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Abstract

:

In this paper, a new Region-based Convolutional Neural Networks (RCNN) method is proposed for target recognition in large scene synthetic aperture radar (SAR) images. To locate and recognize the targets in SAR images, there are three steps in the traditional procedure: detection, discrimination, classification and recognition. Each step is supposed to provide optimal processing results for the next step, but this is difficult to implement in real-life applications because of speckle noise and inefficient connection among these procedures. To solve this problem, the RCNN is applied to large scene SAR target recognition, which can detect the objects while recognizing their classes based on its regression method and the sharing network structure. However, size of the input images to RCNN is limited so that the classification could be accomplished, which leads to a problem that RCNN is not able to handle the large scene SAR images directly. Thus, before the RCNN, a fast sliding method is proposed to segment the scene image into sub-images with suitable size and avoid dividing targets into different sub-images. After the RCNN, candidate regions on different slices are predicted. To locate targets on large scene SAR images from these candidate regions on small slices, the Non-maximum Suppression between Regions (NMSR) is proposed, which could find the most proper candidate region among all the overlapped regions. Experiments on   1476 × 1784   simulated MSTAR images of simple scenes and complex scenes show that the proposed method can recognize all targets with the best accuracy and fastest speed, and outperform the other methods, such as constant false alarm rate (CFAR) detector + support vector machine (SVM), Visual Attention+SVM, and Sliding-RCNN.
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1. Introduction


Spaceborne and airborne synthetic aperture radar (SAR) is able to operate in all-weather all-time conditions to generate high resolution SAR images; thus, SAR has been widely used both in military and civil fields. SAR image interpretation is the inevitable way to fully obtain the information of a specific SAR image. However, because of scattering imaging mechanism and speckle noise in SAR images, interpretation and understanding of SAR images is much more difficult than that of optical photos [1]. Several years ago, many algorithms based on deep learning have been well established for SAR automatic target recognition (ATR) [2,3], which is focused on in this work.



To achieve automatic target recognition (ATR) systems for SAR interpretation, MIT Lincoln Laboratory put forward a standard SAR ATR architecture. The structure contains three stages: detection, discrimination and classification/recognition [4]. The detection part is to extract candidate regions that might include targets from SAR images with a constant false alarm rate (CFAR) detector. However, these regions include not only targets that we want to recognize, such as tanks and vehicles, but also background objects, for example, buildings and trees. Then, in the discrimination part, a discriminator trained by several manually designed features is used to divide regions into two classes, target or not target, to reduce false alarms. Output of discriminator will be sent to the classifier to give out the type of targets, and this operation is called classification/recognition. Performance of classification will be greatly influenced if targets are in extended operating conditions. The accuracy will also decrease significantly if any stage of SAR ATR is not well designed or not suitable for the current operating condition [5]. To provide enough samples for these SAR ATR models, a project called model-based Moving and Stationary Target Acquisition and Recognition (MSTAR) was carried out [6]. In the past few years, most researchers just focused on one part of these three stages, put forward theories such as scene segmentation, target discrimination, feature extraction, classifier design and so on. However, these theories and algorithms just out-perform in specific operating conditions, which makes them not able to be applied universally. This will also result in procedure isolation and increased difficulty of detection and recognition connection.



A reliable and universal system requires effective connection between detection and recognition, so End-to-End models were proposed [7,8], and apply robust trainable classifiers, such as Adaboost and support vector machine (SVM) [9,10,11] to realize SAR ATR. Though these End-to-End SAR ATR models can realize the connection among three stages, they are still not as efficient as we expect. Problems like size difference and target position mismatch between training samples and interpreting images still need to be solved.



Neural networks could extract features automatically and have obtained remarkable achievements in optical image detection. Regions with convolutional neural network (R-CNN), Fast R-CNN and Faster R-CNN were proposed, which can recognize different kinds of objects with different sizes in optical images with high accuracy [12,13,14]. You Only Look Once (YOLO) was proposed, which achieved fast detection, but the accuracy is lower than Faster R-CNN [15]. Liu proposed Single Shot MultiBox Detector (SSD), which was a compromise in accuracy and speed between Faster R-CNN and YOLO [16].



Inspired by these advanced methods, many researchers tried to introduce deep learning methods into the field of SAR target detection and recognition to solve problems in End-to-End models. Morgan realized SAR target recognition with CNN and verified its ability to extract SAR target features [17]. Hansen and Ding solved problems of target displacement, random speckle noise and pose missing with CNN, and proved that CNN has a favorable robustness compared with other classifiers [18,19]. Chen built an all-convolutional network called A-ConvNets to realize recognition of SAR targets and solved the over-fitting problem caused by lack of training samples [20]. Researchers above have verified that convolutional neural networks can be realized in every process of SAR image interpretation, but they are still in the range of three-stage process, a universal model that can interpret large scene SAR images at once is still under exploration.



