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Abstract: Ocean colour remote sensing is used as a tool to detect phytoplankton size classes (PSCs).
In this study, the Medium Resolution Imaging Spectrometer (MERIS), Moderate Resolution Imaging
Spectroradiometer (MODIS), and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) phytoplankton
size classes (PSCs) products were compared with in-situ High Performance Liquid Chromatography
(HPLC) data for the South China Sea (SCS), collected from August 2006 to September 2011.
Four algorithms were evaluated to determine their ability to detect three phytoplankton size classes.
Chlorophyll-a (Chl-a) and absorption spectra of phytoplankton (aph(λ)) were also measured to
help understand PSC’s algorithm performance. Results show that the three abundance-based
approaches performed better than the inherent optical property (IOP)-based approach in the SCS.
The size detection of microplankton and picoplankton was generally better than that of nanoplankton.
A three-component model was recommended to produce maps of surface PSCs in the SCS. For the
IOP-based approach, satellite retrievals of inherent optical properties and the PSCs algorithm both
have impacts on inversion accuracy. However, for abundance-based approaches, the selection of the
PSCs algorithm seems to be more critical, owing to low uncertainty in satellite Chl-a input data

Keywords: phytoplankton size classes (PSCs); comparison; South China Sea; ocean colour;
remote sensing

1. Introduction

Marine phytoplankton communities play an important role in the Earth’s carbon cycle [1–3],
and they often consist of hundreds of species, making their identification and understanding
difficult [4]. In terms of primary production and the global carbon cycle, cell size, referred to here as
phytoplankton size classes (PSCs), has been introduced to describe phytoplankton communities,
because phytoplankton size is easier to determine and also has significant links to the marine
ecosystem [4–6]. According to a conceptual model, phytoplankton can be partitioned into three
size classes: picoplankton (<2 µm), nanoplankton (2–20 µm), and microplankton (>20 µm) [7].
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PSCs measurements in situ can be determined by a variety of methods, including microscopy,
flow-cytometry and High-Performance Liquid Chromatography (HPLC). However, the methods
enumerated above cannot currently be applied to assess PSCs on a basin scale. Satellite sensors now
routinely provide synoptic and frequent global ocean-colour products for the ocean surface. Long series,
high-quality global ocean-colour products can be extensively used in PSCs studies [8,9]. In addition,
a number of satellite algorithms have been developed for estimating the phytoplankton community
structure, some of which provide size structure estimations of phytoplankton. The algorithms for
assessing PSCs from remote sensing data can be mainly categorized into abundance-based and inherent
optical property (IOP)-based approaches [10–12].

Inter-comparing and validating different PSCs algorithms using in situ data is also a critical
issue with regard to improving synoptic estimations of the three size classes. Brewin et al. [13]
conducted the first systematic inter-comparison of bio-optical algorithms for detecting dominant
PSCs from satellite remote sensing in oceans, and their results indicated that individual model
performance varies according to PSCs, input satellite data sources and in situ validation data types.
With the increasing publication of new algorithms, continuing international inter-comparison efforts
are currently underway [5,12–16]. More efforts are needed to focus on gathering in situ data over larger
spatial scales and to clarify the uncertainty in regard to using bio-optics proxies to infer phytoplankton
size [10,12,17].

The South China Sea (SCS) is the largest marginal sea of the Western Pacific Ocean, with an area of
about 3.5 million km2. The East Asian monsoon plays an important role in the hydrological features and
upper layer circulations. Run-off from the rivers carries large quantities of fresh water and dissolved
nutrients into the SCS. These special oceanographic conditions have a huge impact on the dynamics
of the ecosystem and its bio-optical properties [18–20]. It is necessary to assess the applicability and
uncertainties of different ocean colour algorithms when satellite products are used for the validation or
assimilation of data into regional ecosystem models [10,12]. Satellite-derived chlorophyll-a (Chl-a) and
radiometric products have been evaluated for the open ocean and coastal waters in this area [21–23];
however, less systematic studies have been conducted for PSCs validation. In this study, using
a high-quality in-situ dataset, the uncertainties of SeaWiFS-, MODIS-, and MERIS-derived PSCs
products were evaluated and compared for data collection in the SCS. In addition, the analysis of
uncertainties, as well as the inter-comparison of different bio-optical techniques were also carried out.

2. Materials and Methods

2.1. In-Situ Data

Field data were collected during a number of cruises in coastal and offshore waters from 2006 to
2011 (Figure 1). These cruises included the following: (1) six cruises in the Northern part of the South
China Sea (NSCS) (August–September 2006, 2007, 2008, 2009, 2010 and 2011); and (2) one cruise in
the SCS (April–May 2010). During each SCS and NSCS cruise, water samples from the surface were
collected using Niskin bottles.
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Figure 1. Map of the study area and locations of the in situ water sampling sites in the South China Sea.

