three HH polarization
RADARSAT 2 images, See5 produced a simple intensity threshold model. Final open water
classifications were improved by first reassigning roads that are single-bounce targets often mistakenly
classified as water to land using a 2010 30 m Landsat land cover of Canada [36], and then sieved to
exclude objects smaller than 50 pixels (~0.8 ha).

Flooded vegetation was subsequently region grown from open water using a single, sigma-naught
calibrated polarization applied to enhance bright targets. Like-polarizations (HH or VV) were used to
map flooded vegetation since they generally provided better contrast between flooded vegetation and
other targets [37]. Region growing was performed twice; first to detect bright double-bounce targets
above a specified intensity threshold value, and then a second time using a conservative dark threshold
value to infill areas contained within bright flooded vegetation and better connect nearby areas of
open water. Tests were conducted to determine optimal bright and dark threshold values. Based on
these, it was determined that separate threshold values were required depending on incidence angle
far range, with dark and bright thresholds set to 0.1 and 0.5 sigma-naught values for far range angles
less than 35 degrees, and 0.21 and 0.025 for far range angles greater than 35 degrees. Region growing
continued until no pixels met the bright threshold criterion to a maximum of 200 iterations, and then
until no pixels met the dark threshold criterion or 100 iterations. Image speckle and diffuse scattering
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caused by waves on water led to omission error that was minimized by sieving land objects that
were smaller than islands and completely contained within open water or flooded vegetation. Finally,
a DEM from the Canadian Digital Elevation Database (CDED) was used to remove false detections
occurring on slopes greater than 3.5 degrees (Figure 2).Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 19 
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Figure 2. RADARSAT 2 open water and flooded vegetation mapping methodology.

Quality control through visual assessment was important to correct problems and ensure that
surface water products included in the stack analyses were of high quality. Validation of individual
water maps is difficult due to a lack of synchronous reference data. Images of each individual
classification were created in a bitmap file format to enable efficient quality control by providing the
ability to quickly identify and remove scenes that had significant omission or commission error.

2.3. Sensitivity of RADARSAT 2 Open Water Mapping to Training Error

Inundation frequency maps used to generate permanent land and water masks may not be
perfectly representative of flood conditions especially during extreme events, and may therefore
introduce error in the training data where water pixels are falsely assigned to the land class (water
omission) and vice-versa (water commission). Radar’s ability to penetrate cloud cover produces a
higher probability of imaging peak flood conditions, and therefore maximum inundation extent may
be higher in radar than in optical. When classifying a radar image representing peak flood conditions,
greater surface water area in radar compared to historical inundation based on Landsat will cause
water omission errors in the training data. Decision tree classifiers are known to be highly robust to
training error [38]; however, robustness depends on the classification problem including the number of
classes. Therefore, simulations were conducted to explore the sensitivity of RADARSAT classification
accuracy to labelling errors in training data.

A single RADARSAT 2 image was selected for this experiment that was acquired August 8, 2008
near mid-summer to coincide as closely as possible with 1:50 k (NHN) waterbodies representing
normal water extents used as a reference to evaluate classification performance. Training labelling
errors of water omission, water commission and random errors of both omission and commission were
evaluated separately in two percent increments from zero to 60%. Omission errors were introduced
in the training data by randomly assigning pixels sampled beneath the water mask to the land class,
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while commission errors were introduced by doing the opposite of randomly assigning land pixels to
water. Random errors were introduced by simultaneously introducing water omission and commission
errors in the training data. For each type of error and at each error level, classification accuracy was
evaluated using NHN water extents as truth. Cohen’s kappa statistic that accounts for agreement due
to random chance [39] was used as the measure of overall accuracy and plotted as a function of percent
training error.

2.4. Surface Water Dynamics

2.4.1. Inundation Frequency

Whereas previously in [3], separate spring and summer seasonal Landsat inundation products
were generated from annual composites, inundation was generated in this study using all images
simultaneously from 1985–2016, and separately from 2003–2016 for direct comparison with inundation
over the same period from RADARSAT. Inundation frequency was calculated per pixel as the
percentage of valid observations that each pixel was flooded through time, and was produced for
open water only and for open water and flooded vegetation combined. Inundation frequency objects
were sieved to exclude those smaller than 6.75 km2 with a frequency less than five percent, and those
smaller than 0.9 km2 with a frequency less than ten percent. Inundation frequency was calculated from
the RADARSAT map stack in the same manner except at 12.5 m instead of 30 m resolution.

