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Abstract: Airborne eddy covariance (EC) is one of the most effective ways to directly measure
turbulent flux at a regional scale. This study aims to find the optimum spatial window length for
turbulent heat fluxes calculation from airborne eddy covariance measurements under near neutral
to unstable atmospheric stability conditions, to reduce the negative influences from mesoscale
turbulence, and to estimate local meaningful turbulent heat fluxes accurately. The airborne flux
measurements collected in 2008 in the Netherlands were used in this study. Firstly, the raw data
was preprocessed, including de-spike, segmentation, and stationarity test. The atmospheric stability
conditions were classified as near neutral, moderately unstable, or very unstable; the stable condition
was excluded. Secondly, Ogive analysis for turbulent heat fluxes from all available segmentations
of the airborne measurements was used to determine the possible window length range. After that,
the optimum window length for turbulent heat flux calculations was defined based on the analysis of
all possible window lengths and their uncertainties. The results show that the choice of the optimum
window length strongly depends on the atmospheric stability conditions. Under near neutral
conditions, local turbulence is mixed insufficiently and vulnerable to heterogeneous turbulence.
A relatively short window length is needed to exclude the influence of mesoscale turbulence, and
we found the optimum window length ranges from 2000 m to 2500 m. Under moderately unstable
conditions, the typical scale of local turbulence is relative large, and the influence of mesoscale
turbulence is relatively small. We found the optimum window length ranges from 3900 m to 5000 m.
Under very unstable conditions, large convective eddies dominate the transmission of energy so
that the window length needs to cover the large eddies with large energy transmission. We found
the optimum window length ranges from 4500 m to 5000 m. This study gives a comprehensive
methodology to determine the optimizing window length in order to compromise a balance
between the accuracy and the surface representativeness of turbulent heat fluxes from airborne
EC measurements.

Keywords: airborne flux measurement; window length; atmospheric stability; measurement uncertainty

1. Introduction

Information on the heat and moisture flux exchanges between the land surface and the atmosphere
is crucial for a better understanding of the role of terrestrial ecosystems in the global climate system.
Reliable land surface flux measurements or estimates, especially at regional scales, are frequently
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used to constrain or evaluate dynamic earth system models, such as regional climate models, regional
hydrological models, and global circulation models [1,2]. The tower-based eddy covariance (EC)
method provides turbulent flux measurements with good temporal samples (e.g., every 30 min) but
usually with a small spatial representative (i.e., footprint, typically less than 1 km2) [3,4]. Generally,
such a small footprint cannot adequately describe the mean surface flux of a grid of the land surface
model or a pixel of satellite observations with coarser spatial resolutions if the land surface is
heterogeneous. Compared to the tower-based EC measurements of turbulent fluxes, airborne EC
technology with a larger footprint (typically more than 10 km2) has more potential to provide turbulent
flux measurements with a better spatial coverage [5,6].

As the standardized micrometeorological technique, the EC method measures the transfer of
energy and matter between terrestrial ecosystems and the atmosphere by the covariance between
turbulent fluctuations of the vertical wind and the quantity of interest [7,8]. The basic assumptions
behind the EC method mainly include stationarity, horizontal homogeneity, and fully developed
turbulent flow [9,10]. One crucial factor determining the accuracy of EC measurements is the choice
of integral time or length interval of the corresponding turbulence, which is strongly connected
to the basic assumptions of the EC method [10]. Conventionally, the cospectral analysis method
can be used to decompose the flux into frequency- or wavenumber-dependent contributions of
turbulence for studying the distribution of turbulent energy among the different turbulence scales.
For the EC measurements, turbulent fluxes driven by the high-frequency components of turbulence
are inherent in local surface exchange, whereas fluxes driven by the low-frequency components
(i.e., mesoscale eddies) possibly result from surface heterogeneity at the landscape scale [11–13].
One major technique used to determine the necessary integral interval is the Ogive analysis method,
which is defined as the cumulative sum of a cospectral from low to high frequency. If the Ogive curve
approaches an asymptote at a low frequency, the point of convergence of the cumulative cospectral
is the optimum turbulent flux averaging integral interval. However, the influences of mesoscale
turbulence may result in the Ogive curve not converging to an asymptote, and this may make it
difficult to determine the integral interval. The optimum choice of the integral interval should ensure
that the EC measurements capture all scales of local turbulent transporting, but not be contaminated
by mesoscale eddies (nonstationary or heterogeneous), which are independent of the local surface
exchange [11,14,15]. In general, a spectral gap of turbulence is assumed to exist between the high- and
low-frequency components of turbulence, which allows the users to separate “locally meaningful”
fluxes from mesoscale motions of atmospheric turbulence [11,16,17]. If the Ogive curve converges to an
asymptote at a frequency over the low-frequency domain, it represents a clear spectral gap. However,
the presence of a spectral gap maybe not always be evident, especially for unstable conditions where
the strong mixing of turbulence from local patches maybe lead to a blurred distinction between
turbulence and mesoscale motion. If a spectral gap appears in the spectrum of turbulence, it will
provide useful information about a good choice of the integral interval for turbulent flux determination.
If the spectral gap is unclear or absent, other methods such as “ensemble block averaging” or statistical
error analysis can also be used to find the integral interval [18–20]. However, these methods cannot
decompose the turbulent flow, and the decomposition of turbulence is very important for studying
the distribution of turbulent energy among the different wavelengths. This paper will show the
integration of these methods, which was used to study the optimum integral interval for turbulent flux
calculation. For the tower-based EC measurements, the integral interval of flux estimates is expressed
as an averaging time, which can be related to a sample length by multiplying the mean wind speed
by the averaging time [21]. This could be regarded as a passive measurement method because of
the detecting eddies brought by the mean wind [22]. Numerous researchers have carried out studies
to determine the optimum averaging periods over different sites, and the results revealed that the
traditional 30 min averaging time should be adjusted or site-specific to capture all fluxes taking place
on a field scale and to avoid the influence of low-frequency turbulence [10,12,18,23,24].
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Airborne EC measurement is an active measurement method, in which an aircraft typically flies
an order of magnitude faster than the mean wind speed [21]. Fluxes from airborne EC measurements
are areal averages over the measurement footprint along the flight path instead of time [25]. Airborne
flux measurements mainly provide the approximate “true” surface flux values at the regional scale,
which can be used to calibrate and validate process-oriented models in which land surface fluxes are
linked to local surface exchange processes [17,26–28]. This study will also focus on this application
background. So, the integral interval or averaging length (i.e., window length) of the airborne
EC method needs to be long enough to provide an adequate turbulence sample, as well as short
enough to resolve the signal from the surface heterogeneity [27,29,30]. However, few studies have
addressed how to choose a proper window length to estimate local meaningful fluxes using the
airborne EC method. This may be due to the complex relationships between turbulent fluxes and
the underlying surface, atmospheric conditions, and measurement height [31]. For airborne EC
measurements at the middle or high part of the convective boundary layer, a long window length
(typically 10–20 km) is normally required to achieve reliable flux estimates [32–35]. In theory, Lenschow
and Stankov [21] estimated very long window lengths (about 100 km for summer at the middle of
the mixing layer over a relatively horizontally homogeneous situation) to achieve 10% measurement
accuracy. The measurement error tends to be underestimated by their method due to the assumption
of Gaussian distribution for the velocity and scalar variables [36]. These long window lengths are
needed because of the size of the turbulence eddies increases with the distance above the ground
surface [37]. However, the calculated fluxes based on the long window length lose the ability to
resolve the surface heterogeneity, which is very important for land surface exchange investigations [27].
To better describe the surface heterogeneity, it is necessary to perform airborne EC measurements close
to the ground (i.e., in the near-surface layer), where characteristic fluxes from different land covers are
not yet fully homogenized or blended [6,26,34,38]. For airborne EC measurements in the near-surface
layer, a short window length can produce reliable turbulent flux that contains more information about
spatial variability. According to Desjardins et al. [38], at the flight level of 25 m above the ground,
the turbulent flux values from the window length of 4 km were close to the values calculated with a
window length between 12 km and 16 km over a relatively homogeneous surface. Similar results from
Vickers and Mahrt [29] indicated that the turbulent flux calculated with a window length of 1.28 km
could capture 90% of the turbulent flux from a window length of 16 km at an altitude of 30 m above
the ground level over a heterogeneous surface.

