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Abstract: As a source of data continuity between Landsat and SPOT, Sentinel-2 is an Earth observation
mission developed by the European Space Agency (ESA), which acquires 13 bands in the visible and
near-infrared (VNIR) to shortwave infrared (SWIR) range. In this study, a Sentinel-2A imager was
utilized to assess its ability to perform lithological classification in the Shibanjing ophiolite complex
in Inner Mongolia, China. Five conventional machine learning methods, including artificial neural
network (ANN), k-nearest neighbor (k-NN), maximum likelihood classification (MLC), random forest
classifier (RFC), and support vector machine (SVM), were compared in order to find an optimal
classifier for lithological mapping. The experiment revealed that the MLC method offered the highest
overall accuracy. After that, Sentinel-2A image was compared with common multispectral data
ASTER and Landsat-8 OLI (operational land imager) for lithological mapping using the MLC method.
The comparison results showed that the Sentinel-2A imagery yielded a classification accuracy of
74.5%, which was 2.5% and 5.08% higher than those of the ASTER and OLI imagery, respectively,
indicating that Sentinel-2A imagery is adequate for lithological discrimination, due to its high spectral
resolution in the VNIR to SWIR range. Moreover, different data combinations of Sentinel-2A + ASTER
+ DEM (digital elevation model) and OLI + ASTER + DEM data were tested on lithological mapping
using the MLC method. The best mapping result was obtained from Sentinel-2A + ASTER + DEM
dataset, demonstrating that OLI can be replaced by Sentinel-2A, which, when combined with ASTER,
can achieve sufficient bandpasses for lithological classification.
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1. Introduction

There are about 5% of territories in China that belong to Gobi Desert, mainly distributed in the
Northwest China. Due to vastness, poor accessibility, and atrocious weather conditions in these areas,
regional lithological mapping in the field is costly and challenging. As an economical and efficient
technique, remote sensing has become a popular method for regional lithological mapping, especially
in arid and semi-arid regions [1–4]. Optical imagery acquired by spaceborne and airborne sensors has
been widely applied to mineral and lithological exploration for decades. For instance, the United States
Geological Survey (USGS) used ASTER (Advanced Spaceborne Thermal Emission and Reflection
Radiometer) data to map the hydrothermally altered rocks in the central and southern parts of the
Basin and Range province of the United States [5].
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Due to its lower cost and higher accessibility than hyperspectral data, multispectral imagery,
such as Landsat-5 TM, Landsat-7 ETM+ (enhanced thematic mapper plus), Landsat-8 OLI (operational
land imager), and ASTER, is broadly utilized to extract lithologic, mineral, and structural information
in metallogenic provinces [6–8]. As one of the world’s earliest and longest continuously acquired
collection of spaceborne moderate-resolution land remote sensing data, the Landsat series has been
applied in geology for decades [6,9–11], for applications such as hydrothermal alteration (ferric iron
and hydroxides) extraction, lithological discrimination, and geotectonic interpretation. With a higher
spectral resolution in the shortwave infrared (SWIR) and thermal infrared (TIR) range than other
multispectral data, ASTER provides a higher potential to undertake semi-quantitative mineral mapping.
It has become the most popular imagery in geological exploration, especially in hydrothermal
alteration and lithological unit discrimination, since the Terra satellite was launched in 1999 [7,12–14].
For example, Son et al. [15] utilized ASTER data to map distribution patterns of hydrothermal
alteration and igneous rocks in the southwestern Gobi in Mongolia. Yoshiki et al. [16] applied ASTER
TIR (thermal infrared) images to map regional lithological rocks in the Tibetan Plateau. However,
with Landsat 7 being damaged in 2003 and Landsat 5 retiring in 2013, only Landsat 8, launched in
2013, remains within the Landsat mission for routine operation. Moreover, due to an anomalously
high SWIR detector temperature, ASTER SWIR data have been unavailable since April 2008.

Thereafter, the Sentinel-2 mission, launched by the European Space Agency (ESA), acts as
important data continuity and enhancement for the Earth observation. The Sentinel-2 Multi-Spectral
Imager (MSI) consists of identical Senitnel-2A and Sentinel-2B, which were launched on 23 June 2015
and 7 March 2017, respectively. With a short revisit time (every 5 days with two satellites), the Sentinel-2
missions aimed at global monitoring for environment and security, such as forest monitoring,
land cover change detection, and natural disaster management [17,18]. In addition, the high-resolution
Sentinel-2 multispectral data were confirmed to have potential for mineral mapping in geological
investigations in the last several years, especially for the iron absorption feature, due to the similar
or even higher spectral setting than Landsat series and SPOT in the VNIR region [19–21]. However,
there is rare research exploring the capability of Sentinel-2 data for complex lithological classification.

Although it is not new to use remote sensing technique for lithological classification in geological
investigation [2,22,23], many studies are limited, due to the coarse spatial/spectral resolutions of
multispectral data, causing difficulties in accurately classifying rock units [22]. As a solution, multiple
ancillary data with texture information, such as airborne geophysical data [24], DEM [25], and
geomorphic feature [2], can be integrated with multispectral imagery for improved lithological
classifications [22]. However, the integration of multispectral data with different bandpasses for
lithological classification is of little concern in previous literature.