2.4.2. Inundation Trends

The application of per-pixel linear regression to image time-series has been used extensively
to map trends in continuous dependent variables such as NDVI [40,41], water fraction [42] and
Leaf Area Index (LAI) [43], among other parameters. Logistic regression is appropriate to predict a
binary response variable, and has been applied in the remote sensing literature to determine variable
importance to categorical ratings including flood susceptibility [44] and landslide hazard [45]. To the
authors’ knowledge, logistic regression has not been applied to map frequency trends in binary
categorical outcomes such as land versus water. Inundation trend maps were generated from separate
Landsat and RADARSAT map time-series using per-pixel binomial logistic regression with number of
days since the earliest scene date as the independent variable, and land/water from stacked water
maps as the binary dependent variable. Output images include the regression coefficient indicating
the direction of the trend towards water or land, and a chi-squared significance test p-value indicating
the probability that the observed trend was real.

3. Results

3.1. Training Error

For the three types of labelling error introduced into training data (water omission, commission
and random), kappa was over 0.84 at 0% training error, indicating excellent agreement due to good
classification performance and a RADARSAT image representative of baseline water extents mapped
by NHN. When random errors were introduced into the training data, overall accuracy remained above
0.8 to 38% training error before suddenly dropping to 0% above 50% error due to the classification
predicting water for all pixels in the image. Whether water omission or commission error was
introduced into the training data, classification performance was similar with kappa remaining above
0.8 to 30–40% training error before dropping to 0 above 50% (Figure 3).
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3.2. Comparison between RADARSAT 2 and Landsat Flood Extents

Open water and flooded vegetation extents were extracted from 11 RADARSAT 2 scenes acquired
on the same dates as seven Landsat scenes, with multiple RADARSAT 2 images acquired on the same
date as individual Landsat scenes in some cases. NHN water area and flood extents from Landsat and
RADARSAT were extracted for comparison beneath a common area represented by RADARSAT 2
image footprints where corresponding Landsat imagery was cloud-free. The same comparison was
not made between RADARSAT 1 and Landsat because although coincident images existed in the
original set of 72 RADARSAT 1 images, initial tests revealed these were scenes that had significant
issues related to wind and ice and were therefore among the 51 RADARSAT 1 scenes eliminated from
the final set. Visual comparisons between QuickBird imagery and Landsat and RADARSAT open
water and flooded vegetation show good correspondence between all three (Figure 4). Open water
and flooded vegetation maps were also compared between all coincident RADARSAT 2 and Landsat
scenes; an example comparison is shown over a large portion of the floodplain east of Maugerville in
Figure 5.

A co-occurrence matrix between corresponding Landsat and 30 m nearest neighbor resampled
RADARSAT 2 flood maps is shown in Table 2. This matrix represents the sum of eleven co-occurrence
matrices representing each of the eleven RADARSAT 2 scenes with coincident Landsat scenes.
Overall agreement between Landsat and RADARSAT 2 flood maps was 97.6% with a kappa of
0.865, representing almost perfect agreement between maps produced from different data. Of the three
classes, agreement within the flooded vegetation class was lowest. 436 km2 was classified as flooded
vegetation in RADARSAT 2, 174 km2 or 40.0% of which was classified as land in Landsat, while of
322 km2 of flooded vegetation mapped in Landsat maps, 121 km2 or 37.7% was classified as open
water in RADARSAT 2.
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Table 2. Co-occurrence between coincident Landsat and RADARSAT 2 flood maps. Units are in
square kilometers.

Landsat
Sum

Open Water Land Flooded Veg

RADARSAT 2

Land 3361 177 55 3593
Open Water 374 38,236 121 38,731
Flooded Veg 174 116 145 436