In recent years, airborne flux measurements have become more and more popular for the purpose
of evaluating land surface model performance. The optimum choice of window length is always a
compromise to balance between adequate sampling of the turbulence and avoiding the excessive
inclusion of low-frequency components of turbulence. Nowadays, the selection of window length is
concentrated in the range of 2–5 km for heterogeneous surfaces [39–43]. Researchers could choose
the smaller range (2–5 km) to highlight the surface heterogeneity with the loss of small contributions
from longer wavelength eddies [44,45], or choose the larger range to reduce the uncertainty of the flux
estimates due to the loss of some spatial variability [46]. However, few studies have associated the
choice of window length with different atmospheric stability conditions, which is very important in
determining the development of the turbulence [12]. In field measurements, airborne EC measurements
are always conducted in a specified region. The common flight strategy is that the aircraft flies
several times along the same route, at the same speed, and at nearly the same altitude above the
ground [13,44,47,48]. Assuming no abrupt changes in the underlying surface and the flight level
(e.g., within the near-surface layer), we can confirm that the atmospheric stability is a vital factor to the
choice of window length. Therefore, the main objective of this study is to investigate the optimum
choices of the window length for turbulent heat flux calculation from airborne EC measurements
under near neutral to unstable atmospheric stability conditions.

In this study, we analyzed that the choice of the window length is highly relevant to the
atmospheric stability conditions. Our objective is to find the optimum window length for local
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meaningful turbulent heat flux calculations under near neutral to unstable atmospheric stability
conditions over a relatively uniform land surface. The turbulent heat flux estimated based on
our defined optimum window lengths is suitable for applications in calibration or validation of
process-oriented models, or upscaling through numerical modeling. This was achieved based on the
extensive data collected from weekly flight campaigns between March 2008 and February 2009 in the
Netherlands [49]. The remaining part of this article is organized as follows. Section 2 presents the study
area and datasets. Section 3 describes the methods of data preprocessing, Ogive analysis, uncertainty
estimation, and block ensemble averaging to determine the optimum window length. Section 4 gives
the results of Ogive analysis and the defined optimum window length. Section 5 discusses the results
in detail. Section 6 concludes this paper.

2. Study Area and Data Description

Airborne EC measurements were carried out between March 2008 and February 2009 in the
Netherlands using Sky Arrow 650 aircraft by means of flying at a low altitude and low speed [49,50].
Flights were performed along three different trajectories that covered all of the major land cover types
of the Netherlands. This environmental research aircraft is equipped with a Mobile Flux Platform (MFP)
system, which consists of a Best Atmospheric Turbulence (BAT) probe [51], a thinwire thermocouple,
and an LI-COR 7500 infrared gas analyzer (IRGA) for fluxes of heat, water vapor, and carbon dioxide
at a frequency of 50 Hz. More detailed descriptions of this particular aircraft and the 2008 campaign in
the Netherlands can be found elsewhere [31,42,50,52].

The study area and flight transections employed in this study are displayed in Figure 1 over the
land cover classification map. For land cover information, the LGN6 database was used [53]. The spatial
resolution of the land cover map is 25 m, and 39 land cover types are distinguished in the land cover
map. We regrouped original land cover classes into 12 classes according to the IGBP classification
scheme for simplifying. The study area selected by this study (Figure 1) is located in the west of the
Netherlands (between 4.69–5.21◦E and 51.83–52.28◦N). The land cover in this domain is dominated by
grasslands, which are studded with some croplands, water surfaces, and construction lands.
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Figure 1. Land-use map of the study areas (between 4.69–5.21◦E and 51.83–52.28◦N) located in the
west of the Netherlands and the flight patterns (black tracks) during the 2008.

Table 1 summarizes the 19 transect flights carried out in the selected area. All of the flights were
flown during the daytime. The measurement height was approximately 68 m. From the vertical profile
flight carried out during each field measurements, the boundary layer depth was estimated to be
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around 800–1100 m for all flight periods. We can confirm that all of the flight levels were within the near
surface layer (approximately 10% of the depth of the boundary layer), and we neglected the fluctuation
of surface layer height existing in different flights [54,55]. Figure 1 shows that the predominant land
cover type under the airline is grassland, and no flight paths were directly across lakes. In the current
study, we applied the Monin–Obukhov (M–O) stability parameter as the indicator of atmospheric
stability [56], denoted as ζ. It is defined as ζ = z/L∗, where L∗ is the Obukhov length (m) [57] and z is
the measurement height (m). The Obukhov length (L∗) is defined as:

L∗ = −
u∗3

κ
g
θv

θ′vw′
(1)

where u∗ is the friction velocity (ms−1), κ = 0.4 is the von Karman constant, g is the acceleration of
gravity (ms−2), θv is the virtual potential temperature (K), w is the vertical wind component (ms−1),
and θ′vw′ is the buoyancy flux. As listed in Table 1, a wide range of atmospheric stability conditions
from near neutral (ζ = 0.05) to very unstable (ζ = −10.03) were considered in this study. In addition,
the terrain in this field is flatter than that in other regions. The relatively uniform land cover and the
flat terrain make this region more appropriate for our research objective than other places measured
during the 2008 flight campaign in The Netherlands.

Table 1. Summary of the whole flights during the 2008 in the west of the Netherlands (Figure 1).
Including measurement date, time (coordinated universal time, UTC), flight height (above ground
level, m), and Monin–Obukhov (M–O) stability parameter ζ.

Date Time (UTC) Altitude (m) M–O Stability (ζ)

29 February 2008 13:03–13:53 57 −0.04
11 April 2008 11:14–11:47 67 −10.03
11 April 2008 12:29–13:03 65 −10.27
2 May 2008 10:58–11:30 71 −1.08
2 May 2008 11:53–12:25 78 −0.63

23 May 2008 08:32–09:05 68 −2.24
23 May 2008 09:41–10:14 69 −3.82
13 June 2008 10:19–10:50 76 −0.32
13 June 2008 11:07–11:40 71 −0.47
4 July 2008 11:32–12:05 66 0.05
4 July 2008 12:32–13:08 66 0.01

25 July 2008 09:52–10:23 66 −0.34
25 July 2008 10:51–11:20 68 −0.35

15 August 2008 10:25–11:01 66 −0.22
15 August 2008 11:30–12:06 66 −0.36

5 September 2008 09:10–09:39 63 −0.12
17 October 2008 13:27–13:59 73 −0.26
31 October 2008 13:08–13:39 69 −0.43

11 December 2008 13:48–14:24 74 0.02

3. Methods

The methodological framework of this study is illustrated in Figure 2. The procedure includes
three parts. First, the raw data were preprocessed, including de-spike, segmentation, and steady-state
test. Then, the Ogive analysis for turbulent heat flux from all available segmentations was used to
determine the possible window length range under near neutral to unstable atmospheric stability
conditions. Lastly, the possible window lengths from the Ogive analysis were employed to calculate
the turbulent heat fluxes and their uncertainty, and based on which we defined the final optimum
window length. Detailed methods are described in the following sections.
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3.1. Data Preprocessing

Both the EC method and spectral analysis require raw data with no noise, no missing values,
and meeting the stationary condition [12]. In the first stage, the raw data from airborne EC
measurements needed to be checked for outliers. We used the same method as Vellinga et al. [42,44] to
detect the spikes and fill the gaps using linear interpolation. In the second stage, turbulent variables
such as wind components, true airspeed, and (dry) air density were calculated [25,42,44].

In order to fulfill the stationary requirement, continuous observations are typically subdivided
into several identical segments [12]. The segments should be both sufficiently long to include the fluxes
contained in the large eddies and short enough to avoid departures from the stationary condition [58].
In the present study, we adopted 10 km as the segment length, which is long enough to include the
main scales of turbulent transporting in the study area as well as to maintain the quasi-stationary
conditions. Shorter segment lengths were not investigated for the purpose of investigating the behavior
of the low-frequency turbulence, and longer segment lengths were not investigated due to their high
nonstationary conditions. The underlying assumption of a 10 km segment length is that no significant
scalar or momentum flux contributions were from eddies larger than 10 km [59].