In order to break the bottleneck of traditional three-stage process, these research results gave us the inspiration for applying deep learning methods and strategies in optical image detection to fields of SAR target detection and recognition with consideration of unique features of SAR images. In this paper, we have increased randomness of target distribution with strategies of segmentation to avoid over-fitting problems cased by small training data sets, and Non-maximum Suppression among Regions (NMSR) is proposed to choose the most proper candidate boxes among adjacent regions. The CNN network realized not only integration of detection and recognition, but also an effective and efficient performance dealing with large scene SAR images.



The remainder of this paper includes an introduction to the structure and components of our convolutional neural network as well as training and testing details in Section 2, exhibition of experimental results in Section 3, analyses of experimental results in Section 4 and conclusions in Section 5.




2. SAR Target Recognition Based on Region-Based Convolutional Neural Networks


At first, the flow chart of the model that we used to realize interpretation of large scene SAR images is shown in Figure 1.



Then, structure of the CNN used to realize integration of target detection and recognition is given out, and every component of this CNN is described in detail to show how it works.



Finally, a nonlinear softmax function is used to realize classification and a fully connected layer is used to locate bounding boxes of targets [21].



Components of the CNN network are presented in details as below.



2.1. Fast Sliding


Before images are sent into the CNN, they will be re-sized to a certain size so that feature maps of them after CNN are of the same size, and classification could be finished accurately. With application of this strategy, the network is endowed with a certain degree of scale invariance for small images of different sizes and scales. However, as for large scene images, once they are re-sized to a small size, disappearance of most pixels will lead to information lost and result in a sharp drop of target detection [22], such as missing most targets, inaccuracy of target location and lower confidence.



Thus, it is necessary to cut large scene images into sub-images, and then send these sub-images into convolutional neural network to realize detection and recognition accurately.



Compared with recognition of SAR targets, location and detection of SAR targets are much more time-consuming because of random distribution of sparse targets. Furthermore, sliding operation is time-consuming as well. A sliding window with stride of one pixel can achieve the best detection performance, but it has the lowest efficiency. Using a sliding window with a larger stride will decrease time consumption. Since randomly distributed targets will appear in any place in an image, if one sliding window covers only a part of the target, detection and recognition results of this target in this sliding window will be not accurate at all. To solve the problem, we need to make sure that any potential target in a large scene image will be completely covered by at least one sliding window. If the size of the target is    w t  ∗  h t   , the size of sliding window is z; then, overlap k among adjacent slices should be limited as follows:


  k ≥   max (  w t  ,  h t  )  z  .  



(1)







This strategy could ensure an accurate detection result and a smaller time consumption. A diagram of this fast sliding strategy is shown in Figure 2.




2.2. Structure of Region-Based Convolutional Neural Networks


It has been proved that the number of convolutional layers plays an important role in the performance of CNN [23]; as for SAR images, a network with a simple structure and only several layers could get a satisfying performance. As shown in Figure 3, a CNN network with five convolutional layers (conv layers) and two max pooling layers is used to extract features in SAR images. The number after the symbol @ is convolution kernel size.



During convolution operation, each convolution kernel is set to share the same weights so that this kernel could detect the only specific feature at different positions of the previous layer. Strategy of weight sharing can significantly reduce the number of free parameters, which can make training faster and more efficient [14]. Then, the input image is sent to do convolution operations with several convolution kernels, and outcomes of each convolution operation are organized as a set of 2D arrays [24]. Thus, a specific convolution kernel can be treated as a feature detector as well. However, a useful feature is more likely to distribute in a small part of the input, so it is necessary to make use of obvious features and drop useless parts. In our network, there is always one max pooling layer after each of the first two conv layers [25]. The max pooling layer is to find out the largest unit in a local patch and realize a subsample on the output of the conv layer to extract local optimal features—the 2D array output of this is called the feature map [26].