2.1.1. High Performance Liquid Chromatography Datasets

High Performance Liquid Chromatography (HPLC) pigment datasets were collected during SCS
and NSCS cruises from 2006 to 2011, and they consisted of 410 measurements acquired from multiple
locations which ensured high variability in phytoplankton pigments. Water samples (0.5–3 L) from
certain depths were filtered onto a 25-mm glass fiber filter (Whatman GF/F). Following filtration,
the samples were stored in liquid nitrogen. Fifteen pigments were quantified, and the diagnostic
pigments include fucoxanthin, peridinin, 19′-hexanoyloxyfucoxanthin, 19′-butanoyloxyfucoxanthin,
alloxanthin, chlorophyll-b and divinyl chlorophyll-b and zeaxanthin. Total chlorophyll a (Chl-a) is the
sum of chlorophyll a, divinyl chlorophyll a and chlorophyllide a. Only the samples taken in the top
10 m of the water column were selected, and the quality assurance of pigment data was performed
according to [24], ultimately yielding 233 surface HPLC samples. The fractions [F] of picoplankton
(Fp), nanoplankton (Fn), and microplankton (Fm) were calculated from HPLC measurements using
diagnostic pigment analysis (DPA) [5,25]. The fractions [F] of each size class can be inferred as

C =
7

∑
i=1

WiPi (1)

Fm =

2
∑

i=1
WiPi

C
(2)

Fn =

5
∑

i=3
WiPi

C
(3)

Fp =

7
∑

i=6
WiPi

C
(4)

where [W] = {1.41; 1.41; 1.27; 0.35; 0.6; 1.01; 0.86} and [P] = {fucoxanthin; peridinin;
19′-hexanoyloxyfucoxanthin; 19′-butanoyloxyfucoxanthin; alloxanthin; chlorophyll-b and divinyl
chlorophyll-b; zeaxanthin}. Note that 19′-hexanoyloxyfucoxanthin signal was probably attributable to
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pico-eukaryotes rather than to nanoplankton, and thus diagnostic pigment correction was performed
according to [26], so that for C < 0.08, Equations (3) and (4) are adjusted as follows:

Fn =
12.5CW3P3

C
+

5
∑

i=4
WiPi

C
(5)

Fp =
(−12.5C + 1)W3P3

C
+

7
∑

i=6
WiPi

C
(6)

2.1.2. Spectral Absorption of Phytoplankton

For phytoplankton absorption measurements, water samples (0.5–3 L) from certain depths
were filtered onto a 25-mm glass fiber filter (Whatman GF/F) at a low vacuum to record the
particulate absorption measurements. Filters were kept in liquid nitrogen before analysis. In the
laboratory, we measured the absorption spectra of the particles (ap(λ)) using an ultraviolet-visible
spectrophotometer (Shimadzu, UV-2550) equipped with an integrating sphere (T method, measuring
the transmittance of a sample filter relative to a blank reference filter [27]). Spectra were acquired
between 240 and 800 nm with a 1-nm step. Then, phytoplankton pigments were removed from the
filter using a methanol treatment for 90–180 min [28]. The sample filter was rescanned to measure the
non-algal absorption spectra (ad(λ)) using the same method. The absorption spectra of aph(λ) were
determined using the difference between ap(λ) and ad(λ). All spectra were shifted to zero in the near
infrared region by subtracting the average optical density between 750 and 800 nm to minimize any
possible differences between the sample and reference filters [29]. The path-length amplification effect
was corrected in accordance with the method proposed by [30].

2.2. Satellite-Derived Data

2.2.1. Satellite Products

MODIS (Aqua), SeaWiFS, and MERIS (Reduced Resolution, RR) Level 2 (L2) data products
were downloaded from NASA’s OceanColor website (http://oceancolor.gsfc.nasa.gov/). These data
were processed by the l2gen operational software program (processing versions R2014.0, R2014.0,
and R2012.1 for MODIS, SeaWiFS, and MERIS respectively). For SeaWiFS, Global Area Coverage (GAC,
spatial resolution 4 km) data were used (Because data were available only for SeaWiFS GAC from 2007
to 2010 in the SCS). Previous studies have indicated minimal differences between the results of GAC
and MLAC (Merged Local Area Coverage) retrieval products and in situ data in the SCS [22,23].