After subdividing the whole flight data into segments, we obtained 113 segments data. Then, the
stationarity test was executed to ensure that the segments are near stationary. The stationarity test
is based on a relative nonstationarity factor, RNξw, proposed by Foken and Wichura [9]. This factor
compares the statistical parameters determined for the entire segment and for short intervals within
this segment, expressed as:

RNξw =

∣∣∣∣∣∣∣
ξ′w′ − ξ′w′ j

J

ξ′w′

∣∣∣∣∣∣∣ (2)

where ξ′w′ is the covariance between ξ (horizontal wind component or scalar) and w (vertical wind,

ms−1) for the entire segment, ξ′w′ j is the covariance of a given interval j in the segment, and ξ′w′ j
J

is the average of all the covariances in J non-overlapping intervals with equal length into which the
segment is divided. The segment is stationary if the nonstationarity factor (RNξw) is less than a
threshold (usually 0.3). In this study, we split the segment into five intervals (J = 5) and used the
value RNξw ≤ 1 as a criterion. A segment with RNξw ≤ 1 is acceptable for general use, according to
Foken et al. [9] and Vellinga et al. [42]. It is a relaxed criterion, enabling us to obtain the most segments
to analyze. Moreover, if one segment of data contains more than 10% spikes, the segment will be
discarded. After the preprocessing, we were left with 111 segments to be used for the Ogive analysis,
described in the next section.
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3.2. Ogive Analysis

All turbulent variables are linearly detrended (LDT) and tapered using the Hamming window
within each segment to reduce the spectral leakage (sharp edge) according to Kaimal et al. [58].
The turbulence spectral leakage was introduced by the implicit assumption in Fourier analysis that the
segment under consideration is infinitely periodic [60]. Then, we employed the fast Fourier transform
(FFT) to decompose the sensible and latent heat covariance into frequency-dependent contributions,
by which the discrete (co)spectral intensities were obtained. The main interest in calculating the
(co)spectrum is that the integral of the (co)spectrum over the whole frequency range is equal to the
(co)variance of the signal; thus, the (co)spectrum could be taken as a distribution of (co)variances in
different frequency bands [60].

The Ogive analysis is a common method to determine the optimal averaging time or length to
capture most of the flux-carrying eddies [12,17,23]. It is defined as the cumulative integral of the
cospectrum of the turbulent flux from the lowest frequency to the highest frequency, expressed as:

Ogξw( f0) =
w f0

∞
Coξw( f )d f (3)

where Coξw is the cospectrum of a turbulent flux, w is the vertical wind component (ms−1), ξ is
the horizontal wind component or scalar, f is the frequency (Hz), and f0 is the Nyquist frequency
(Hz). If the Ogive curve approaches an asymptote over the low-frequency domain, it may provide
information about the minimum window length required to capture all flux-carrying turbulence scales,
which is very import for airborne EC measurements to resolve the turbulence signal from surface
heterogeneity. The Ogive analysis allows us to certify whether the fluxes converge to an asymptote
within the window length [61]. If the Ogive curve converges to a predefined asymptote (0.1 in this
study) at a frequency over the low-frequency domain, then a cospectral gap is existent [17]. In this
study, we used wavenumber (k, 1/m) instead of frequency because the reciprocal of the wavenumber
corresponds to the wavelength of eddies. The wavenumber is defined as k = f /u, where u is the
average speed (ms−1) of flight within one segment. The low-wavenumber components of turbulence
are connected with the surface heterogeneity and may lead to the Ogive curve not converging over
the low-wavenumber range [12]. Moreover, the spectral gap may disappear during the significant
overlap of high-wavenumber and low-wavenumber components of turbulence. In such a situation,
it is impossible to separate the flux contributions by adjusting the window length [17].

In this study, we defined the normalized Ogive for the purpose of convenience in comparison,
denoted as Ôgξw. It is expressed as the Ogive values normalized by the maximum absolute value of
the Ogive function with its sign:

Ôgξw(k) =
Ogξw(k)

sgn
{

max
(
Ogξw(k)

)
+ min

(
Ogξw(k)

)}
max

(∣∣Ogξw(k)
∣∣) (4)

where sgn{ } is the signum function that returns +1 if its argument is positive, −1 if its argument is
negative, and 0 if its argument is zero. In Equation (4), it returns the sign of the maximum absolute
value of the Ogive function. So, at the frequency corresponding to the peak (the maximum absolute
value) of the Ogive curve, the value of the normalized Ogive is 1. Figure 3 provides a diagram clarifying
Equation (4). In the normal Ogive case (Figure 3a), turbulent flux and low-wavenumber turbulence
are clearly separated by a spectral gap. An extreme situation may occur when the absolute maximum
value of Ogive curve presents in the low-wavenumber range and has an opposite sign to the Ogive
values in the high-wavenumber range. In this case, the Ogive curves of our definition would exhibit
reversed shape compared with normal Ogive curves (Figure 3b), rendering it easy to identify the
opposite sign and relatively strong influence of low-wavenumber components of turbulence. In reality,
the Ogive curve of real turbulence data is very complicated, mainly due to the low-wavenumber
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motion of turbulence. We shall give a detailed analysis the Ogive cases of our data segments in the
Results section.Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 26 
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3.3. Uncertainty Estimation

The total uncertainty of EC measurements can be attributed to random and systematic errors [62].
Details of the flux sampling errors of aircraft measurement can be found in Mahrt [63]. Experimental
studies [64] and theoretical considerations [19] have shown that the main uncertainty of airborne
flux measurements is due to the presence of significant flux contribution at wavelengths that are not
covered by the window length [26]. However, care must be taken to prevent the window length from
exceeding the length over which the flow is nonstationary [36,65]. In this study, we assumed that the
preprocessing steps have reduced sufficiently the systematic measurement errors from instrumentation.
We assumed that the major source of uncertainty in the airborne flux measurements is from an
inappropriate window length through under-sampling or over-sampling at some turbulence scales.
According to Mauder et al. [62], the uncertainty in flux estimates is associated with the stochastic error
of turbulence. The stochastic error depends on the number of independent observations, which is
determined by the turbulence integral scale [19]. The turbulence integral scale is a measure of the
length for which the variables are correlated (i.e., not an independent observation) [62]. Consequently,
the uncertainty is associated with both the sampling length and the stationary condition of the
turbulence. This means that extending the window length to ensure adequate sampling could decrease
the uncertainty. However, an overly long window length may result in a departure from statistical
stationarity and thus increase the uncertainty.

Several methods have been introduced and compared to estimate the flux uncertainty [66]. These
methods rely on estimating the turbulence integral scale [67]. However, the integral scale is not
always estimated reliably [19]. We adopted the algorithm of Finkelstein and Sims [67] to estimate
the flux uncertainty as the statistical variance of the covariance, which is a statistically profound and
mathematically rigorous approach (Appendix A). Subsequently, we accounted for the effects of the
propagation of uncertainty, following the method from Billesbach [66], as outlined in Appendix A.
Combined with Equation (A5), we could diagnose the absolute uncertainty for sensible heat flux,
denoted as σFH , and for latent heat flux, denoted as σFLE , using Equations (A9) and (A10). It is
instructive to express the uncertainties relative to the magnitude of the flux (denoted as FH and FLE for
sensible and latent heat flux, respectively). For the sensible heat flux, the relative flux uncertainty (RH)
can be expressed as:

RH =
σFH

|FH|
(5)
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and for the latent heat flux, the relative flux uncertainty (RLE) can be expressed as:

RLE =
σFLE

|FLE|
(6)

3.4. Block Ensemble Averaging

We assumed that one specified window length divided the 10 km segment into N consecutive
blocks. Block ensemble averaging means that the fluxes of each block are averaged to form an ensemble
flux of this segment. This block ensemble averaged flux becomes a function of window length because
the size and the number of the block is decided by the window length. In the current study, the block
ensemble averaged flux could be used to describe the evolution of flux with respect to the window
length. We used the angle brackets 〈 〉 to denote the block ensemble average. Let Fn denote the flux of
the nth block in a series of N consecutive block flux values, each with window length L [10,63,68,69].
The block ensemble averaged flux of all of the N blocks within a segment can be expressed as:

〈FL〉 =
1
N

N

∑
n=1

Fn (7)

Then, we obtained a series of block ensemble averaged fluxes based on different window lengths
(L) for a segment. For the convenience of comparison, we adopted a processing manner similar to
normalization to normalize these block ensemble averaged fluxes as:

EL =

∣∣∣〈FL〉
∣∣∣

max(
∣∣∣〈FL〉

∣∣∣) (8)

where EL is the block ensemble averaged non-dimensional flux. Relative flux uncertainties were
estimated along with flux calculation. We also calculated the average and standard deviation (SD)
of relative flux uncertainties under different window lengths to study the evolution of uncertainties
relative to window length. For the block ensemble averaged non-dimensional fluxes, a four-point
running mean filter was used to clearly demonstrate the trends of fluxes as a function of window length.