Sum 3909 38,529 322

Overall agreement 97.6%
Kappa 0.865

Table 2 and plots of corresponding flood extents by sensor shown in Figure 6 revealed
approximately eight percent less open water area in RADARSAT than in Landsat, while RADARSAT
underestimated combined open water and flooded vegetation by 4.7 percent compared to Landsat
for this sample of scenes. Tau rank-based correlations [46] between corresponding open water and
combined open water and flooded vegetation extents were both significant at p-value < 0.001; however,
a direct comparison includes variance in surface water extents due to different areas mapped beneath
common clear-sky Landsat and coincident RADARSAT image footprints for each image pair. In order
to remove this variance, a flood ratio was calculated (Equation (1)) as the combined open water and
flooded vegetation extent divided by the area of NHN permanent water in the same image footprint.
The flood ratio represents an inflation factor of flood extent to NHN water, where a value less than one
indicates water extents less than baseline NHN extents, and a value greater than one indicates flooding.
The flood ratio was calculated for 10 of 11 Landsat scenes due to extreme cloud cover in one scene
beneath the matching RADARSAT 2 image footprint. For the remaining 10 Landsat and RADARSAT
2 scenes, the tau correlation between corresponding flood ratios was significant at p < 0.01 (Figure 6).

Flood Ratio = (Open Water + Flooded Vegetation)/NHN Permanent Waterimage (1)

Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 19 

 

Table 2. Co-occurrence between coincident Landsat and RADARSAT 2 flood maps. Units are in 
square kilometers. 

 
Landsat 

Sum 
Open Water Land Flooded Veg 

RADARSAT 2 

Land 3361 177 55 3593 
Open Water 374 38,236 121 38,731 
Flooded Veg 174 116 145 436 

Sum 3909 38,529 322  

 Overall agreement 97.6% 
Kappa 0.865 

Table 2 and plots of corresponding flood extents by sensor shown in Figure 6 revealed 
approximately eight percent less open water area in RADARSAT than in Landsat, while RADARSAT 
underestimated combined open water and flooded vegetation by 4.7 percent compared to Landsat 
for this sample of scenes. Tau rank-based correlations [46] between corresponding open water and 
combined open water and flooded vegetation extents were both significant at p-value < 0.001; 
however, a direct comparison includes variance in surface water extents due to different areas 
mapped beneath common clear-sky Landsat and coincident RADARSAT image footprints for each 
image pair. In order to remove this variance, a flood ratio was calculated (Equation (1)) as the 
combined open water and flooded vegetation extent divided by the area of NHN permanent water 
in the same image footprint. The flood ratio represents an inflation factor of flood extent to NHN 
water, where a value less than one indicates water extents less than baseline NHN extents, and a 
value greater than one indicates flooding. The flood ratio was calculated for 10 of 11 Landsat scenes 
due to extreme cloud cover in one scene beneath the matching RADARSAT 2 image footprint. For 
the remaining 10 Landsat and RADARSAT 2 scenes, the tau correlation between corresponding flood 
ratios was significant at p < 0.01 (Figure 6). 

Flood Ratio = (Open Water + Flooded Vegetation)/NHN Permanent Waterimage (1) 

 
Figure 6. Comparisons of open water (left) and combined open water and flooded vegetation 
(middle) between temporally and spatially coincident Landsat and RADARSAT maps, and derived 
flood ratios (right). 

3.3. Comparisons between Mapped Flood Extents and Hydrometric Water Depth 

Average water depth between Maugerville located upstream, and Oak Point located 
downstream of the main floodplain near Gagetown was related to combined open water and flooded 
vegetation extent in the study mask covering the region. For both RADARSAT and Landsat, a 
normalized flood extent [3] was calculated (Equation (2)) to account for different areas imaged among 
scenes caused by RADARSAT tasking that produces variable image footprints, and cloud cover in 
Landsat. The normalized flood extent is the product of the flood ratio times the area of NHN 
permanent water beneath the study area mask, providing an approximation of flood extent in the 
entire study including areas missed by each RADARSAT scene, or areas obscured in Landsat by 

Figure 6. Comparisons of open water (left) and combined open water and flooded vegetation (middle)
between temporally and spatially coincident Landsat and RADARSAT maps, and derived flood
ratios (right).

3.3. Comparisons between Mapped Flood Extents and Hydrometric Water Depth

Average water depth between Maugerville located upstream, and Oak Point located downstream
of the main floodplain near Gagetown was related to combined open water and flooded vegetation
extent in the study mask covering the region. For both RADARSAT and Landsat, a normalized
flood extent [3] was calculated (Equation (2)) to account for different areas imaged among scenes
caused by RADARSAT tasking that produces variable image footprints, and cloud cover in Landsat.
The normalized flood extent is the product of the flood ratio times the area of NHN permanent water
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beneath the study area mask, providing an approximation of flood extent in the entire study including
areas missed by each RADARSAT scene, or areas obscured in Landsat by cloud cover. An assumption
of the normalized flood extent is that the flood ratio beneath the mapped area is representative of the
flood ratio for the whole study area. Both RADARSAT and Landsat flood extents were significantly
related to water depth at p-value < 0.001 (Figure 7).
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and average daily hydrometric water depth at Maugerville and Oak Point on corresponding satellite
acquisition dates.