2.2.1. Convolutional Layer


Conv layers are to extract different features in the input feature maps with plenty of convolution kernels. Input feature maps are connected to output feature maps through a specific designed strategy, so convolution kernels are forced to extract different features. If some input feature maps   O i  ( l − 1 )      ( i = 1 , … , I )   are connected to one output feature map   O j  ( l )      ( j = 1 , … , J )  , and    O i  ( l − 1 )    ( x , y )    is a unit of the ith output feature map in layer   l − 1   at position   ( x , y )  ,    O j  ( l )    ( x , y )    is the unit of the jth output feature map in layer l at position   ( x , y )  . Let manually configured parameters    k  j i   ( l )    ( u , v )    present the convolution kernel connecting these input feature maps and output feature maps,   b j  ( l )    presents trainable bias of the output feature map. The convolution is computed as below:


   O j  ( l )    ( x , y )  = f  (  G j  ( l )    ( x , y )  )  ,  



(2)






   G j  ( l )    ( x , y )  =  ∑  i = 1  I    ∑  u , v = 0   K − 1     k  j i   ( l )    ( u , v )      ·  O i  l − 1    ( x − u , y − v )  +  b j  ( l )   ,   



(3)




where   f ( · )   is the nonlinear activation function, and here we used the ReLu function.    G j  ( l )    ( x , y )    denotes the weighted sum of inputs to the output feature map at position   ( x , y )  . Other parameters include the number of input feature maps I, kernel size   K × K  , convolution stride S and zero padding P. Stride S specifies the intervals while using convolution kernels to the input feature maps, and lead to lower dimensional outputs. Padding P is used to preserve the spatial size of input feature maps so that features appearing in edges can be extracted as well. A common strategy is to pad the input with zeros on each side of the input. A conv layer with kernels of size   K × K  , stride of S and I feature maps of size    W 1  ×  H 1    as input will get output composed of J feature maps of size    W 2  ×  H 2   , where


   W 2  =  (  W 1  − K + 2 P )  / S + 1 ,  



(4)






   H 2  =  (  H 1  − K + 2 P )  / S + 1 .  



(5)







Recent literature has indicated that using filters with small sizes, such as 3 × 3 or 5 × 5, with a stride of 1 usually produces satisfying performance [23]. The number of feature maps on each layer is determined through cross validation. The common setting is that lower layers tend to have fewer feature maps and higher layers tend to have more. However, in some deep models, middle layers have much more feature maps and highest layer have fewer to reduce redundancy [27]. With strategy of weight sharing and a specially designed connection between layers, kernels are forced to extract a certain feature in a different position of feature maps, and the number of parameters is reduced as well.




2.2.2. Activation Function


The relationship between input image and output box and label is supposed to be a highly nonlinear mapping, so nonlinear activation function needs to be added at each conv layer [28]. In traditional convnets, a hyperbolic tangent function   f ( x ) = tanh ( x )   or a sigmoid function   f ( x ) = 1 / ( 1 + exp ( − x ) )   are used as the nonlinear activation function at conv layer [29]. However, hyperbolic function is not good enough because when its output is near   − 1   or 1, the gradient of this function tends to zero, and this might terminate training. Thus, it used to be hard to train deep models due to these saturating nonlinearities. Recent research has found a nonsaturating nonlinearity that often works well in training, the rectified linear unit (ReLU) [30]. This function is given by


  f ( x ) = max ( 0 , x ) .  



(6)







ReLU can significantly reduce training time and deep networks using ReLU usually can reach their best performance with only supervised training on large labeled data sets without requiring any unsupervised pretraining.




2.2.3. Pooling Layer


In our model, there is only one pooling layer after each of the first two conv layers. Max pooling operation is used to select the pixel with maximum value in a certain group of pixels as the most significant and efficient features. Though this operation will throw away some information, it achieves shift and distortion invariance somehow. If the input image shifts a small amount, this operation can make sure that most outputs of pooling will not change [31].



The max pooling operation is defined as


   O i  ( l + 1 )    ( x , y )  =  max  u , v − 0 , … , M − 1    O i  ( l )    ( x · s + u , y · s + v )  ,  



(7)




where M is the pooling size. Stride s determines distance between neighbor pooling windows.



As said before, pooling operation throws away some information during subsampling, so a larger pooling size is going to result in worse performance of feature extraction. This is why actually only two hyperparameter settings: 2 × 2 as pooling size with a stride of 2 and 3 × 3 as pooling size with a stride of 2 are used in practice [32].



A typical connection between conv layer and pooling layer is shown in Figure 4. As we have shown before,   f x   is convolution operation,   b x   and   b  x + 1    are biases,   W  x + 1    is the weight,   S  x + 1    is the output feature map.