4. Results

4.1. Ogive Analysis

4.1.1. Classification of Ogive Curves

In the following, we employed a window length of 2 km as a reference to investigate the convergence
of the Ogive curves. The Ogive function integrates the cospectrum from the low-wavenumber to the
high-wavenumber to clearly reveal the low-wavenumber behavior of the turbulent flux. Then, similar
to Foken et al. [12], we split the behavior of the Ogive curves into one of five cases: (1) convergent;
(2) divergent; (3) inadequate; (4) sign reversal; and (5) shape reversal. Different from Foken et al. [12],
we excluded the “extreme” case because this case occurred infrequently in our segments (it only
accounted for 2.7% in Ogives of sensible heat flux and no extreme cases were found in Ogives of latent
heat flux). Moreover, we included more “inadequate”, “sign reversal”, and “shape reversal” cases in
order to achieve a detailed description of the low-wavenumber behavior of turbulence, which was not
considered by Foken et al. [12].

Table 2 provides the detailed definitions of the five cases for the behavior of Ogive curves of
turbulent fluxes. We began with the last two cases (Case 4 and Case 5 in Table 2), shown by the gray
curves in the right two column panels in Figure 4. The sign reversal Ogive (Case 4) and the shape
reversal Ogive (Case 5) share a commonality, that there exists a wavenumber at which the Ogive value
is more than one-tenth the magnitude of the absolute maximum value of the Ogive, but with the
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opposite sign. We used the normalized Ogive value of −0.1 as the threshold, because we considered
the sign changes of Ogive values exceeding 10% to be intolerable. This is based on the theory that
significant contributions of turbulent fluxes from eddies always share the same sign, regardless of the
size [22,70]. In contrast, the “sign reversal” case (Figure 4d,I) means that the Ogive curve undergoes
a relatively large sign reversal in the low-wavenumber domain, while the convergent value of the
Ogive curve in the high-wavenumber domain is larger than 0.9. The “shape reversal” case (Figure 4e,j)
means that the Ogive curve exhibits the reversed shape compared with other cases (it occurs when
the convergent value of the Ogive curve in the high-wavenumber domain is less than 0.9). The other
cases used the normalized Ogive value of 0.1 as the criterion value based on the same consideration
as Foken et al. [12], that is, only accepting the variability of the convergent value of the Ogive curve
within 10% in the low-wavenumber domain.

Table 2. Definition of five different cases for the behavior of Ogive curves of turbulent fluxes.

Case Explanation Criterion

(1) Convergent Convergent within the 2 km interval. Ideal case.
Ôgξw

(
k−1 = 10 km

)
< 0.1 and

Ôgξw

(
k−1 = 2 km

)
< 0.1

(2) Divergent
Ogive curve is not convergent within 2 km interval,
but is convergent in the wavelength larger than
2 km. Window length should be longer.

Ôgξw

(
k−1 = 10 km

)
< 0.1 and

Ôgξw

(
k−1 = 2 km

)
> 0.1

(3) Inadequate Ogive curve is not convergent even for 10 km
interval. Unclear cospectral gap.

Ôgξw

(
k−1 = 10 km

)
> 0.1 and

Ôgξw

(
k−1 = 2 km

)
> 0.1 and

min
(

Ôgξw(k)
)
> 0.1

(4) Sign Reversal
Ogive curve undergoes a relatively large sign
reversal in low-wavenumber domain while
maintaining the normal Ogive shape.

Ôgξw(k) ≤ −0.1 and

Ôgξw

(
k−1 < 10 m

)
≥ 0.9

(5) Shape Reversal
Ogive curve undergoes a very large sign reversal
and displays reversed shape compared with
other cases.

Ôgξw(k) ≤ −0.1 and

Ôgξw

(
k−1 < 10 m

)
< 0.9

Case 1, as shown by the gray curves in Figure 4a,f, is the ideal convergent case. The Ogive
function converged to a predefined range (0.1 to ~−0.1) in the low-wavenumber end within the
reference window length of 2 km. For an Ogive of convergence, the 2 km window length is a reliable
estimate of the turbulent flux, as we can assume that the whole turbulent cospectrum is “captured”
within this window length and there are only negligible flux contributions from the longer wavelength
domain [12].

Case 2, as shown by the gray curves in Figure 4b,g, is the divergent case. The Ogive function
value from the 10 km window length converged to the predefined range (−0.1 to ~0.1), meanwhile the
Ogive value from the 2 km window length is greater than the threshold value (0.1). This indicates that
the flux continues to increase significantly in magnitude beyond the 2 km window length. A longer
window length is needed to capture more flux contributions.

Case 3, as shown by the gray curves in Figure 4c,h, is the inadequate case. The Ogive function
does not reach the threshold value of 0.1, even with the 10 km segment length. This means that the
linear detrend has only excluded the mesoscale transports of turbulence with spatial scales of 10 km.
In this case, the flux is underestimated, even using the 10 km window length. This is because the
energy is also transported by large eddies of a size larger than 10 km [12]. In the current study, no clear
spectral gap could be found in this case. So, it is hard to determine a good choice of window length for
“inadequate case”.
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Figure 4. Normalized Ogives (gray lines) of sensible (ÔgTw, a–e) and latent (Ôgqw, f–j) heat fluxes as
a function of wavenumber. For both the top and bottom panels: from left to right correspond to the
convergent (a,f), divergent (b,g), inadequate (c,h), sign reversal (d,I), and shape reversal (e,j) cases,
respectively. The vertical black solid line indicates the wavenumber whose inverse yields a length of
2 km reference window length. The blue solid curves represent the typical shape corresponding to the
respective Ogive category.

The sign reversed cases and the shape reversed cases are all caused by the significant negative flux
influence by low-wavenumber components of turbulence, but few studies have dealt with this issue.
Possible reasons for this may be that the direction of mesoscale turbulence is opposite that of local
turbulent transporting [68]. In the following, we combined the sign reversed and shape reversed cases
as a unique reversed Ogive case and analyzed the case-wise fractions of Ogive cases under different
stability conditions. Because fluxes measured under stable conditions (here, ζ > 0.2) are always
inaccurate, we discarded the segments under stable conditions, which accounted for less than 2.6%
of all segments. Then, the segments were classified into three stability conditions: neutral conditions
(|ζ| ≤ 0.2), moderately unstable conditions (−1 ≤ ζ < −0.2), and very unstable conditions (ζ < −1).

Table 3 presents the classification fractions of the Ogives for sensible heat flux under each stability
condition. Overall, the reference window length of 2 km did not perform well for the reason that only
15.5% of Ogive curves were convergent. Plenty of Ogive curves presented the reversed case (37.3%),
the divergent case (24.5%), and the inadequate case (20%), respectively. Under neutral atmospheric
stability conditions, the reversed case accounted for 62.8%, which is the highest portion compared
with other cases. Under moderately unstable atmospheric stability conditions, the divergent cases
accounted for the largest portion (34.8%), followed by the inadequate cases (21.7%) and the reversed
cases (26.1%). The proportion of convergent cases under moderately unstable conditions was 15.2%,
which is larger than the proportion of convergent cases under neutral conditions (11.6%). Under very
unstable atmospheric stability conditions, the proportion of divergent cases was the largest (38.1%),
followed by the inadequate cases (23.8%) and the convergent cases (23.8%). Under this condition, the
proportion of reversed cases was 9.5%, which is the lowest compared with other conditions. Following
the evolution of atmospheric stability from neutral to very unstable conditions, the proportion of
convergent, divergent, and inadequate cases gradually increased. On the contrary, the proportion
of reversal cases was significantly reduced with the development of instability. Under moderately
unstable and very unstable conditions, the high proportion of divergent cases indicates that a window
length longer than 2 km is needed.
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Table 3. Classification fractions of the Ogives for sensible heat flux (corresponding to upper panels
in Figure 2). The numbers are the fraction of Ogives in a given category (column) under the given
classification (row).

Ogive Case (ÔgTω) Neutral (%) Moderately Unstable (%) Very Unstable (%) All Stabilities (%)

Case 1: Convergent 11.6 15.2 23.8 15.5
Case 2: Divergent 7 34.8 38.1 24.5

Case 3: Inadequate 16.3 21.7 23.8 20
Case 4 and Case 5: Reversed 62.8 26.1 9.5 37.3

Table 4 depicts the classification fractions of the Ogives for latent heat flux under each stability
condition. Analogous to the sensible heat flux, the window length of 2 km for latent heat flux
calculation was inappropriate, as only 20.7% of Ogive curves were found to be convergent. Meanwhile,
the portion of divergent and reversed cases were relatively significant, accounting for 37.9% and 27.9%,
respectively. Under neutral atmospheric stability conditions, the proportion of reversed cases was
the largest, accounting for 39.5%. The proportion of convergent cases was 27.9%, which was more
than the proportions of divergent cases (20.9%) and inadequate cases (11.7%). Under moderately
unstable atmospheric stability conditions, the proportion of divergent cases was the largest (43.5%),
followed by the reversed cases (21.7%). The proportion of inadequate cases under moderately unstable
conditions was 19.6%, and the proportion of convergent cases was only 15.2%. Under very unstable
atmospheric stability conditions, the proportion of divergent cases reached up to 59.5%, followed
by the convergent cases (18.2%) and the reversed cases (18.2%). The proportion of inadequate cases
was only 4.5%. From the evolution of atmospheric stability, with the development of instability,
the increasing proportion of divergent cases indicates that a window length longer than 2 km is
needed under moderate and very unstable conditions. Meanwhile, the proportion of reversed cases
significantly decreased, which is the same as its evolution for sensible heat flux.