In this study, lithological classification was performed in the Shibanjing ophiolite complex in
the Beishan orogenic belt in Inner Mongolia, China. The present research aims at investigating the
potential of the Sentinel-2A and the integrations of multispectral imagery for lithological classification
in the Shibanjing ophiolite complex. Specifically, (i) five typical machine learning methods, including
artificial neural network (ANN), k-nearest neighbor (k-NN), maximum likelihood classification (MLC),
random forest classifier (RFC), and support vector machine (SVM), were compared to select the
optimal classifier for lithological classification using the data combination of Sentinel-2A and DEM
(Sentinel-2A + DEM); (ii) three data combinations, OLI + DEM, ASTER + DEM, and Sentinel-2A + DEM,
were employed to classify lithological units, which aimed to evaluate the capability of Sentinel-2A for
lithological mapping; and (iii) two data combinations, OLI + ASTER + DEM and Sentinel-2A + ASTER
+ DEM, were utilized to compare the capability of different combinations of multispectral bands for
lithological classification.



Remote Sens. 2018, 10, 638 3 of 22

2. Materials and Methods

2.1. Study Area Description

The study area is located at 41◦31′24”–41◦36′26”N and 98◦19′15”–98◦29′53”E. It consists of the
Shibanjing ophiolite in Beishan orogenic belt in Inner Mongolia, China (Figure 1a). The Beishan
orogenic belt, located in the southern part of the Central Asian Orogenic Belt (CAOB), is composed
of ophiolites, arcs, and blocks formed by subduction-accretion between the Tarim craton and
the Kazakhstan plate [26] (Figure 1b). The Beishan orogenic belt represents a major part of the
southern CAOB, which makes it a critical area for unraveling the evolution and accretionary orogenic
history of the CAOB [27]. There are several complete ophiolites in the Beishan orogenic collage,
which possibly formed in the early Paleozoic era in the southern CAOB. From north to south, three main
ophiolitic belts are distributed along the Beishan orogenic belt: the Hongshishan ophiolitic belt,
the Mingshui–Shibanjing–Xiaohuangshan ophiolitic belt, and the Hongliuhe–Niujuanzi–Xichangjing
ophiolitic belt, as shown in Figure 1b [28].
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Figure 1. (a) Simplified tectonic index map showing the position of Beishan orogenic belt, modified
after Jolivet [29]. BH, Bayan Har; HK, Hindu Kush; Kh, Kohistan; Ku, Kudi; NQi, North Qiangtang;
P, Pamir; Qi, Qilian Shan; SG, Songpan–Garze; SQi, South Qiangtang. (b) simplified geological map
of the western Beishan orogenic belt, modified after Davis et al. [30]; and (c) geological map of the
Shibanjing ophiolite.
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The Shibanjing ophiolite complex is in the Mingshui–Shibanjing–Xiaohuangshan ophiolite belt,
which is approximately 80 km away from the Xiaohuangshan ophiolite (Figure 1b). Structure activities
in the complex area are intense and characterized by NW strike-slip faults, which are the main faults
controlling the distribution of formation and magmatic rocks. The ophiolite complex is characterized by
tectonic slices of ophiolitic rocks, including meta-ultramafic rocks, mylonitic gabbros, metabasalts, and
clastic rocks in a matrix of turbidites, and the mélange contains blocks of argillaceous matrix and marble,
where many ophiolitic rocks in the complex experienced amphibolite facies metamorphism [31–33],
as shown in Figure 1c. The emergent strata are Cambrian, Ordovician, Silurian, Devonian, and
Quaternary. The magmatic rocks are dominated by the felsic intrusion, and the mafic and ultrabasic
rock unit is one of the important rock units that make up the ophiolitic complex. The basic and
ultrabasic rocks mainly consist of pyroxenite, olivinite, and augite peridotite (Figure 1c). The geological
map of the Shibanjing ophiolite complex displayed in Figure 1c was generated via visual interpretation
of remote sensing data, and then verified and modified in the field in June 2016. The arid study area
with sparse vegetation cover and well-exposed rocks is an ideal region to test lithological mapping by
remote sensing data.

2.2. Datasets and Data-Preprocessing

2.2.1. Data-Preprocessing

Three types of multispectral imagery, Sentinel-2A, ASTER and OLI, were downloaded from the
USGS website (https://glovis.usgs.gov/) and employed in this study. In addition, one scene of digital
elevation model (DEM) data of ALOS/PALSAR with 12.5 m spatial resolution was obtained from the
NASA website (https://vertex.daac.asf.alaska.edu/#). The Sentinel-2A image contains 13 spectral
bands in the VNIR and SWIR spectral range, with four bands at 10 m, six bands at 20 m, and three
atmospheric correction bands at 60 m spatial resolution [34], as shown in Table 1. The cloud free
image was automatically atmospherically corrected and orthorectified using the Sentinel Application
Platform (SNAP) software package provided by ESA. After atmospheric correction, all the image
bands were cubically resampled to 20 m spatial resolution and layer stacked to one file. Since bands 1,
9, and 10 were designed for atmospheric correction, they were excluded from lithological classification
in this study.

Table 1. Description of the Sentinel-2A, operational land imager (OLI), and ASTER sensors.