Analysis of covariance (ANCOVA) was used to determine if the relation between flood extent and
flood depth was similar between sensors. Results of ANCOVA revealed that both slope and intercept
were similar at p < 0.05 between RADARSAT and Landsat flood depth-extent relations. Therefore,
both sensors’ water depths and extents were combined, revealing a combined relation that was also
significant at p-value < 0.001 (Figure 7).

Normalized Flood Extent = Flood Ratio × NHN Permanent Watermask (2)

3.4. Inundation Frequencies

A comparison of inundation frequency extents in the study area was made among Landsat
and RADARSAT products (Table 3), including Pekel’s global water occurrence product created
from 1984–2015 Landsat on Google’s Earth Engine using an expert system classifier (Figure 8) [30].
The Landsat open water and inundation product spanning 1985–2016 contained more total inundated
area than Pekel’s 1984–2015 product by nearly 20%. Pekel’s product included no permanent water
according to a 100% inundation frequency criterion, but most of the water in the 75% and above
category was considered permanent. In this case, Pekel’s product underestimated permanent
water by less than 9% compared to our Landsat product using the same permanent water criterion.
Combined Landsat open water and flooded vegetation from 1985–2016 contained 12% more flood area
than open water alone, most of which is in the least frequent inundation class (1–25%), and second
most in the permanent water class (100%).
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Figure 8. Open water (top left) and combined open water and flooded vegetation (top right)
inundation frequency from Landsat for the 2003–2016 period, Pekel et al.’s 1984–2015 water occurrence
product (bottom left) and 2003–2016 RADARSAT open water and flooded vegetation inundation
(bottom right) over the main portion of the Saint John River floodplain east of Maugerville.

Table 3. Inundation frequency area by product in the study area mask. OW = Open Water;
FV = Flooded Vegetation.

Year 1985–2016

Landsat OW Landsat OW + FV Pekel [30] 1984–2015

Inundation frequency range area (km2)
0 2277 2181 2408

1–25 163 236 80
25–50 81 98 79
50–75 35 38 31
75–99 262 227 467
100 246 285 0

Total inundated area (km2) 788 884 657

Year 2003–2016

Landsat OW Landsat OW + FV RADARSAT OW RADARSAT OW + FV

Inundation frequency range area (km2)
0 2277 2199 2342 2105

1–25 162 208 135 354
25–50 80 97 69 81
50–75 35 44 34 35
75–99 235 206 233 147
100 276 312 260 351

Total inundated area (km2) 788 866 730 967
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A comparison of Landsat open water inundation frequency products from 1985–2016 and
2003–2016 revealed the same total inundated area for both, with approximately 12% more permanent
water in the 2003–2016 product. Combined open water and flooded vegetation also contained more
permanent water in the 2003–2016 period, while containing less total inundated area overall.

RADARSAT open water inundation frequency occupied less area than Landsat open water
because RADARSAT underestimated single date open water extents by about 8% compared to Landsat.
Combined open water and flooded vegetation inundation was greater in RADARSAT compared
to Landsat by about 12%, mainly due to infrequently inundated vegetation in the 1–25% class,
and permanently inundated vegetation.

3.5. Inundation Trends

A comparison between pixel-based Landsat and RADARSAT logistic trend images from
2003–2016 showed that although trend direction and significance were highly related between sensors,
few common areas were significant at p < 0.05 in both. The RADARSAT trend image shown in Figure 9
appears less noisy than the Landsat trend image due in large part to striping caused by Scan Line
Corrector (SLC) failure of Landsat 7 post 2003, with areas becoming significantly more inundated
(wetter) in blue and areas becoming significantly less inundated (drier) in red. The RADARSAT
trend image shows increasing inundation frequency around most permanent water bodies, especially
along the Saint John River shoreline. The width of the significantly trended shoreline is less than six
RADARSAT pixels (75 m) along most of its length. These significant wetting trends only appeared as
single pixels along portions of shoreline in Landsat due to its coarser resolution and the effect of mixed
pixels. Hydrometric data confirmed that median summer water levels have increased significantly
from 1985–2016 at p < 0.05 at an average rate of between 1.0 and 1.5 cm per year at Maugerville and
Oak Point stations, while 2003–2016 levels were also positively trended but not significant. Increasing
water depth may have led to greater extent on its own since the two measures are significantly related,
or may have contributed to shoreline erosion that further increased nearshore inundation except on
western, upstream shorelines of islands where deposition appears to have occurred.
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4. Discussion