Table 4. Classification fractions of the Ogives for latent heat flux (corresponding to bottom panels
in Figure 2). The numbers are the fraction of Ogives in a given category (column) under the given
classification (row).

Ogive Case (Ôgqω) Neutral (%) Moderately Unstable (%) Very Unstable (%) All Stabilities (%)

Case 1: Convergent 27.9 15.2 18.2 20.7
Case 2: Divergent 20.9 43.5 59.1 37.9

Case 3: Inadequate 11.7 19.6 4.5 13.5
Case 4 and Case 5: Reversed 39.5 21.7 18.2 27.9

By comparing Tables 3 and 4, some difference in the behavior of Ogive cases between sensible
and latent heat fluxes can be seen. The Ogives of latent heat fluxes present higher proportions of
convergent and divergent cases and lower proportions of inadequate and reversed cases compared to
Ogives of sensible heat fluxes under all atmospheric stability conditions. This difference is related to
the physical mechanism of sensible and latent heat fluxes. According to Kustas et al. [71], the transport
of heat is more tightly coupled with local surface discontinuities, whereas the moisture flux has
additional mechanisms influencing its transport. From the results of large eddy simulation (LES),
the water vapor flux blends or mixes more efficiently than sensible heat flux because water vapor
is a passive scalar, as opposed to temperature, which is an active scalar affecting vertical velocity
through the buoyancy term [70]. Thus, the vertical transport sensible heat flux generated over the
local land surface does not mix horizontally as efficiently as water vapor [71]. As mentioned by
Mahrt et al. [72], the mixing of water vapor in the daytime convective mixed layer reduces the relative
influence of surface heterogeneity and increases the horizontal mixing scale of turbulence. We also
found some similarities of Ogive behavior between the sensible and latent heat fluxes in our study.
On the one hand, the proportion of divergent cases was dominant under moderate and very unstable
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conditions for both the Ogives of sensible and latent heat fluxes. This illustrated that the size of eddies,
which is associated with the transport of local turbulent fluxes, increased notably from neutral to
very unstable atmospheric stability conditions. This is consistent with the consensus on turbulence
spectra [73,74], that under unstable atmospheric stability conditions, the cospectra gap shifts toward the
low-wavenumber components of turbulence [75]. Consequently, a window length longer than 2 km is
needed to include the significant flux contribution from large eddies. On the other hand, the proportion
of reversed cases decreased significantly with the development of instability. This indicates that, as the
mixing of local turbulence becomes more and more efficient, the negative influence of the mesoscale
turbulence associated with surface heterogeneity is reduced.

4.1.2. Determination of Possible Window Length

As mentioned above, we can confirm that the window length should be larger than 2 km under
moderately unstable and very unstable conditions. However, it is hard to determine the suitable
window length under near neutral conditions due to the complexity of the reversed case, which was
the most common case in such conditions. Even under other conditions, the reversed case still occupied
a significant portion and thus should not be ignored. Inappropriate window length can potentially
cause an underestimation of fluxes when the reversed case occurs.

For the purpose of determining the typical size of mesoscale eddies that result in the reversed
case, we defined different regulations to obtain the wavelength in the low wavenumber at which the
sign reversal occurs; this wavelength is referred to as Lmeso. For the sign reversed cases, Lmeso is the
reciprocal of the wavenumber at the lowest point of the Ogive curve (Lmeso = min(Ôgξw(k)). For the
shape reversed cases, the reciprocal of the wavenumber at the peak of the Ogive curve is the Lmeso

(Lmeso = max(Ôgξw(k)).
Figure 5 shows the frequency histograms of Lmeso, calculated using the wavelength interval

of 500 m for the reversed case of Ogives for sensible heat flux. We noticed that under neutral
conditions (Figure 5a) more than 74% of reversed cases are induced by small mesoscale eddies whose
typical size (Lmeso) ranges from 500 m to 3000 m. Meanwhile, under moderately unstable and very
unstable conditions (Figure 5b), nearly 55% of reversed cases are induced by large mesoscale eddies,
whose typical size (Lmeso) ranges from 2000 m to 5500 m. For the reversed case of Ogives for latent heat
flux, the results of the frequency histograms of Lmeso are shown in Figure 6. Under neutral conditions
(Figure 6a), similar to sensible heat flux, most of the reversed cases (53%) are induced by small mesoscale
eddies, whose typical size (Lmeso) ranges from 500 m to 3000 m. Under moderately unstable and very
unstable conditions (Figure 6b), more than 64% of reversed cases are caused by large mesoscale eddies,
whose typical size (Lmeso) ranges from 2000 m to 5500 m. These eddy wavelengths can be considered as
the typical size of mesoscale eddies induced by surface heterogeneity. Thus, in the present study, it can
be seen that the typical size of mesoscale eddies is ranging from 500 m to 3000 m under near neutral
conditions and ranging from 2000 m to 5500 m under moderately and very unstable conditions.

Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 26 

 

the low-wavenumber components of turbulence [75]. Consequently, a window length longer than 2 

km is needed to include the significant flux contribution from large eddies. On the other hand, the 

proportion of reversed cases decreased significantly with the development of instability. This 

indicates that, as the mixing of local turbulence becomes more and more efficient, the negative 

influence of the mesoscale turbulence associated with surface heterogeneity is reduced. 

4.1.2. Determination of Possible Window Length 

As mentioned above, we can confirm that the window length should be larger than 2 km under 

moderately unstable and very unstable conditions. However, it is hard to determine the suitable 

window length under near neutral conditions due to the complexity of the reversed case, which was 

the most common case in such conditions. Even under other conditions, the reversed case still 

occupied a significant portion and thus should not be ignored. Inappropriate window length can 

potentially cause an underestimation of fluxes when the reversed case occurs. 

For the purpose of determining the typical size of mesoscale eddies that result in the reversed 

case, we defined different regulations to obtain the wavelength in the low wavenumber at which the 

sign reversal occurs; this wavelength is referred to as Lmeso. For the sign reversed cases, Lmeso is the 

reciprocal of the wavenumber at the lowest point of the Ogive curve (Lmeso  = min(Oĝξw(k)). For the 
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unstable conditions. Wavelength interval for frequency histogram is 500 m.
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Figure 6. The frequency histograms of the wavelength (Lmeso) at which the sign reversal occurred for
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Comparing Figures 5 and 6, we found that the distribution of Lmeso of the reversed case for
sensible and latent heat fluxes present similar patterns. Under neutral conditions, the size of mesoscale
eddies that induced the reversed case is small. Kaimal et al. [73] pointed out that the wavelength
of eddies shifted towards shorter from neutral to stable stratification due to the increasing buoyant
destruction of turbulence relative to the production of wind shear. In such a situation, large eddies
cannot exist [76]. Correspondingly, under moderately and very unstable conditions, large eddies will
appear. By re-inspecting the reversed cases of sensible and latent heat fluxes, we found that almost
all of the shape reversed cases occurred under near neutral conditions, while most sign reversed
cases occurred under moderately and very unstable conditions. The potential explanation for this
is that, under neutral conditions, the mixing of local turbulence is insufficient and any small scales
of surface heterogeneous could drastically influence the local fluxes and then result in the Ogive
curve displaying shape reversal [77]. Under moderately and very unstable conditions, the mixing of
turbulence becomes more efficient, and only surface heterogeneity at a large scale or flying through a
transition boundary could lead to a relatively large sign reversal in the low-wavenumber domain of
the turbulence. Additionally, no reversed case was induced by Lmeso between 5500 m and 10,000 m,
and a small fraction appeared at the wavelength of 10,000 m (16.6% for Figure 5b, and 5.9% and 7.1%
for Figure 6a and 6b, respectively). This revealed that the 10 km segment we selected is long enough to
include the main mesoscale turbulence in our study region to conduct the analysis. We thus conclude,
based on the analysis of the reversed case, that a short window length is demanded under neutral
conditions (smaller than 3000 m) and a long window length, though smaller than 5500 m, is needed
under moderately and very unstable conditions.