2.2.2. Matching Procedures for Satellite and In-Situ Data

To assess the performance of PSCs algorithms, satellite products were compared to the “matching”
in-situ data. The HPLC data were matched to the closest spatial and temporal satellite pixel within
a certain threshold. The first step was to find the closest 3× 3 pixel window to the location of the in-situ
measurement within a time interval of +/−48 h. Second, pixels from windows with poor quality,
as defined by the quality control flags in the data products (i.e., problems due to clouds, stray light,
glint, atmospheric correction failure, high top-of-atmosphere radiance, low water-leaving radiance,
large solar/viewing angles, and navigation failure), were then discarded. Finally, if the percentage of
remaining pixels in each window exceeded 50%, then the pixel window was accepted for subsequent
matching analysis (for detailed matching procedures, refer to [31]). As a result, this criterion produced
48 in-situ and satellite data pairs for MODIS-Aqua, 41 pairs for MERIS, and 42 pairs for SeaWiFS GAC.

http://oceancolor.gsfc.nasa.gov/
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2.3. PSCs Algorithms

Algorithms designed to retrieve PSCs information from satellite data depend generally on either
the spectral optical properties or the abundance of phytoplankton (Chl-a). IOP-based approaches
rely on the covariation between spectral features of optical properties (absorption or backscattering)
and PSCs [6,16,32]. Abundance-based approaches rely on the observed relationships between the
trophic status of an environment and PSCs, on the premise that smaller cells are associated with
oligotrophic conditions, whereas larger cells are associated with eutrophic conditions [10,12]. In this
study, we incorporated four published PSCs satellite approaches designed for global applications
using ocean colour sensors (Table 1).

Table 1. Overview of the PSCs algorithms used in this study.

Algorithm Publication(s) Acronym Input Data Methodology

Uitz et al., (2006) Uitz2006 Chl-a, Ze, Zm Abundance-based
Brewin et al., (2010) Brewin2010 Chl-a Abundance-based
Hirata et al., (2011) Hirata2011 Chl-a Abundance-based

Roy et al., (2011, 2013) Roy2013 aph * (676) IOP-based

Note: Chl-a is the concentration of chlorophyll-a; Ze is the euphotic depth; Zm is the mixed layer depth.

2.3.1. Abundance-Based PSCs Algorithm: Uitz2006

The Uitz2006 algorithm involves dividing global oceanic waters into stratified and mixed
environments based on the ratio of the euphotic depth (Ze) to the mixed layer depth (Zm).
Given information on the surface chlorophyll-a concentration, Ze and Zm, the percentage of
the three phytoplankton size classes at a given pixel can be estimated. In this study, Ze was
inferred from a bio-optical model for light propagation [33]. Zm was extracted for the appropriate
month and geographic location from the published mixed layer depth climatology database
(http://apdrc.soest.hawaii.edu /datadoc/mld.php). In order to be consistent with [5], the fractions [F]
of each size class used here were calculated by Equations (1)–(4), and the specific parameters of PSCs
algorithms were the same as those used in ref. [5].

2.3.2. Abundance-Based PSCs Algorithm: Brewin2010

The Brewin2010 algorithm describes the exponential functions that relate Chl-a to the fractional
contribution of various PSCs. This model is based on the assumption that small cells dominate at low
Chl-a concentrations and large cells at high Chl-a concentrations. In our study, the reparameterized
three-component PSCs model using seven years of pigment measurements acquired in the SCS was
selected. For comparison, parameter values from other oceans are also provided (Table 2).

Table 2. Parameter values derived from fitting the three-component model to pigment data from the
South China Sea. For comparison, parameter values from other oceans are also provided. Cm

p,n and Cm
p

are the asymptotic maximum values for Cp,n and Cp, respectively. Sp,n and Sp are the initial slopes.

Study Regions Cm
p,n (mg m−3) Sp,n Cm

p (mg m−3) Sp

South China Sea (this study) [4] 0.953 0.984 0.256 3.535
Atlantic Ocean [26] 0.977 0.910 0.095 7.822
Indian Ocean [34] 0.937 1.033 0.170 4.804

Global [35] 0.770 1.221 0.130 6.154

2.3.3. Abundance-Based PSCs Algorithm: Hirata2011

The Hirata2011 algorithm estimates fractions of three PSCs from empirical relationships between
Chl-a and diagnostic pigments of various phytoplankton groups [14]. The model parameters are
estimated using a large database (from various sources and different regions) of HPLC measurements.
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In order to be consistent with [14], the proportion of Fuco as a diatom biomarker is corrected
(Fucocorrected = Fucooriginal − (Fuco/Hex)baseline × Hexoriginal). (Fuco/Hex)baseline was calculated
using Fuco and Hex (data set from the SCS) in the Chl-a range less than 0.25 mg m-3. After that, in situ
PSCs were defined and classified as in the Brewin2010 algorithm. The estimated PSCs can be derived
by the following equations (C is the concentration of Chl-a):