Sentinel-2A OLI ASTER

Band Central
Wavelength (nm)

Spatial
Resolution (m) Band Central

Wavelength (nm)
Spatial

Resolution (m) Band Central
Wavelength (nm)

Spatial
Resolution (m)

1 0.4430 60 1 0.4430

30

1 0.5560

15
2 0.4900

10
2 0.4826 2 0.6610

3 0.5600 3 0.5613 3N 0.8070
4 0.6650 4 0.6546 3B 0.8070
5 0.7050

20
5 0.8646 4 1.6560

30

6 0.7400 6 1.6090 5 2.1670
7 0.7830 7 2.2010 6 2.2090
8 0.8420 10 8 0.5917 15 7 2.2620

8A 0.8650 20
9 1.3730 30

8 2.3360
9 0.9450

60
9 2.4000

10 1.3750
10 10.9000

100

10 8.2910

90
11 1.6100

20

11 8.6340

12 2.1900 11 12.0000
12 9.0750
13 10.6570
14 11.3180

As an advanced multispectral sensor launched onboard Terra spacecraft in December 1999,
ASTER covers a broad range of spectral region with 14 spectral bands, including three VNIR bands
with 15 m spatial resolution, six SWIR bands with 30 m spatial resolution, and five TIR bands with 90 m
spatial resolution. In addition, one more telescope is used to see backward in the near infrared spectral
band (Band 3B) for stereoscopic capability [35] (Table 1). The level-1B ASTER data employed in this
research were acquired on 14 August 2002. The data without cloud were atmospherically corrected and

https://glovis.usgs.gov/
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calibrated using the ENVI 5.4 software package as follows. The VNIR and SWIR bands of the ASTER
data were cubically resampled to 30 m spatial resolution, layer stacked to construct a single 9-band
file, and atmospherically corrected using the FLAASH (Fast Line of Sight Atmospherics Analysis of
Hypercubes) module, to eliminate the effects caused by water vapor and cloud and to convert the
digital counts to surface reflectance. A cross-track illumination correction was applied to the ASTER
images to remove the effects of energy overspill from band 4 into bands 5 to 9.

As the latest mission in Landsat series launched by NASA on 11 February 2013, Landsat 8 consists
of a two-sensor payload, the OLI, and the TIRS (thermal infrared sensor). The OLI contains two more
bands than Landsat 7 (ETM+), including a new deep blue band for coastal/aerosol observation and
an SWIR band for cirrus detection (Table 1). In this study, one OLI scene acquired on 5 December 2017,
was selected for lithological discrimination. The VNIR and SWIR bands of OLI were layer stacked to
form a single file with 30 m spatial resolution. A radiation correction and an atmospherical correction
by FLAASH were successively applied to the OLI/Landat-8 scene to eliminate the effects caused
by atmosphere.

The atmospherically corrected Sentinel-2A, OLI and ASTER imagery was georeferenced to the
UTM (Universal Transverse Mercator projection) coordinate system in Zone 47 north, using ground
control points chosen from the DEM and high-resolution orthorectified Google Earth imagery.
The information about the three multispectral images employed in this study is listed in Table 2.
Although these images were acquired in different seasons, maximum normalized different vegetation
index (NDVI) of each image is lower than 0.07, indicating that the study area is an ideal exposed
region with almost no vegetation cover for lithological classification. In addition, there are barely snow
or cloud covered regions in the study area, as shown in Table 2. Therefore, there are no vegetation,
cloud or snow effects in this study.

Table 2. Multispectral image used in this study.

Data Acquisition Date Season Cloud/Snow (%) NDVI

OLI 2017/12/05 Winter 5.2/0.0 <0.01
ASTER 2002/08/14 Summer 0.0/0.0 <0.07

Sentinel-2A 2017/05/09 Spring <1/0.0 <0.07

2.2.2. Lithological Mapping

Sentinel-2A data contains higher spectral and spatial resolution in the VNIR to SWIR range
than common multispectral data, such as OLI and ASTER data. To find the optimal classifier for the
classification assessment of Sentinel-2A data in the Shibanjing ophiolite, five typical machine learning
techniques, ANN, k-NN, MLC, RFC, and SVM, were applied for lithological mapping.

Different data combinations were designed for the assessment of multispectral data from
Sentinel-2A for lithological classification, as listed in Table 3. Firstly, considering DEM data can provide
geomorphological and subsurface geological information [36], data integration of Sentinel-2A and
a DEM (Sentinel-2A + DEM) were compared with Sentinel-2A data alone for lithological classification,
for the purpose of evaluating the importance of DEM data for lithological classification in this study.
Secondly, three datasets (OLI + DEM, Sentinel-2A + DEM, and ASTER + DEM) were employed in
turn for lithological discrimination, in order to compare the capability of Sentinel-2A for lithological
classification with other data. Thirdly, with the band configurations of OLI, Sentinel-2A, and ASTER in
the VNIR and SWIR range, the data combinations OLI + ASTER or Sentinel-2A + ASTER are expected
to provide more diagnostic spectral features of lithological units than the OLI, ASTER, or Sentinel-2A
data alone. Therefore, the OLI + ASTER + DEM and Sentinel-2A + ASTER + DEM datasets were
compared for lithological classification. After that, two classification results were compared to evaluate
whether OLI could be substituted by Sentinel-2A. Figure 2 illustrates the above process in a simplified
sequence flow diagram.
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Table 3. Datasets for lithological mapping in this study.