2.2.4. Softmax Classification


To deal with multi-class classification problems, the softmax nonlinearity is used in the output layer to generate posterior probabilities over each class. Due to that, after one fully connected layer, a two-dimensional vector is mapped into a K-dimensional weighted vector, and the value of each element represents the relative probability of class of this input    p i  = P  ( y = i  x  )   , for   i = 1 , … , K  . The softmax function can be presented as


  p  ( i )  =   exp (  θ i T  x )    ∑  j = 1  K  exp  (  θ j T  x )    ,  



(8)




where    θ j T  x   is the jth element of output vector.



As for the classification procedure, with a set of   N  c l s    labeled training samples, the loss function can be defined as


   L  c l s    (  θ j T  )  = −  1  N  c l s     ∑  i = 1   N  c l s     log P (    p i   *    p i   ;  θ j T  ) ,   



(9)




where   p i   is the predicted label of the ith sample and   p i *   refers to the ground-truth label.



With these ground-truth training samples, a better performed classifier can be obtained automatically through adjusting the trainable parameter   θ j T  , while minimizing this loss function, which means increasing the probability of giving out correct labels.




2.2.5. Region Proposal


To realize the integration of classification and location, a small network is used to slide on the final feature maps obtained from previous layers [14]. As shown in Figure 5, the network is fully connected with a   N × N   window on feature maps to generate a certain number of anchor boxes with different sizes and scales.



Then, these anchor boxes are sent to a fully connected layer called the intermediate layer and mapped into a lower dimensional vector. With these vectors as input, one fully connected layer called the classification layer (cls layer) is used to output scores of being an object or not an object to pick foregrounds out of backgrounds, and another fully connected layer called the regression layer (reg layer) is used to generate parameters of each anchor box and fine-tune the boundaries so that these boxes are accurate enough to locate objects through feature maps.



The network operates as a sliding window, so the fully connected layers are shared among all spatial locations. Anchor boxes with different sizes and scales ensures that they are able to locate objects with different sizes and shapes.




2.2.6. Loss Function


Anchors generated by that small network for region proposal are divided into two kinds: the positive and the negative. Anchors that have the highest Intersection-over-Union (IoU) overlap with one ground-truth box or have an IoU overlap higher than 0.7 with any ground-truth box will be treated as positive anchors. In some previous references, the ratio is set to 0.7, and 0.7 is an empirical value. In general, this score >0.5 can be considered a good result. This means that any other bounding boxes with IoU higher than 0.7 will be treated as similar bounding boxes, and they will be deleted since they are not of the highest classify score. Those that have IoU overlap lower than 0.3 with all ground-truth boxes will be treated as negative anchors. The number of positive anchors chosen randomly for training equals that of negative anchors in each training sample. Other anchors do not participate in training.



A multi-task loss function is used to realize integration of classification and location. It is described as below:


  L  (  {  p i  }  ,  {  t i  }  )  =  1  N  c l s     ∑ i    L  c l s    (  p i  ,  p i *  )   + λ  1  N  r e g     ∑ i    p i *   L  r e g    (  t i  ,  t i *  )  ,   



(10)




where   p i   is the predicted probability of the ith anchor being an object. If this anchor is positive, then the ground-truth label   p i *   will be set to 1, or will be set to 0 if the anchor is negative.   t i   is a vector with four parameters that represents the coordinates of the predicted bounding box.   t i *   is the parameters of the ground-truth box associated with a positive anchor.



A log loss   L  c l s    over two classes (being an object or not) is used as classification loss, which is described in formula 8. For regression, a smooth L1 function defined as


   S  L 1    (  t i  −  t i *  )  =      0.5   (  t i  −  t i *  )  2        t i  −  t i *    < 1          t i  −  t i *    − 0.5    o t h e r s ,       



(11)




which is also a robust loss function, is used as regression loss   L  r e g   . The regression loss is activated only for positive anchors and disabled when anchors are negative. Classification term and regression term are normalized with   N  c l s   ,   L  r e g    and a balancing weight  λ .



Those four coordinates in   t i   and   t i *   are designed as below:


        t x  =  ( x −  x a  )  /  w a   ,         t y  =  ( y −  y a  )  /  h a   ,         t w  = log  ( w /  w a  )   ,         t h  = log  ( h /  h a  )   ,      



(12)






        t    x   *  =  (  x *  −  x a  )  /  w a   ,         t    y   *  =  (  y *  −  y a  )  /  h a   ,         t    w   *  = log  (  w *  /  w a  )   ,         t    h   *  = log  (  h *  /  h a  )   ,      



(13)




where x and y denote the coordinates of the center of the box, and w and h denote the width and height of the box. x,   x a   and   x *   are variables of predicted box, anchor box and ground-truth box, respectively. It can be seen that this loss function can transform an anchor box to a nearby ground-truth box. Unlike previous feature-map-based bounding regression methods, the features on feature maps that we used for regression have the same spatial size. Then, a set of k bounding-box regressors are learned so that it can work for different sizes. Every regressor is independent and responsible for a specific scale and aspect ratio. Thus, even if features are of a fixed size or scale, it is still possible to predict boxes of various sizes.