4.2. Uncertainty Associated with the Window Length

According to the results of the Ogive analysis above, we selected several window lengths to
calculate the sensible and latent heat fluxes and their relative uncertainties for each segment, to analyze
the reliability of flux estimates. Under near neutral conditions, the window lengths ranging from
500 m to 3000 m with 100 m intervals were selected. Under moderately and very unstable conditions,
the window lengths ranging from 1000 m to 5500 m with 100 m intervals were employed.

Figure 7 presents the evolution of relative flux uncertainties (RH, RLE) (Equations (5) and (6))
and block ensemble averaged non-dimensional heat fluxes (EH, ELE) (Equation (8)) as a function of
window length under near neutral conditions. We used the mean and standard deviation (SD) of
relative flux uncertainties under different window lengths to express the evolution of flux uncertainties.
From the top panels of Figure 7, the relative uncertainties are reduced upon increasing the window
length. Large relative uncertainties occurred between the window lengths of 500 m and 2000 m
(mean relative uncertainty bigger than 0.5) because the window lengths were too short to obtain
an adequate sample of eddies. Between the window lengths of 2000 m and 2500 m, the relative
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uncertainties tended to be stable (mean relative uncertainty smaller than 0.5 and its SD smaller than 1)
although some fluctuations appeared, probably due to the fact that the relaxed stationarity test we set
(with the criterion of RNξw ≤ 1) may involve some nonstationary turbulence (Section 3.1). After the
window length of 2500 m, the uncertainties exhibited large scattering again (mean relative uncertainty
bigger than 0.5 and its SD show clearly fluctuations). The large scattering of relative uncertainties
after the window length of 2500 m indicated that the increasing window length captured significant
nonstationary or heterogeneity turbulence [9,63]. It can be seen in the bottom panels of Figure 7 that
the turbulent heat fluxes rapidly increase with the window length increasing from around 500 m to
800 m, then remain stable until the window length reaches about 2500 m. Further increasing in the
window length caused significant variability in the turbulent heat flux values due to including the
effect of mesoscale turbulence. Finally, combining the heat fluxes and their relative uncertainties for
the evolution of the window length, we concluded that the window lengths ranging from 2000 m to
2500 m are optimum for the calculation of local heat fluxes under neutral conditions.

Figure 7. Averaged relative flux uncertainties (RH, RLE) with standard deviation (top panels) and
block ensemble averaged non-dimensional flux (EH, ELE) (bottom panels) for sensible heat flux (a) and
latent heat flux (b) under neutral conditions. In the bottom panel, the solid blue curves represent the
median value, while the solid green lines depict the 10th (lower) and 90th (upper) percentiles.

Figure 8 depicts the evolution of relative flux uncertainties (RH, RLE) and block ensemble averaged
non-dimensional heat fluxes (EH, ELE) as a function of window length under moderately unstable
conditions. In the upper panels of Figure 8, the averaged relative uncertainties were found to be
reduced along with the increasing window length. The latent heat flux shows larger uncertainty and
scattering than that observed in sensible heat flux. This illustrates that the calculation of latent heat
flux demands a longer window length than sensible heat flux to ensure the accuracy of flux estimates.
The large scattered relative uncertainties (SD > 0.5) for sensible and latent heat fluxes may be induced
by some large eddies that contributed to flux but were not sampled sufficiently. After the window
lengths greater than 3900 m, for both sensible and latent heat fluxes, the mean relative uncertainties
and their SD start to be less than 0.5 and tend to be stable. Some low-quality observations may have
caused a sudden increase among the SD values of relative uncertainty (occurring at the window
lengths of 4500 m and 5200 m for latent heat flux), but have little effect on the overall trend, so we
ignored these disturbances. From the bottom panels of Figure 8, the values of the flux begin to stabilize
at the window length around 1300 m and then remain stable until the window length reaches about
5000 m. The large variation of fluxes after the window length of around 5000 m is probably the
result of including mesoscale turbulence. As a consequence, combining the heat fluxes and their
relative uncertainties for the evolution of the window length, we concluded that the window lengths
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ranging from 3900 m to 5000 m are optimum for the calculation of local heat fluxes under moderately
unstable conditions.Remote Sens. 2018, 10, x FOR PEER REVIEW  16 of 26 
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Figure 8. Averaged relative flux uncertainties (RH, RLE) with standard deviation (top panels) and block
ensemble averaged non-dimensional flux (EH, ELE) (bottom panels) for sensible heat flux (a) and latent
heat flux (b) under moderately unstable conditions. In the bottom panel, the solid blue curves represent
the median value, while the solid green lines depict the 10th (lower) and 90th (upper) percentiles.

Figure 9 shows the evolution of relative flux uncertainties (RH, RLE) and block ensemble averaged
non-dimensional heat fluxes (EH, ELE) as a function of window length under very unstable conditions.
From the top panels in Figure 9, we find that only large window length can obtain a reliable turbulent
flux estimates. Significant fluctuation and scattering of relative uncertainties (SD > 1) were observed
at window lengths smaller than 4500 m for sensible heat flux and smaller than 4100 m for latent
heat flux. The LES results demonstrated that the unstable stratification enhanced the development
of turbulence and reduced the mean vertical shear of the horizontal wind [78], as thermal buoyancy
is the main driving factor of the turbulent fluxes [14]. In the present study, under very unstable
conditions, the turbulent heat fluxes were dominated by thermal instability [79]. Therefore, compared
with the window lengths required for other atmospheric stability conditions, very unstable conditions
demanded a longer window length to obtain the turbulent heat fluxes with acceptable uncertainty.
The relative uncertainties become stable and acceptable (mean relative uncertainty smaller than 0.5 and
its SD smaller than 1) at window lengths larger than 4500 m for sensible heat flux (top panel in
Figure 9a) and larger than 4200 m for latent heat flux (top panel in Figure 9b). From the bottom panels
in Figure 9, similar to the cases under moderately unstable conditions (Figure 8), the inflection point
appeared at the window length around 1300 m and obvious flux change occurred at window lengths
larger than 5000 m. We speculated that the influence of mesoscale turbulence started to appear at the
window lengths larger than 5000 m. Combining the heat fluxes and their relative uncertainties for
the evolution of the window length, we found that window lengths ranging from 4500 to 5000 m are
optimum for the calculation of local heat fluxes under very unstable conditions.
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Figure 9. Averaged relative flux uncertainties (RH, RLE) with standard deviation (top panels) and
block ensemble averaged non-dimensional flux (EH, ELE) (bottom panels) for sensible heat flux (a) and
latent heat flux (b) under very unstable conditions. In the bottom panel, the solid blue curves represent
the median value, while the solid green lines depict the 10th (lower) and 90th (upper) percentiles.

4.3. Evaluation of the Optimizing Window Length

We employed the optimizing window length to calculate the turbulent heat fluxes and to evaluate
the performance of the optimizing window length. According to the results of Section 4.2, we chose the
window lengths of 2 km for near neutral conditions, 4 km for moderately unstable conditions, and 5 km
for very unstable conditions to calculate the turbulent heat fluxes and their relative uncertainties.
Meanwhile, we also used a fixed 4 km window length to calculate the turbulent heat fluxes and their
relative uncertainties to illustrate the inadequacy of applying a fixed window length for turbulent
heat fluxes estimation without considering the atmospheric stability. Only high-quality turbulent heat
fluxes results (overall quality flag between 1 and 6, according to Vellinga et al. [42]) were considered in
the following analysis.

Theoretically, the window length for airborne flux measurements depends on the flying altitude,
surface characteristics, and atmospheric stability [39]. In this study, we ignored the influence of flight
height and surface features on the choice of window length, and only investigated the relationship
between the window length and the atmospheric stability conditions. This is because the mixing
process of turbulence between the land surface and the flight level makes the impact of surface
characteristics on airborne EC measurements very complicated. In the following, we used the estimated
turbulent heat fluxes as an approximation of averaged true surface heat fluxes (within the footprint
area) to evaluate the performance of the optimizing window length under different surface heating
status (Figure 10). In Figure 10, it is clear that the turbulent heat fluxes based on the optimizing window
length have higher accuracy than the turbulent heat fluxes based on the fixed window length. We found
that large relative uncertainties were present on the low flux magnitude domain (small than 30 Wm−2

for both sensible and latent heat fluxes). In this study, the low flux conditions are associated with
the near neutral atmospheric stability conditions, when the potential air temperature is near constant
with height and the mechanical shear dominates the turbulence production. EC measurements under
these conditions have poor accuracy in nature, and can easily be affected by heterogeneous turbulence.
Nevertheless, our determined optimizing window length under the near neutral conditions could
effectively avoid the influence of heterogeneous turbulence on the estimated turbulent heat fluxes and
give relatively reliable flux estimates. With the increase of surface heat flux intensity, the development
of turbulence was significantly enhanced, and the size of eddies associated with the local transport
of heat fluxes increased as well. In particular, for the very unstable atmospheric stability conditions,
where the large surface heat flux value often occurs (more than 100 Wm−2 for sensible heat flux, and
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more than 200 Wm−2 for latent heat flux in Figure 10), the large eddies dominate the transmission of
energy. Our determined optimizing window length under the very unstable conditions also proved
to give accurate and robust turbulent heat flux estimates. It illustrates that our defined optimizing
window lengths are suitable for different heating conditions of the study area, and can give accurate
and robust estimates of turbulent heat fluxes.
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Figure 10. The relationship between the magnitude of heat fluxes and the relative flux uncertainties
for sensible heat flux (RH; a,b) and latent heat flux (RLE; c,d) based on optimizing (a,c) and fixed (b,d)
window length. The black error bars show the mean (dark spot) plus/minus one standard deviation
(horizontal bars) of relative flux uncertainty for 10 evenly spaced bins of flux magnitude.