Dataset Abbreviation Band Number Spatial Resolution (m)

OLI + DEM OLI_DEM 8 30
ASTER + DEM AST_DEM 10 30

Sentinel-2A S2A 10 20
Sentinel-2A + DEM S2A_DEM 11 20

OLI + ASTER + DEM OLI_AST_DEM 18 30
Sentinel-2A + ASTER + DEM S2A_AST_DEM 20 20
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2.2.3. Training and Testing Samples

The geological map depicted in Figure 1c was used as a reference for the selection of the training
and testing samples. According to the texture characteristics and distributions of the fifteen lithological
units (except the quartz, because of its small area) shown in Figure 1c, the training dataset was
carefully selected manually by visual interpretation. A total of 12,000 pixels of ASTER data for the
fifteen lithological units were selected, which represents approximately 1.9% of the entire study area.
The training datasets were directly utilized by the ANN, k-NN, MLC, RFC, and SVM classifiers.
Moreover, 1200 ground truth points randomly distributed in the study area were selected as a testing
dataset according to the geological map (Figure 1c). The areas, training samples, and testing samples
of lithological units are listed in Table 4.
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Table 4. The lithological unit areas, training and testing samples for lithological units.

Lithological Unit Area (km2) Training Sample (Pixels of ASTER) Testing Sample (Pixels)

Alluvium deposits (Q) 35.62 2580 306
Schist and metasandstone with marble (Oby) 4.96 491 43

Carbonatite with sandstone (Ox.d) 26.36 2504 227
Quartz sandstone and siltite (Ox.Q) 19.25 1350 164

Basic andesite and tuff (Oh.B) 15.3 960 131
Granodiorite (Dgb) 6.41 565 52
Quartz diorite (Sqb) 4.01 341 34

Basic and ultrabasic rocks (Σε) 1.60 184 14
Argillaceous matrix (Omss) 3.93 310 35

Basalt (βε) 7.42 834 64
Ultramafic rock (oψε) 4.70 572 40

Marble (mb) 5.19 536 45
Dolomite (dol) 0.32 87 10
Argillite (mss) 1.18 245 10
Limestone (ls) 2.89 441 25

2.3. Machine Learning Methods

Lithological classification was performed using the five machine learning methods ANN, k-NN,
MLC, RFC, and SVM. In the following subsections, a brief explanation of the five algorithms
is provided.

2.3.1. Artificial Neural Network

As a typical machine learning method, the artificial neural network classifier, also known as
neural network (NN), is widely employed in pattern recognition and the classification of image data.
The NN classifier is an artificial intelligence technique, which attempts to simulate the way in which
humans classify patterns, learn tasks, and solve problems [37]. It is made up of a number of simple
processing units called nodes or neurons [38]. The nodes are linked by weighted connections according
to a specified architecture. There are three layers in the ANN classifier, an input layer, a middle layer
(i.e., hidden layer), and an output layer. Each layer of the ANN classifier consists of one or more nodes,
which are adjusted through the iterative experiment to obtain the most reasonable output [37].

In this study, a multi-layer feed-forward ANN method was employed with the S2A_DEM dataset
for lithological classification in the ENVI 5.4 software. The ANN classifier used a logistic activation
function, the training threshold contribution value was 0.9, the training rate was 0.2, the training
momentum was 0.9, and the training root mean square (RMS) exit criterion was 0.1.

2.3.2. k-Nearest Neighbors

The nonlinear classifier k-nearest neighbors (k-NN) is one of the most common machine learning
techniques, and a favorite classification algorithm in statistical applications [39]. As a non-parametric
algorithm, k-NN employs an instance-based leaning algorithm, or a “lazy learning,” to find a group
of K samples nearest to unknown samples [40]. K is a key parameter and plays a significant role in
the performance of the k-NN classifier [40,41]. In this study, the optimal value of k was 5. The k-NN
classifier was utilized for lithological classification using the S2A_DEM dataset based on C++ language.

2.3.3. Maximum Likelihood Classifier

The maximum likelihood classification (MLC) is one of the most common supervised classifiers
in remote sensing [42–44], and was proposed firstly by German mathematician C.F. Gauss in 1821 for
normal distribution. This method is based on the hypothesis that the probability density function for
each class is multivariate, and an unknown pixel is assigned to a class with the highest probability of
belonging [42,45]. As a common multivariate statistical classification method, MLC, is embedded in
many image processing software packages, such as PCI, ERDAS, and ENVI. In this study, this classifier
was applied to varied datasets for lithological classification using ENVI 5.4 software provided by
Exelis Visual Information Solutions in USA.
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2.3.4. Support Vector Machine

The support vector machine (SVM) is one of the most widely used supervised machine learning
algorithms; it is based on statistical learning theory [25,43,46,47], which was proposed by Vapnik and
Chervonenkis in 1963 [48]. The classification mechanism of SVM is to find a hyperplane to classify
the given dataset in an n-dimensional space. One reasonable choice as the best hyperplane is the one
that represents the largest separation between two classes. Target detection using SVM method can be
simplified as a dichotomy. In a higher dimensional space, the SVM method needs an optimal linear
hyperplane with the maximum margin for separating the given dataset. As the given data in a larger
dimensional space can be complex, the kernel function is introduced to address this issue [49,50]:

K
(

xi, xj
)
= Φ(xi)

TΦ
(
xj
)

(1)

As proposed by previous research, there are several common kernel functions for the SVM
method, such as linear, polynomial, radial basis function, and sigmoid [41].