Classification simulations showed that open water classification accuracy remained high as long
as training labelling errors did not exceed 20%. Training errors in the range of 30–40% negatively
impacted random and omission errors by less than 5%, while commission error was less than 5% in
the 40–50% labelling error range. This was true whether pixels were randomly labelled as the
opposite land/water class (random error), water pixels were randomly assigned to land (water
omission), or land pixels were randomly assigned to water (water commission). This suggests that See
5 decision trees are highly robust to training data labelling error, as differences between RADARSAT
and permanent land and water from historical inundation can be up to 30–40% without incurring a
significant penalty in classification accuracy. By simulating symmetric noise in a two-class classification
problem, [38] also determined that decision tree accuracies were nearly as good at 30% noise as at
0% noise provided a sufficiently large training sample (N > 10000). The classification problem presented
in this paper easily meets this sample size criterion, leading to similar results and conclusions.

Comparisons between open water and flooded vegetation maps from Landsat and RADARSAT
acquired on the same dates showed that using the current classification methodologies, RADARSAT
underestimated open water extents compared to Landsat, but the combined area of open water and
flooded vegetation was only slightly higher for Landsat. These discrepancies relate to differences in
the amount of vegetation detectable by each sensor. In leaf-off conditions, sensing water through
a vegetated canopy near nadir will obscure branches and trunks due to low contrast between dark
features including tree bark, shadow and water [13–15]. At oblique angles and low levels of vegetation
cover however, radar still produces double bounce off of trunks and standing water acting as corner
reflectors. Therefore, radar appears generally more sensitive to lower flooded vegetation biomass levels
than optical. The fact that radar overestimates flooded vegetation compared to optical also accounts
for the fact that radar relatively underestimates open water. Forty percent of the area mapped as
flooded vegetation in RADARSAT was classified as open water in corresponding Landsat, confirming
a greater sensitivity of RADARSAT to low flooded vegetation biomass levels. Therefore, the vegetation
biomass threshold value between open water and flooded vegetation is higher in optical than in radar,
while both detect a similar amount of overall flooding.

Both sensors’ total flood extent showed similarly significant rank-based correlations with
coincident hydrometric water depth. Daily hydrometric water depth represents a daily mean while
flood extents represent conditions at the time of the satellite overpass. Discrepancies between the
two relative measures of flood severity can occur due to changes in river bathymetry between years,
as well as the dynamic nature of flooding caused by flow obstructions and surges from snowmelt
and precipitation. A strong dependence of flood extent on water depth suggests a monotonic relation
over the duration of the time-series, which would indicate that other factors that interact with depth
to produce flood extent such as bathymetry and obstructions have had relatively little effect on the
relationship through time. Therefore, flood extents can be predicted from flood depth from year to
year with some uncertainty, suggesting that similar impacts of previous events can be expected in
subsequent years dependent on water depth.

Inundation products reflect differences due to input data. More detailed inundation frequency
and visually cleaner inundation trends were observed in RADARSAT than in Landsat. This may
be caused by the effects of RADARSAT’s finer spatial resolution in standard and wide-beam modes
and residual atmospheric contamination in Landsat after the application of FMask. The number of
valid per-pixel observations in the Landsat image stack is dependent on cloud and cloud shadow,
while in RADARSAT the number of observations is due to overlap among image footprints that vary
between dates. The mean number of valid observations within the study area in the 2003–2016 Landsat
image stack containing 114 images was slightly less than 70, or 61%. In RADARSAT, the average
number of valid observations in the study area was 77 of 131 dates of imagery, or 59%. The percentage
of valid observations depends on several factors, including regional cloud cover and RADARSAT
tasking, which is determined by the occurrence of flood events and the need for flood information. It is
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expected that in many floodplains in Canada that experience seasonal flooding and where cloud cover
is similar to New Brunswick, the number of valid observations used to calculate inundation frequency
and trends should be similar between Landsat and RADARSAT.