2.3. Non-Maximum Suppression between Regions


After fast sliding, each slice is sent to the CNN network sequentially to detect and locate targets. Once the predicted bounding boxes and classification scores are generated by regression layer and classification layer respectively, the next task is to find out the most proper bounding box. Bounding boxes in the common area of adjacent slices are generated by different slices, so the traditional Non-maximum Suppression (NMS) method could not be simply used to deal with these bounding boxes. The strategy of Non-maximum Suppression between Regions (NMSR) is proposed and used to find out the most proper bounding boxes, which also achieved admiring performance. The method of NMSR is described as below.



As each slice has a fixed position in large scene SAR image, if a slice of large scene image is the ith from left to right and the jth from top to bottom, the absolute position (x*, y*) of a pixel in this slice can be calculated through the function below:


        x *  = x +  ( 1 − 0.3 )  × w ×  ( i − 1 )   ,        y *  = y +  ( 1 − 0.3 )  × h ×  ( j − 1 )  ,      



(14)




where w and h is the size of each slice, and   ( x , y )   is the coordinate of a pixel in this slice.



To reduce computation complexity, the operation of NMS is executed in every slice before NMSR.



At first, the bounding box with the highest classify score is found out and set as a compared box. Any other bounding boxes have an intersection over the union (IoU) higher than a certain ratio with this compared box will be deleted.



Then, bounding boxes with the highest classify score in the rest of the bounding boxes are set as the compared box. Calculate IoU with all the rest of the bounding boxes.



Repeat this operation until bounding boxes with the top N classify scores are discovered. After this, these N bounding boxes with the highest classify scores are left after NMS in each slice. Any other bounding boxes are ignored and will not be calculated in the next step.



Finally, all coordinates of these left bounding boxes in each corresponding slice are replaced by their absolute positions, and operation of NMS is applied again among all these bounding boxes with absolute positions. NMS of bounding boxes in common areas is also achieved. Furthermore, the most proper bounding boxes with their coordinates on large scene images are determined after these operations.



A diagram that shows each step of this large scene SAR image detection and recognition method is shown in Figure 6.





3. Experiments


3.1. Experimental requirements


In this paper, the experimental data are from the MSTAR dataset, which is widely used in testing and comparing the performance of SAR detection and recognition algorithms. The collection of the MSTAR dataset was supported by the Air Force Research Laboratory and the Defense Advanced Research Projects Agency. A large amount of SAR images were collected, including different target types, aspect angles, and depression angles. An x-band, HH polarized SAR in a 0.3-m resolution is used to collect these images. However, only a small part of these images are publicly released. The type of targets we used are BMP2 (tank), BTR70 (armored car), and T72 (tank). The images were captured at two different depression angles   15 ∘   and   17 ∘   with   190 ∼ 300   different aspect versions, which are full aspect coverage over   360 ∘  . Optical images and SAR images of these three types of targets with similar aspect angles are shown in Figure 7.



In our experiment, overlap among adjacent sliding windows is set as 0.3 since widths and heights of all targets in training samples are smaller than 60 pixels. A sliding window of 200 × 200 is used to cut large scene images into small slices before detection in our model. With this strategy, every potential target will appear completely in at least one slice. As for slices occurring at the edges of large scene SAR images, the excess part will be padded with zero. This strategy has achieved an efficient segmentation, much faster than that with a stride of one pixel. Furthermore, the larger the sliding window we use, the faster detection and recognition will be accomplished. Because of the size and scale invariance of our network, even though the size of the sliding window we use is about twice that of training samples in our experiment, performance of detection and recognition is still of high quality. The final result has achieved balance between time consumption and accuracy of detection and recognition.



In total, 2268 slices of BMP2, BTR70 and T72 are chosen randomly and used for generating training patches, as shown in Table 1. One-hundred slices of each type of target above are left for testing.



Before training, every 128 × 128 SAR target slice is randomly sampled into 90 × 90 patches. Because there is only one target in the center of each slice, the patch size of 90 × 90 could ensure that the target appears in each patch completely. This operation will increase the number of training samples as well as the randomness of the target position, which ensures that the CNN model after training could find targets in different positions of every slice. With this strategy, each slice can be increased at most   ( 128 − 90 + 1 ) × ( 128 − 90 + 1 ) = 1521   times. However, actually, considering the redundancy of these 1521 patches and the amount of training samples required, five randomly chosen patches of each slice are generated and chosen as training samples. Thus, there are   2268 × 5 = 11 , 340   training samples in total. The example of the original slice and corresponding five randomly generated patches are shown in Figure 8.