Being one of the widely applied multivariate statistical learning methods, SVM has been
embedded in many software packages. In this study, the one against one support vector machine
(OAO-SVM) classifier accomplished in C++ was employed for lithological mapping. The radial basis
function was selected as the kernel type, the penalty parameter was set to 100, and the gamma in
kernel function was the inverse of the band number of the S2A_DEM dataset, namely, 0.091 [51].

2.3.5. Random Forest Classifier

The random forest classifier (RFC) has become a favorable and efficient classifier for scientists
in many fields, such as geology and ecology [52–54]. This method is a supervised machine learning
approach that contains multiple decision trees and combines the predictions from all trees [52].
Each decision tree returns a classification, and a random forest decides which class each observation is
attributed to, based on majority rule, that the class that has the most votes across all trees is determined
as the final class [55].

To implement the RFC method, two parameters need to be set up: the number of trees, and the
number of features in each split [56]. In the present work, the number of trees is 1000, and the number
of features in each split is 30. The RFC method was performed in ArcGIS 10.4 software.

3. Results

The classification accuracy of the lithological map obtained from each classifier and dataset
described above was assessed using the overall accuracy, average accuracy (the average of user’s
and producer’s accuracies), and Kappa coefficient, obtained from the confusion matrix. The overall
accuracy is calculated as the total number of correctly classified pixels (diagonal elements of the
confusion matrix) divided by the total number of test pixels. The producer’s accuracy is the probability
that the classifier has correctly labeled an image pixel, and the user’s accuracy indicates the probability
that the classifier has correctly labeled a pixel into its pre-given class. The Kappa coefficient is a measure
of agreement between the classified map and the reference data. The Kappa coefficient is different
from the overall accuracy and takes into account the entire contingency matrix, which is designed to
measure the consistency of the results [57]. The assessment was to estimate the classification results
obtained from different methods and datasets, evaluating the capability of classification techniques for
lithological mapping in the study area.

3.1. Lithological Discrimination Using Machine Learning Methods

Lithological classification of the S2A_DEM dataset using the different machine learning methods
of ANN, k-NN, MLC, RFC, and SVM are displayed in Figure 3. The lithological results obtained using
k-NN show more noise than other results, as illustrated in Figure 3. The mapping results of granodiorite
and quartz diorite using k-NN are largely misclassified into surrounding lithological units. In addition,
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the dolomite is completely misclassified into basalt by the ANN method, as shown in Figure 3c.
The lithological units extracted using the methods of SVM and MLC are more precise than the results
obtained from the ANN and SVM techniques, according to the geological map (Figure 1c). However,
due to their similar compositions and adjacent positions, it is difficult to distinguish carbonatite with
sandstone from quartz sandstone and siltite using these five machine learning methods.
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Figure 3. Lithological classification of the S2A_DEM dataset using machine learning methods.
(a) k-nearest neighbor (k-NN); (b) random forest classifier (RFC); (c) artificial neural network (ANN);
(d) support vector machine (SVM); (e) maximum likelihood classification (MLC).

The classification accuracies and Kappa coefficients of mapping results of S2A_DEM using
different machine learning methods are displayed in Figure 4. The classification using the k-NN
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method shows the lowest accuracies and Kappa coefficient in Figure 4, in keeping with Figure 3.
The average accuracies of most lithological units obtained by k-NN are lower than 70%. The ANN and
RFC methods show similar overall accuracies and Kappa coefficients, which are lower than those of
the MLC and SVM techniques. Moreover, the classification of dolomite obtained by the ANN method
is 0%, and the accuracies of more than 10 lithological units extracted by ANN and RFC were lower than
70%, indicating that these two methods (ANN and RFC) are not suitable for lithological discrimination
in the Shibanjing ophiolite complex. As shown in Figures 3 and 4, the two statistical learning methods
of SVM and MLC yielded quite good performances in lithological classification. Due to its slightly
higher overall accuracy, the MLC approach was employed to evaluate the potential of Sentinel-2A
imagery to discriminate lithological units in the following research.
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coefficient of the S2A_DEM dataset using different machine learning methods.

3.2. Lithological Discrimination Using S2A and S2A_DEM Datasets

The classification results of two datasets, S2A and S2A_DEM, using MLC technique, are displayed
in Figure 5. As shown in Figure 5a, there is more noise for the S2A dataset in the lithological
classification. Affected by the extensive weathering and complex terrain, the alluvium deposits were
largely misclassified into surrounding lithological units. Moreover, with the influence of topography,
other lithological units are also misclassified into the alluvium deposits, as displayed in Figure 5a.
Figure 5b is the partial magnification of the classification of Sentinel-2A, which clearly shows the
misclassified region. By combining DEM data with the Sentinel-2A image, the mapping results are
dramatically improved, as shown in Figure 5c. The alluvium deposits are effectively differentiated
from surrounding lithological units, and most noise is eliminated.
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Figure 5. Lithological classification of different datasets using the MLC method. (a) S2A, (b) partial
magnification of (a), (c) S2A_DEM, and (d) partial magnification of (c).