Total inundation including open water and flooded vegetation was greater in RADARSAT
than in Landsat. Mean hydrometric water depth was approximately 45 cm greater on RADARSAT
acquisition dates than on Landsat dates and maximum water depth was 29 cm greater (Table 1) due
the fact that a relatively high percentage of RADARSAT scenes were tasked during flood events.
Coincident RADARSAT 2 and Landsat flood extents showed that both open water and combined open
water and flooded vegetation was greater in Landsat, but that flooded vegetation area was greater
on its own in RADARSAT 2. Despite greater combined open water and flooded vegetation extents in
Landsat scenes, a larger combined open water and flooded vegetation inundation area in RADARSAT
was likely due in part to greater hydrometric water depth during flood events imaged by RADARSAT.

Pekel’s occurrence product [30] predicted the least inundation area compared to our Landsat
or RADARSAT products, regardless of the period analyzed. While this result suggests greater than
5% global omission reported in [30], the area analyzed here represents a small subset of a global
product. Therefore, either the St-John region is not representative of global water omission or perhaps
more likely, their underestimation of inundation area is due to the size of their mapping endeavor and
the need for robust, conservative methods to ensure good performance across a range of conditions.
Despite missing some inundation including flooded vegetation, Pekel’s product omits less than 20%
inundation compared to ours, which will translate into a small mapping error if this product were
used to train a classifier to predict open water with the current methodology. A classifier was trained
by sampling scene-specific land and water signatures beneath Pekel’s occurrence map to predict open
water extent over the same RADARSAT scene used for error analysis, producing a slightly lower kappa
of 0.82 when evaluated against NHN water extents, compared to 0.84 for our product. During the
2017 flood activation for Eastern Ontario and Western Quebec including cities of Ottawa/Gatineau
and Montreal, the Emergency Geomatics Services at Natural Resources Canada used Pekel et al.’s
occurrence product in the current methodology to generate near real-time flood maps from a range
of sensors. Pekel’s occurrence and the method were tested successfully on data received through the
International Space Charter for Disasters from Sentinel-1, TerraSar-X, ALOS-2 and KOMPSAT 5 in
addition to RadarSat-2 [47].

Inundation frequency is a product that is useful on its own to inform public safety, land use and
insurance, among others, on historical surface water patterns. Historical inundation is also useful to
generate land and water masks to train machine learning and produce current surface water maps,
as was done in near real-time during EGS’s 2017 flood activation. Going forward, the approach of
generating real-time and historical water maps will be an iterative one, in which current flood products
are used to update and improve historical inundation products, which will in turn be used to produce
flood products next season. This feedback will continue to improve mapped water extents in near
real-time and historically.

5. Conclusions

Inundation frequency has routinely been mapped from historical Landsat data, but not from
RADARSAT imagery until now. Landsat has been the default sensor for these types of analyses due
to its data availability, consistency and long record. Currently, the RADARSAT image archive is only
available free of charge to the Government of Canada, which has limited its use for historical analyses.
However, RADARSAT appears to offer some advantages over Landsat for dynamic surface water
mapping. First, it has the known advantage of cloud penetration while performing well for open water
detection under the right weather conditions. This allows radar to detect and map peak flood extents
regardless of weather, enabling mapping of the full extent of periodic inundation that is critical to land
use decisions. Second, though not confirmed by field data, it appears to be sensitive to less flooded
vegetation biomass and/or cover than optical, while combined open water and flooded vegetation



Remote Sens. 2018, 10, 780 17 of 19

extents were similar between sensors. Third, while neither sensor provides a greater number of valid
temporal observations than the other for the Saint John River study area, RADARSAT provides more
detail in standard and wide coverage modes than Landsat and visibly cleaner inundation frequency
and trend images. Given these advantages, it is hoped that the RADARSAT archive is made publicly
available to foster development across a broader range of historical time-series applications.

The surface water mapping methodology first developed in [3] and enhanced in the current paper
to include flooded vegetation is shown to be robust to sensor type and training error. Knowledge and
information embedded in existing surface water maps can be used to train machine learning to predict
surface water extents in near real-time. Use of Pekel et al.’s inundation maps and machine learning
applied to a range of radar and optical sensors from the Disaster Charter during the 2017 flood
activation in Eastern Canada demonstrated the usefulness and efficiency of this approach. New water
maps are to be used to update historical inundation maps for mapping future flood events and to
provide up to date information to guide future land use decisions.
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