Ground-truth boxes are marked manually, which just cover the target in these 11,340 90 × 90 patches of three different targets. The information saved includes coordinates of ground-truth box and target type in each patch. These patches are re-sized to 800 × 800 so that features in these patches are well extracted. These patches along with their corresponding coordinates of ground-truth box and target type are used as training samples to train the CNN network.



To show performance of the network that we used for integration of SAR detecting and recognizing, confirmatory experiments with test samples are done and the results that we get are inspiring.




3.2. Accuracy of Detection and Recognition


In order to determine the detection and recognition accuracy of the CNN network that achieve integration of detection and recognition after training, the remaining 300 SAR images of three different types are used as test samples. Since the size of test samples is similar to that of training samples, there is no need to segment test samples before detection and recognition. Boxes with the highest score from the softmax classifier are shown for these test samples. If the target along with its shadow is surrounded by this box correctly, then the class on this box is regarded as the recognition result. The confusion matrix of this test is shown in Table 2. The true target class is listed on the left and predicted target class is shown on top.




3.3. Anti-Noise Performance


Another experiment is done after we get detection and recognition accuracy. The experiment is to explore anti-noise performance of our CNN network. Unlike other well-established work for anti-noise [33], values of a certain proportion of pixels are replaced by that of a Gaussian distribution noise. The replaced proportions are 2%, 4%, 8%, and 16%. An example of original slice and its modified images with noise are shown in Figure 9. The network trained previously on three-target detection and recognition problem is used to deal with these noise added slices. Only if over 80% area of the target along with its shadow is surrounded by the predicted box with the highest score, and the predicted class for this box is correct can the slice be regarded as a correctly detected and recognized one.



Every group of modified images with noise are sent to the CNN network trained previously successively, and accuracy of each group of noise added images is listed in Table 2.




3.4. Performance of Region Proposal Network and Non-Maximum Suppression


In order to evaluate the accuracy of candidate regions generated by the region proposal network in our CNN network, an untrained slice of T72 in MSTAR data set is used as test sample, as Figure 10 (left) shows. Seven candidate regions with the highest scores after detection and recognition are shown in Figure 10. In order to show boundaries of these candidate regions clearly, predicted class and scores are hidden.



After generating the candidate regions, feature maps surrounded by these candidate regions are used as inputs to fully connected layer in CNN. Then, the strategy of NMS is used to find out and show the most proper box with a label on it. The final result of test samples used above is shown in Figure 11 to show its performance and verify that the integrated network can give the correct labels of candidate regions.




3.5. Detection and Recognition Performance on Large Scene Images


Interpretation of large scene SAR images has also been a difficult problem to solve. Almost all SAR interpretation methods use strategy of segmentation to deal with this problem. However, traditional SAR detection and recognition methods are pretty sensitive to segmentation results, and this would lead to a sharp decrease in interpretation results. In our CNN network, what we need to do is to make it so every target can appear in one segmented slice at least.



To get test samples of the similar size with training samples, a large scene SAR image is segmented into small slices (200 × 200 is used in this paper) to reach balance between interpretation accuracy and interpretation time. An overlap rate (30%) is set in different adjacent slices, so that each target is bound to appear in one slice completely at least. Then, each slice is re-sized to 800 × 800 so that the feature maps are of the same size. These re-sized images are sent to the CNN network sequentially.



At first, performance of this segmentation strategy and NMSR is evaluated through a large scene SAR image with a simple background. This SAR image is not contained in the MSTAR dataset. We embed targets of different types in a 1476 × 1784 large simple scene image in MSTAR. Since targets and scene images are all acquired by SAR sensor with resolution of 0.3 m, embedding targets in scene images is a reasonable simulation.



Then, this SAR image with 14 untrained targets (4 BTR70s, 5 BMP2s and 5 T72s) is interpreted by this CNN network to verify the ability of this segmentation strategy and CNN network. Figure 12 shows the detection and recognition results on this large scene SAR image, and boxes with confidence higher than 0.9 after NMSR are shown. These 14 targets are placed in three lines, but the center of them are not actually on a line so that the sensibility of target position and distribution of this CNN network could be verified. There are five BMP2s in the first line, five BTR70s in the second line and four T72s in the third line. With observation of segmented slices, 10 targets appear in at least two slices. The red boxes represent “BMP2”, orange represent “BTR70”, and yellow represent “T72”. In addition, all classification confidence probabilities are shown besides the boxes.