Figure 6 shows the average accuracies of each lithological unit based on the S2A and S2A_DEM
datasets using the MLC technique. As with Figure 5, the classification accuracies of the S2A_DEM
dataset are all higher than those of the single Sentinel-2A data, demonstrating the significance of DEM
data for lithological mapping. The overall accuracy of the classification using the S2A_DEM dataset is
74.5%, which is 8.25% higher than that of the S2A dataset, as shown in Figure 7.
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Figure 6. The lithological classification accuracies of the S2A and S2A_DEM datasets using the
MLC method.
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3.3. Lithological Discrimination Using OLI_DEM, AST_DEM and S2A_DEM Datasets

Lithological classifications of the OLI_DEM and AST_DEM datasets using the MLC method
are shown in Figure 8a,b, respectively. In comparison with the lithological results of the S2A_DEM
dataset (Figure 3e) and the geological map (Figure 1c), Sentinel-2A shows a better capability for
lithological discrimination than ASTER and OLI, especially in identifying basaltic andesite and tuff,
and argillaceous matrix.
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Figure 8. MLC-generated lithological classifications of two different datasets. (a) OLI_DEM; and
(b) AST_DEM.

As displayed in Figure 9, the OLI_DEM dataset shows the worst capability for lithological
classification among the three datasets. The overall accuracies of the OLI_DEM dataset (69.42%) is also
lower than those of the AST_DEM (72.0%) and S2A_DEM (74.5%), as shown in Figure 7. As illustrated
in Figures 6–8, the multispectral Sentinel-2A shows better capability for lithological classification than
OLI and ASTER in the Shibanjing ophiolite complex.
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Figure 9. The classification accuracies of datasets of OLI + DEM and AST + DEM using the
MLC method.

3.4. Lithological Discrimination Using OLI_AST_DEM and S2A_AST_DEM Datasets

The OLI_AST_DEM and S2A_AST_DEM datasets were used for classification using the MLC
method, and the results are shown in Figure 10. The results using the S2A_AST_DEM dataset,
which classified the granodiorite, quartz diorite (Figure 10c–e), and basalt (Figure 10f–h) better,
show a higher consistency with the geological map than the results obtained from the OLI_AST_DEM
dataset. In addition, the classification results obtained from dataset S2A_AST_DEM show clearer
boundaries between different rocks because of the higher spatial resolution of dataset S2A_AST_DEM.
Moreover, there are fewer misclassified cases in the classification map of the S2A_AST_DEM dataset.
The alluvium deposits were ideally recognized in Figure 10b.

The average accuracies of lithological classification by the data combinations of OLI + ASTER +
DEM and Sentinel-2A + ASTER + DEM using the MLC method are displayed in Figure 11. Most of the
lithological units obtained from the data combination of Sentinel-2A + ASTER + DEM have higher
accuracies than those extracted from the OLI + ASTER + DEM dataset. The overall accuracy of
lithological classification using the S2A_AST_DEM dataset is 77.83%, which is 1.83% higher than that
of the OLI_AST_DEM dataset, and higher than the accuracies without incorporating ASTER dataset,
as shown in Figure 7. The comparison between different datasets using the MLC method indicates
that the data combination of Sentinel-2A + ASTER + DEM shows the greatest potential to classify the
lithological units in the Shibanjing ophiolite complex.
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(h) partial magnification of basalt in geological map.
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4. Discussion

The machine learning methods are evaluated for lithological classification in the barely vegetation
covered and well-exposed ophiolite complex using the lithological mapping results. It is shown that
the MLC method yielded similar results to the SVM technique, better than the supervised k-NN, ANN,
and RFC methods, which matches the geological map well in most of the lithological units in the study
area, except for the quartz vein. However, although the supervised technique k-NN has been one of
the foremost techniques for classification in many fields [41,58], the lithological classification using
the k-NN method in the Shibanjing ophiolite complex shows somewhat lower consistency with the
geological map, especially in quartz diorite, basic, and ultrabasic rock, ultramafic rock, and limestone.
The classified results using the k-NN method were greatly affected by the terrain, making it difficult
to differentiate alluvium deposits from other lithological units. SVM has a lower requirement for
the distribution of data than MLC, whereas the input data of MLC need to satisfy the assumption of
normality. With the normally distributed samples in the Shibanjing ophiolite complex, the classification
using MLC shows a higher overall accuracy than that of SVM.

In addition, an analysis of variance was conducted to compare the effect of machine learning
methods for lithological classification using the non-parametric McNemar test. The McNemar test is
a chi-squared statistic with 1 degree of freedom, which is used on nominal data to determine whether
the row and column marginal frequencies are equal [59]. The McNemar test is compared to the critical
value at a particular significance level, e.g., 5%, to test if there are significant differences in the expected
values of two results [60]. The MLC method shows statistically significant differences with respect to
k-NN, ANN, and RFC techniques at the 95% confidence interval, as shown in Table 5. MLC and SVM
have the similar performance for lithological classification, and there was no substantial difference
in their performances at the 95% confidence interval. Therefore, the MLC and SVM methods were
proven to be more capable for lithological mapping in the Shibanjing ophiolite complex than the other
three techniques. However, the optimal classifier for image classification may be different in other
study areas.