In addition, as the surface temperature represents the main driving force of thermal buoyancy,
it has a great influence on the turbulent heat fluxes. If the estimated turbulent heat fluxes represent a
great contribution from the local land surface, we could expect that the turbulent heat fluxes based
on the optimizing window length have a better relationship with the local surface temperature than
that based on a fixed window length. Figure 11 shows the relationships between the window-length
averaged surface temperature (measured using an infrared thermometer) and the turbulent heat fluxes
(sum of H and LE) based on the optimizing (Figure 11a) and fixed (Figure 11b) window lengths.
The result from the optimized window length shows a better correlation between the turbulent
heat fluxes and surface temperature. This implies that our defined optimizing window length and
corresponding turbulent heat fluxes are consistent with the local surface features at window scale.
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5. Discussion

The above results can confirm that our optimizing window lengths are characterized by both the
surface features of the study area and the atmospheric stability conditions during the measurements.
The main purpose of this study was to determine the optimum window length, which was used
to separate the mesoscale motion influence of the turbulence and obtain more accurate turbulent
heat flux estimates than those obtained using a fixed window length, which does not consider the
atmospheric stability conditions. As the primary sources of atmospheric turbulence, the wind shear
and buoyancy’s comprehensive effect can be described using the M–O similarity theory, which can
be expressed as atmospheric stability. Therefore, this study attempts to give the optimizing window
lengths for turbulent heat flux calculations that are suitable for near neutral to unstable atmospheric
stability conditions. In this study, the results from the Ogive analysis provided the ranges of possible
window lengths from the near neutral to very unstable conditions. The final determined optimum
window lengths were determined after considering the accuracy, robustness, and local significance of
the flux estimates. For the present study, we summarized the optimum window lengths under near
neutral to unstable atmospheric stability conditions, as listed in Table 5, and discussed them in detail.

Table 5. The determined optimizing window lengths for turbulent heat fluxes calculation from airborne
eddy covariance (EC) method under near neutral to unstable atmospheric stability conditions for the
present study.

Atmospheric Stability Condition (ζ) Optimum Window Length (m)

neutral conditions (|ζ| ≤ 0.2) 2000–2500
moderately unstable conditions (−1 ≤ ζ < −0.2) 3900–5000

Very unstable conditions (ζ < −1) 4500–5000

Under near neutral conditions, the turbulent mixing process is governed by mechanical shear
(i.e., friction velocity), and the potential temperature is near constant with height. Under these
conditions, the turbulent heat and moisture exchange near the surface is small, and EC measurements
are vulnerable to exogenous influence (surface heterogeneity). This is a nonideal environment for EC
measurements because of low flux conditions and weak vertical mixing. This is also the reason why the
relative uncertainty of both the turbulent sensible and latent heat fluxes is large and scattered (upper
panels in Figure 7). EC measurement under these conditions should be conducted cautiously. For such
conditions, because the vertical gradient of potential temperature is close to zero, the vertical mixing of
local turbulence is insufficient and any small-scaled surface heterogeneity could drastically influence
the local turbulent heat fluxes [80]. A short window length is required to exclude the influence of
small mesoscale turbulence; however, too short a window length may result in inadequate sampling
with high uncertainty. In this study, we determined the final optimum window length based on the
evolution of averaged relative uncertainty and its SD. From the top panels of Figure 6, we found that
the general trend of averaged relative uncertainties is to first decline (at window lengths from 500 m to
2000 m) and then increase (at window lengths larger than 2500 m). At a window length of 2000 m, the
averaged relative uncertainty started to be smaller than 0.5 for both the sensible and latent heat fluxes.
For both the sensible and latent heat fluxes, the averaged relative uncertainty begins to be more than
0.5 at a window length of 2500 m. After the window lengths longer than 2500 m, the averaged relative
uncertainty and its SD significantly begin to increase. So, we determined that the optimum lengths
under the neutral conditions ranges from 2000 m to 2500 m. The fluctuation of relative uncertainty
among the optimum window lengths is partly due to the relaxed stationarity test criteria we used
in the preprocessing stage, and partly due to the sporadic buoyancy events that contribute to the
turbulent heat fluxes (especially for sensible heat flux, Figure 7a) [30]. If we ignore the effects from
sporadic events (maybe related to surface heterogeneity), then we can conclude that the optimum
window lengths range from 2000 m to 2500 m, which can both exclude the negative influence from
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mesoscale turbulence and maintain the robustness of the turbulent heat flux estimates under the near
neutral conditions.

The moderately unstable conditions represent the ideal EC measurement environment, when the
air is heated from the bottom up (i.e., the surface heat flux is positive, as in the daytime over land) and
the vertical mixing of turbulence is enhanced. Under these conditions, the turbulent mixing process is
governed by both the wind shear and the buoyancy, and the typical scale of local turbulence is relative
large. For these conditions, the influence of mesoscale turbulence is relatively small. From the top
panels of Figure 8, the accuracy and robustness of turbulent heat flux estimates under these conditions
are the best. We defined the optimizing window length under moderately unstable conditions in
a relatively strict manner, that is, both the averaged relative uncertainty and its SD are stable and
smaller than 0.5. After considering the variability of turbulent heat fluxes (bottom panels of Figure 8),
we gave a relatively wide range of optimum window lengths (3900 m to 5000 m). This is because the
mesoscale turbulence contains little energy under the moderately unstable conditions, so a longer
window have less impact on the calculated turbulent heat fluxes. In addition, from the upper panels
of Figure 8, the relative uncertainty of sensible heat flux is obviously smaller than that of latent heat
flux. This is because the horizontal mixing of water vapor is more efficient than sensible heat flux,
which reduces the relative influence of surface heterogeneity and increases the horizontal mixing
scale of moisture. So, if the same window length is used to calculate the turbulent sensible and latent
heat fluxes, the uncertainty of the latent heat flux will be greater than that of the sensible heat flux.
If we want to obtain a latent heat flux with higher precision, a longer window length is needed.
If we want to get more information about the surface heterogeneity, a relatively small window length
is recommended.

Under very unstable atmospheric stability conditions, the turbulent mixing process is dominated
by buoyancy, and influences of wind shear is negligible (the winds are calm or constant with height).
For these conditions, the boundary layer is filled with large-scale eddies, and these large eddies
dominate the transmission of energy. Under very unstable conditions, a particularly long window
length is required to cover the large eddies with large energy transmission. If we choose an insufficient
window length to calculate the turbulent heat fluxes, the turbulent heat fluxes will have low accuracy
and be very unstable. This means that we cannot replicate the observed turbulent heat fluxes under
the same region and similar surface and weather conditions, and it is the reason why the very large
relative uncertainties occurred at window lengths less than 4500 m for sensible heat flux and less than
4100 m for latent heat flux in the upper panels of Figure 9. Again, in the upper panels of Figure 9,
it is clear that with the increase of sampling length, the relative uncertainties and their SD decrease
significantly. This is similar to the results of Lenschow et al. [19], who indicated that the longer the
sampling interval was, the higher the accuracy of turbulent flux that could be obtained in convection
boundary layer. However, our results indicated that an overlong window length can cause significant
variability in the flux values (as indicated by the window lengths larger than 5000 m in the bottom
panels in Figure 9) because they include the effect of mesoscale turbulence. So, combining the statistical
error and variability of turbulent heat fluxes, we concluded that the optimum window lengths range
from 4500 m to 5000 m for very unstable conditions. In the range of the defined optimum window
lengths, sensible heat flux shows higher uncertainty than latent heat flux. This is because sensible
heat flux, as an active scalar, has high vertical fluctuations along with the buoyancy term, so a longer
window length is required to obtain a statistically significant value.