Finally, interpretation of a complex large scene SAR image of 1476 × 1784 is completed with this CNN network with NMSR. We embedded targets randomly in an image of fields, trees and bushes in MSTAR dataset to make up this complex large scene SAR image. The corresponding class of each target with a given number in Figure 13 (top) is listed in Table 3. The threshold is set as 0.9.




3.6. Comparison Experiments on Complex Background Image


Contrast experimental results based on two large scene SAR images above are completed and results are listed in Table 4 and Table 5. Here, we have listed number of ROIs (Regions of Interest) after detection (No. ROIs), number of correctly detected targets (No. Det), false alarm rate (F.A. Rate), proportion of detected targets in all targets (Det Rate), number of correctly recognized targets (No. Rec), proportion of correctly recognized targets in detected targets (Rec Rate) and time consumption. A Constant False Alarm Rate (CFAR) detector in [34] and visual attention algorithm in [35] are used as detectors and SVM is used to finish classification.





4. Discussion


4.1. Analysis on Detection and Recognition Accuracy


It can be seen from Table 2 that all these 300 test samples are surrounded by boxes with highest scores correctly. Furthermore, recognition accuracy of BTR70 achieves the best performance, but BMP2 and T72 are more likely to be recognized as each other. The reason might be that T72 and BMP2 have similar turrets and gun barrels.



As for the speed of this integrated system, these 300 128 × 128 untrained slices are interpreted, and the total time these slices cost is about 52 seconds from when it starts to deal with the first image until all results of these images are shown on a computer with GTX750Ti.




4.2. Analysis on Anti-Noise Performance


Table 6 has shown a phenomenon that the more pixels are replaced by noises in the original image, the worse the detection and recognition accuracy are. From the experiment, we can find that when the replace ratio is less than 8 percent, the accuracy of recognition is acceptable. However, when the ratio is larger than 8 percent, recognition accuracy will face a sharp drop. To some extent, the result shows that the CNN network can resist the influence of noise. That is to say, compared with training samples, test samples are not allowed to be badly polluted or have too many imaging differences.




4.3. Analysis on Performance of Region Proposal Network and Non-Maximum Suppression


With observation of Figure 10, we find it obvious that all of these top seven candidate regions cover the target, and all of them have surrounded the entire target and its shadow correctly. This means that features of T72 in SAR images are well extracted to generate candidate regions accurately.



From Figure 11, we can see that the CNN network uses NMS to reduce redundancy. It shows a box in the correct place as detection results and the highest recognition confidence of 0.965. The result has exhibited the interpretation performance of this integrated SAR interpretation system. The integrated network can give out correct labels of candidate regions.




4.4. Analysis on Detection and Recognition Performance of Large Scene Images


In Figure 12, it is obvious that all 14 of these targets are well surrounded by boxes, and there is only one box around each target. This means that all other predicted boxes with lower scores are suppressed, and predicted boxes in adjacent slices are suppressed as well by NMSR. Although one BMP2 in the first line is recognized as T72, results verify that CNN with NMSR performs well dealing with large scene images of a simple background.



The results illustrate that this CNN network that realizes integration of target detection and recognition works well; all 14 targets of the three different kinds in a complex large scene SAR image are detected correctly. In addition, all degrees of classification confidence labeled in Figure 12 and Figure 13 are over 0.97. No trees or bushes are interpreted as targets, which have proved the effect and usefulness of features extracted by CNN. Features among these three kinds of targets are well extracted and used to realize interpretation. There is only one box surrounding each target in this large scene SAR image, even though many of these targets appear on more than two slices. This result has proved that NMSR is a useful strategy dealing with predicted boxes among adjacent slices.



Thus, the results above have verified that this CNN network with NMSR has a satisfactory performance dealing with large scene SAR images regardless imaging background.




4.5. Analysis on Comparison Experiments


It can be seen from Table 4 and Table 5 that our model can detect all targets in large scene images accurately and the performance of this model is not influenced by a change of background. This means that this fast sliding strategy could find all targets in different places, and targets appear at least one slice completely as we expected. As for results of recognition, since CNN extracts specific and effective features of SAR targets, and these features are used to realize detection and recognition at the same time, the best performance of both detection and recognition is achieved with our model.