Table 5. McNemar’s test for machine learning methods (x2 = 3.841, p = 0.05).

MLC SVM RFC ANN k-NN

MLC \ Not significant Significant Significant Significant
SVM 3.814 \ Significant Significant Significant
RFC 31.696 20.280 \ Not significant Significant

ANN 70.000 38.291 2.510 \ Significant
k-NN 63.751 52.267 22.112 16.005 \

Different rock units have different susceptibilities to weathering, because of their diverse
mineralogical composition, texture, age and rate of erosion, which lead to different topographic
expressions in the field [22]. For example, alluvium deposits generally form flatlands, whereas granitic
plutons form high hills, because of their high resistance to erosion. The DEM data, obtained from
satellite, could be used to quantify the topographical expressions of rock units. In this research,
the overall accuracy of mapping results obtained from the S2A_DEM dataset is 74.5%, approximately
8% higher than the results obtained from the Sentinel-2A image alone. The dramatic improvements of
classification obtained by incorporating DEM data are mainly focused on schist and metasandstone
with marble (18.11%), quartz diorite (18.95%), dolomite (25%), and argillite (16.94%), as displayed in
Figures 4 and 5.

Figure 12 reveals the terrain characteristics of the study area. From a geomorphological point
of view, the alluvium deposits show a significant difference from the surrounding lithological units,
which makes a great improvement in classification, as displayed in Figures 4 and 5. Similarly,
the significantly increased accuracies of quartz diorite, basalt and marble are all due to the input
of DEM data. Because of the small outcrops of dolomite, argillite and limestone in the study area,
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a small improvement in classification could lead to a significant increase in accuracy. Therefore,
the DEM data play an essential role in lithological classification as it quantifies topographic features,
which is a good indicator of rock types.
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By comparing the three different datasets OLI_DEM, AST_DEM, and S2A_DEM for lithological
classification, the capability of Sentinel-2A for lithological mapping in the semi-arid and arid regions,
such as the Shibanjing ophiolite complex, was evaluated. As part of the data continuity of Landsat
and SPOT, Sentinel-2A has higher spatial and spectral resolution in VNIR range than ASTER and OLI,
especially in the ferric iron (Fe3+) diagnostic absorption features, approximately 0.65 and 0.87 µm [61],
which makes it more sensitive for ultramafic rocks and andesite in the present study. As shown in the
classification accuracies in Figure 8, the accuracy of ultramafic rocks in the ophiolite complex obtained
from the S2A_DEM dataset is approximately 7.9% and 8.5% higher than those of OLI and ASTER,
respectively. Moreover, due to the lower spectral resolution of OLI compared to Sentinel-2A in the
VNIR and SWIR range, the fifteen lithological accuracies of the OLI_DEM dataset are all lower than
those of the S2A_DEM dataset.

However, with the higher spatial resolution of ASTER compared to Sentinel-2A in the SWIR
range, some of the classification accuracies of lithological units obtained from the AST_DEM dataset
are higher than those extracted from the S2A_DEM dataset. For example, with the diagnostic spectral
features of calcite in the ASTER band 8 [62,63], the classified marble using ASTER shows a higher
accuracy than that of Sentinel-2A. In addition, with the significant SWIR absorption features of silicate
minerals in ASTER bandpasses [64], ASTER has a better capability for classifying sandstones and
quartz diorite than Sentinel-2A, as illustrated in Figures 4 and 5.

Through the comparison of lithological classification using different multispectral data, it can
be concluded that, due to its higher bandpasses in the VNIR and SWIR range, the multispectral
Sentinel-2A has a greater potential for lithological mapping than OLI. In addition, because of their
respective higher spectral resolutions in VNIR and SWIR, Sentinel-2A shows a better capability for
mapping ferric rocks, whereas ASTER has a better ability to classify rocks that contain carbonate,
hydrate, and hydroxyl-bearing sulfate, silicate, and other minerals that possess SWIR absorption
features. In the present research, due to the large outcrop of alluvium deposits and ophiolitic rocks,
the overall accuracy of the S2A_DEM dataset is 74.5%, 2.5% higher than that of the AST_DEM dataset.
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The McNemar’s test for all datasets employed in this study were listed in Table 6. The S2A_DEM
dataset shows statistically significant differences with respect to the OLI_DEM and AST_DEM datasets
in the ophiolite complex, demonstrating the capability of Sentinel-2A for lithological classification.
In addition, the data combination S2A_AST_DEM show statistically significant differences with the five
other datasets, indicating the best capability of S2A_AST_DEM dataset for lithological classification in
the study area.

Table 6. McNemar’s test for datasets (x2 = 3.841, p = 0.05).