Airborne EC method is one of the most effective tools to provide turbulent flux measurements
at a regional scale. One important application of airborne EC measurements is to provide the “true”
surface flux values at the regional scale, which can be used to calibrate and validate process-oriented
models in which land surface fluxes are linked to local surface exchange processes. So, the accuracy
and the surface representativeness of turbulent flux estimates are the two main aspects that should be
considered by the airborne EC measurements. This study indicates that the choice of window length
for calculations of airborne turbulent heat fluxes should consider the atmospheric stability condition
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during the measurements. In particular, when conducting long-term airborne EC measurements,
the present study presents a comprehensive methodology to find the optimum window lengths with
which to compromise a balance between the accuracy and the surface representativeness of turbulent
heat flux calculation.

6. Conclusions

The main purpose of this study was to find the optimum window length for heat flux calculation
under near neutral to unstable atmospheric stability conditions, which is meaningful for depicting
the flux contribution from local land surfaces. The results of the Ogive classification indicate that the
reference window length of 2 km cannot capture a reliable estimate of the turbulent heat fluxes in any
of the atmospheric stability conditions. Under moderately and very unstable conditions, the window
length should be longer than 2 km, as it was found that divergent cases occupied the largest fraction of
the Ogive cases. Under near neutral conditions, the reversed cases (including sign reversed and shape
reversed cases) represented the biggest proportion in the Ogive cases. These reversed cases are caused
by mesoscale turbulence motions associated with surface heterogeneity. Under near neutral conditions,
turbulent heat fluxes are easily affected by heterogeneous turbulence due to the insufficient mixing of
local turbulence. We found that the window length under neutral conditions should be smaller than
the window length under moderate and very unstable conditions. With the development of instability
from neutral to very unstable conditions, the mixing of local turbulent flux becomes more and more
efficient. This reduces the impact of surface heterogeneity and increases the required window length
to “catch” the flux contribution from large eddies.

The results from the Ogive analysis gave us reasonable information about the ranges of window
lengths, which is significant to the fundamental assumptions behind the EC method. To understand
the accuracy and the robustness of the flux estimates, the uncertainty analysis of flux was carried out
to study the relationship between the flux uncertainty and the window length. We determined the
optimum window length for near neutral to unstable atmospheric stability conditions after considering
the accuracy, robustness, and local significance of the flux estimates. Under near neutral conditions,
turbulent flux is vulnerable to exogenous influence (heterogeneous turbulence) due to the low flux
conditions and weak vertical mixing. A short window length is required to exclude the impact
from mesoscale turbulence. We found that the optimum window lengths range from 2000 m to
2500 m, which are capable of both removing the mesoscale influence and maintaining the reliability
of turbulent heat flux estimates. From moderately to very unstable conditions, the mixing of local
turbulent flux becomes more and more efficient and the size of eddies associated with the local fluxes
increase notably. Under moderately unstable conditions, the turbulent mixing process is governed
by both the wind shear and the buoyancy, and the influence of mesoscale turbulence is very small.
We found that relatively broader window lengths ranging from 3900 m to 5000 m are optimum under
moderately unstable conditions. Under very unstable conditions, the turbulent mixing process is
dominated by the buoyancy, and the influence of wind shear is negligible. For these conditions, large
convective eddies dominate the transmission of energy and a particularly long window length is
required to cover the large eddies with large energy transmission. We found that window lengths
ranging from 4500 m to 5000 m are optimum for producing turbulent heat fluxes with acceptable
uncertainty. It is noted that the optimum window lengths should be region-specific. This study gives a
comprehensive methodology to determine the optimizing window lengths in order to compromise to
a balance between the accuracy and the surface representativeness of turbulent heat fluxes calculation.
The turbulent heat fluxes calculated based on the optimum window lengths are not only meaningful
in local land surface, but also have better accuracy. Finally, we conclude that the aircraft-based EC
method for calculating turbulent heat fluxes should be used with varying window lengths that should
be determined according to the atmospheric stability conditions.
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Appendix A

The method of Finkelstein and Sims [67] estimates the flux uncertainty as the variance of flux,
σ2
ξ′w′

. Such a calculation first requires the application of a linear detrend (LDT) procedure to the
sampled data series because both the auto- and cross-correlations are ill-defined in the presence of a
trend [62,67]. This approach is a direct calculation and does not rely on the knowledge of the shapes
of the spectral and cospectral. Instead, a series of variable time-lagged variances and covariances
(the auto- and cross-correlation functions) are calculated and summed [66]. For the two discrete blocks
segments, ξ′ and w′, each with sample numbers I, it can be expressed as:

σ2
ξ′w′
' 1

I

J

∑
j=−J

(
γξξ,jγww,j + γξw,jγwξ,j

)
(A1)

where γξξ,j is the autocorrelation of any variable ξ, and γξw,j is the cross-correlation of any two
variables, ξ and w, I is the number of sample series in the data set (i.e., sample frequency times the
sample time length of the block), and J is the lag number require compute the auto- and cross-correlation
functions, and usually J = I. For the autocorrelation function γξξ, it can be calculated as:

γξξ(τL) = γξξ(−τL) = ξ′(x)ξ′(x + τL) (A2)

and for the cross-correlation γξω, the symmetry of the cross-correlation will present between
cross-correlation value of ξ and w at lag τL and cross-correlation value of w and ξ at lag −τL, it can be
expressed as:

γξw(τL) = γwξ(−τL) = ξ′(x)w′(x + τL) (A3)

γwξ(τL) = γξw(−τL) = w′(x)ξ′(x + τL) (A4)

where x is the timestamp of the sample, and τL is lag number.
Assuming that the aircraft speed is constant, ∆x is the length between two consecutive samples.

Therefore, the distance lag can be expressed as τL,j = j∆x. Then, we exploit the symmetry property in
the auto-correlation and cross-correlation and begin from j = 1. Using (A2)–(A4) in (A1), Equation (A1)
can be expressed equivalently as follows (with J = I):

σ2
ξ′w′
' 1

I

[
ξ
′2w′2 + ξ′w′

2
+ 2

J

∑
j=1

(
γξξ,jγww,j + γξw,jγwξ,j

)]
(A5)

Uncertainty will invariably propagate through the processing steps. According to Billesbach [66],
the vertical flux of some quantity ξ is Fξ where the flux in question is typically a function of K
independent parameters, with ∈ K. Thereby the vertical flux can be written as Fξ = Fξ(X1, ..., XK),
such that the uncertainty in the flux estimate is given as:

σ2
Fξ =

K

∑
=1

(
∂Fξ
∂X

)
2
σ2

X (A6)
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in which σ2
X

is the random uncertainty (variance) in the estimate of parameter X . The expressions

used to calculate the turbulent sensible and latent heat fluxes, for which we denote as FH (Wm−2) and
FLE (Wm−2), respectively, can be written as:

FH = ρdcpw′T′ (A7)

FLE = λ(1 + µσ)

[
w′q′ +

ρv

T
w′T′

]
(A8)

where cp is the specific heat of dry air (JK−1kg−1), w′ is the fluctuation of vertical wind speed (ms−1),
T′ is the fluctuation of air temperature (K), µ = Md/Mv is the ratio of the molar mass of dry air and
water vapor, λ is the latent heat of vaporization for water (Jkg−1), σ = ρv/ρd is the ratio of the densities
of water vapor (ρv, kgm−3) and dry air (ρd, kgm−3), and q′ is the fluctuation of absolute humidity or
water mass density (kgm−3) [81].

When calculating error propagation, we assumed that the only independent parameters that
significantly contribute to the uncertainty are the covariances w′T′ and w′q′. It is clear that some
uncertainty exists in the estimation of the mean value as well, but we expect that the terms involved the
uncertainty of a mean value will be small in comparison with the uncertainty of the covariance value,
as these uncertainties are weighted by small covariances as opposed to the relatively large means
and the uncertainty in the means is generally smaller than that of the covariance [82]. With the above
considerations in mind, upon applying Equations (A6)–(A8), the total uncertainties of the sensible and
latent heat flux are given as:

σFH = ρdcp (σ2
T′w′

)
1/2

(A9)

σFLE = λ(1 + uσ)(σ2
q′w′

+

(
ρv

T

)2
σ2

T′w′
)

1/2

(A10)

σ2
T′w′

and σ2
q′w′

can be computed using Equation (A5). Equations (A9) and (A10) are then used to

estimate the flux uncertainty of the sensible and latent heat flux in Section 3.3.
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