5. Conclusions


Connecting the detection and recognition process to interpret large scene SAR images is difficult because of speckle noise and inefficient connection among these processes. Inspired by great success of deep convolutional neural networks, methods of DCNN are applied to SAR image interpretation to extract features automatically, and a method to integrate detection and recognition of large scene SAR images based on non-maximum suppression between regions (NMSR) is proposed in this paper. A model that is efficient in SAR image interpretation is built and a trained model that can generate a variety of accurate predicted boxes with confidence is obtained. Then, the performance of this system is evaluated, and 94.67% of three-class recognition accuracy on the MSTAR data set proved that it is efficient with high accuracy. Experiments on 1476 × 1784 simulated MSTAR images of a simple scene and complex scene show that the proposed method can recognize all targets with higher accuracy and faster speed, compared with the other methods, such as CFAR+SVM, Visual Attention+SVM, and Sliding-RCNN.



In the future, optimization algorithms should be researched to reduce the training time and test time. Other structures of deep learning networks can also be considered to implement real-time detection and recognition systems for SAR.
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Figure 1. Flow chart of our model. (NMSR: non-maximum suppression among regions; SAR: synthetic aperture radar). 
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Figure 2. Diagram of fast sliding. 
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Figure 3. The convolutional neural network used to generate feature maps. (conv: number of feature maps; @: filter size). 
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Figure 4. Typical connection between conv layer and pooling layer. 
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Figure 5. Region proposal network. 
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Figure 6. Non-maximum suppression between regions. 
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Figure 7. Optical images (top) and corresponding synthetic aperture radar (SAR) images (bottom). From left to right: BMP2, BTR70, T72. 
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Figure 8. Original image and five randomly generated patches. 
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Figure 9. Example of original slice (left) and modified images with noise. Proportions are 2%, 4%, 8% and 16%, respectively, from left to right. 
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Figure 10. Test sample and the top seven candidate regions. 






Figure 10. Test sample and the top seven candidate regions.



[image: Remotesensing 10 00776 g010]







[image: Remotesensing 10 00776 g011 550] 





Figure 11. Interpretation result after Non-Maximum Suppression (NMS). 
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Figure 12. Interpretation result of a large simple scene SAR image. 
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Figure 13. Experiment on complex background image (a) target distribution; (b) interpretation results. 
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Table 1. Numbers of BMP2, BTR70, and T72 slices for generating training samples.
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	Class
	No. Images





	BMP2
	1185



	BTR70
	329



	T72
	754
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Table 2. Number of chosen images.
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	Class
	BMP2
	BTR70
	T72
	Accuracy(%)





	BMP2
	93
	2
	5
	93



	BTR70
	2
	97
	1
	97



	T72
	5
	1
	94
	94



	Average
	-
	-
	-
	94.67
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Table 3. Number of chosen images.
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	Target Class
	Corresponding Number





	BMP2
	1, 2, 3, 4, 5



	BTR70
	6, 7, 8, 9



	T72
	10, 11, 12, 13, 14
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Table 4. Results on a large scene synthetic aperture radar (SAR) image with simple background. (CFAR: constant false alarm rate; SVM: support vector machine; RCNN: region-based convolutional neural networks).






Table 4. Results on a large scene synthetic aperture radar (SAR) image with simple background. (CFAR: constant false alarm rate; SVM: support vector machine; RCNN: region-based convolutional neural networks).





	Methods
	No. ROIs
	No. Det
	F.A. Rate
	Det Rate
	No. Rec
	Rec Rate
	Time(s)





	CFAR + SVM
	16
	14
	12.5%
	100%
	13
	92.86%
	37.24



	Visual attention + SVM
	17
	14
	17.64%
	100%
	13
	92.86%
	15.82



	Segmentation + RCNN
	9
	9
	0%
	64.29%
	9
	100%
	8.63



	Our method
	14
	14
	0%
	100%
	14
	100%
	29.32
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Table 5. Results on large scene SAR image with complex background.
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	Methods
	No. ROIs
	No. Det
	F.A. Rate
	Det Rate
	No. Rec
	Rec Rate
	Time(s)





	CFAR + SVM
	21
	9
	57.14%
	64.29%
	9
	100%
	42.73



	Visual attention + SVM
	24
	10
	58.33%
	71.43%
	9
	90%
	23.92



	Segmentation + RCNN
	11
	11
	0%
	78.57%
	11
	100%
	10.25



	Our method
	14
	14
	0%
	100%
	14
	100%
	31.18
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Table 6. Accuracy of each group of noise added images.
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	Proportion
	2%
	4%
	8%
	16%





	Accuracy
	89.33%
	83.67%
	72.00%
	44.33%
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