S2A OLI_DEM AST_DEM S2A_DEM OLI_AST_DEM S2A_AST_DEM

S2A \ S S S S S
OLI_DEM 22.563 \ S S S S
AST_DEM 21.740 5.085 \ S S S
S2A_DEM 99.000 61.000 5.114 \ S S

OLI_AST_DEM 117.000 79.000 14.222 8.100 \ S
S2A_AST_DEM 137.028 101.000 28.824 29.630 16.133 \

Considering their respective spectral advantages in the VNIR and SWIR ranges, the integration
of OLI or Sentinel-2A with ASTER could provide more comprehensive spectral information for
lithological classification. The overall accuracy obtained from these two data combinations is the
highest, and the classification has the best performance among all the cases. Moreover, the contrast
between the mapping results extracted from these two data combinations indicated that Sentinel-2A
could replace OLI, which, combined with ASTER, could provide better capability for lithological
classification result in this study area.

The overall accuracies of lithological classification using different methods and datasets from
last few years are listed in Table 7. They were compared with the overall accuracies of lithological
classification in the present research to assess the performance of data combinations for lithological
discrimination in the Shibanjing ophiolite complex. The overall accuracies for lithological classification,
listed in Table 7, range from 73% to more than 95%. However, the great accuracies were generally
obtained from a dataset that had been processed by conventional image processing methods, instead
of the original dataset. The conventional image processing methods, such as principal component
analysis (PCA) and minimum noise fraction (MNF), could increase the quality of the input dataset to
provide better classification results than the original data [65]. For the classification obtained from the
original dataset, the overall accuracies range between 76% and 95%, and half of these were extracted
from hyperspectral imagery. The overall accuracy obtained from S2A_AST_DEM is 77.83%, lower than
those from [66] and [51]. Nevertheless, the number of lithological classes in this study is fifteen,
which is more than the classes from [66] (seven classes) and [51] (nine classes).

Multispectral and hyperspectral data are widely utilized for lithological discrimination and
classification. However, due to the high cost and complex processing, it is more difficult to obtain
appropriate hyperspectral data for geological investigation. In addition, it is more common to combine
multispectral data with DEM, textual, and feature data for lithological classification. The research
using the combination of two types of multispectral imagery for lithological classification has rarely
appeared in previous studies.

The objective of this study was to evaluate the potential of the new multispectral data from
Sentinel-2A for lithological classification in semi-arid and arid regions, such as the Shibanjing ophiolite
complex in Inner Mongolia, China. The machine learning methods, utilized in the study, are all
conventional classifiers and just tools for data assessment. In addition, with the different abilities
to recognize lithological units of ASTER and Sentinel-2A data, it may lead to different results when
testing on another area.
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Table 7. Results from lithological classification using different remote sensing datasets and classifiers
from the last few years.

Data Ancillary Data Sensor Type Band Layers Method Class
Number

Overall
Accuracy

Original Image
(Y/N) Reference

TM GLCM 1-based
Textural feature Multi 2 9 MLC; KBS 3 16 83.2% N [23]

TM Multi 4 ANN 7 87.7% Y [66]

ASTER DEM Multi 33 SVM 7 92.34% N [22]

ASTER Geomorphic
feature, texture Multi 21 SVM 9 79.3% Y [51]

Hyperion Hyper 4 158 SAM 9 76.12% Y [1]

LiDAR ATM 5 LiDAR/Multi 5 OBIA 6 4 73.5% N [67]

OLI
Textural

vectors/J-M 7

distance
Multi 14 SVM 4 83.73% N [68]

ASTER Multi 37 RFC 8 81.52% N [2]

ASTER Multi 9 ANN 10 79.8% N [65]

Hymap Hyper 126

Spectral
feature

extraction;
SVM

6 >70% N [25]

HyspIRI 8 Hyper 202 GA-SAM 9 15 >95% Y [69]

1 Grey-level co-occurrence matrix; 2 Multispectral; 3 Knowledge-based systems; 4 Hyperspectral; 5 Airborne
Thematic Mapper; 6 Object-based image analysis; 7 Jeffries–Matusita; 8 Hyperspectral and Infrared Imager; 9 Genetic
algorithm coupled with the Spectral Angle Mapper.

5. Conclusions

Through a comprehensive comparison, the machine learning method MLC was chosen as the
classifier for the assessment of multispectral Sentinel-2A data for lithological mapping in the Shibanjing
ophiolite complex in the Beishan orogenic belt, Inner Mongolia, China. Various data combinations
of OLI, ASTER, Sentinel-2A, and DEM data were compared to evaluate the capability of Sentinel-2A
for lithological classification using the MLC method. According to the comparisons and discussions,
the following points are concluded:

(1) The MLC and SVM machine learning methods are equally applicable for lithological classification
in the Shibanjing ophiolite complex and better than the techniques of k-NN, ANN, and RFC using
Sentinel-2A data.

(2) Multispectral Sentinel-2A data have greater potential for lithological classification than ASTER
and OLI in this research, and the DEM data also play a significant role in lithological mapping.

(3) OLI could be substituted by Sentinel-2A, which when combined with ASTER, exhibits better
performance in lithological classification in semi-arid and arid regions, such as the Shibanjing
ophiolite complex.

Lithological classification is an important application in geological remote sensing, and the
multispectral data Sentinel-2A is demonstrated to be efficient for lithological discrimination. In our
future research, we plan to use image processing methods (e.g., PCA, MNF) and morphometric variables
(e.g., slope, curvature, roughness) to improve the lithological classification. In addition, to expand the
applicability of classification in geological investigation, we plan to study the requirements for accurate
lithological classification using optical imagery in covered regions (e.g., vegetation or regolith covers).
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