Fm = [0.912 + exp(−2.733 log10(C)) + 0.400]−1 (7)

Fp = −[0.153 + exp(1.031log10(C)− 1.558)]−1 − 1.086log10(C) + 2.995 (8)

Fn = 1− Fm − Fp (9)

2.3.4. IOP-Based PSCs Algorithm: Roy2013

The Roy2013 algorithm utilizes phytoplankton absorption at 676 nm to derive the power-law
exponent/slope of the phytoplankton size spectrum (ξ). The method relies on measurements of
two quantities of a phytoplankton sample: Chl-a and aph(676) [16]. In this study, the Chl-a products of
MERIS, MODIS and SeaWiFS were obtained using the OC4 empirical maximum band ratio algorithm.
For satellite derived aph(676), two existing IOPs algorithms were applied to assess its performance in
the SCS: (1) the Garver–Siegel–Maritorena (GSM) model [36]; and (2) the default global configuration
of the Generalized Inherent Optical Property (GIOP) model [37]. The proportions of Chl-a within any
diameter range of PSCs can be calculated as follows:

Fp =
D4−ξ−m

1 −D4−ξ−m
0

D4−ξ−m
3 −D4−ξ−m

0

(10)

Fn =
D4−ξ−m

2 −D4−ξ−m
1

D4−ξ−m
3 −D4−ξ−m

0

(11)

Fp =
D4−ξ−m

3 −D4−ξ−m
2

D4−ξ−m
3 −D4−ξ−m

0

(12)

where m = 0.06 (dimensionless), D is the cell diameter, D0 = 0.2 µm, D1 = 2 µm, D2 = 20 µm,
and D3 = 50 µm. as ξ→ (4-m); the above fractions can be approximated as:

Fp =
loge(D1/D0)

loge(D3/D0)
(13)

Fn =
loge(D2/D1)

loge(D3/D0)
(14)

Fm =
loge(D3/D2)

loge(D3/D0)
(15)

2.4. Statistical Methods

Several statistical parameters (Equations (16)–(18)) were used to evaluate the matching comparison
results: (1) MR, the median of the ratio of satellite-derived values to in-situ values, provided a measure
of overall bias for the comparison; (2) SIQR, the semi-interquartile range calculated for the satellite to
in-situ ratio, indicated the spread of these data; and (3) RMSE, the relative root mean squared error,
was used to assess the uncertainty.

MR = median(
yi
xi
) (16)

SIQR =
(Q3 −Q1)

2
(17)
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RMSE(%) = 100×
{

1
N

N

∑
i=1

[
log10 xi − log10 yi

log10 xi
]
2
}1/2

(18)

where yi is the satellite-retrieved value, xi is the in-situ value, and N is the number of matching
data points. Q1 is the 25th percentile and Q3 the 75th percentile. A least-squares fit was also
performed within the matching points (performed in log10 space), giving the associated coefficient of
determination (R2) and slope S.

3. Results

3.1. Statistics of In Situ Datasets and Match-up Data

Figures 1 and 2 show the spatial distribution of in situ HPLC measurement and the valid matches
for MERIS, MODIS, and SeaWiFS. The in situ and matched values exhibited a range of spatial variation.
The fraction of picoplankton varied from 0.1 to 0.9 (average 0.71) and was dominant in the open ocean.
High proportions of microphytoplankton and nanophytoplankton were found over the coastal regions.
The specific statistics are shown in Figure 3 and Table 3. For matchups (include MERIS, MODIS,
and SeaWiFS), the corresponding statistical results were similar to the HPLC data sets, suggesting that
these matchups can give typical and representative validation in the SCS.

Table 3. Statistics of in situ and matched HPLC datasets. SD, max and min represent the standard
deviation, maximum, and minimum values, respectively. The units for Chl-a are mg m−3, N is the
number of samples. * denotes valid matches for MERIS, MODIS, and SeaWiFS.

In Situ Data Median ± SD Average Max. Min. N

Fm 0.12 ± 0.14 0.16 0.85 0.05 230
Fn 0.17 ± 0.09 0.16 0.40 0.03 230
Fp 0.71 ± 0.15 0.68 0.91 0.09 230

Chl-a 0.10 ± 0.43 0.20 3.25 0.03 230
Fm * 0.12 ± 0.15 0.17 0.83 0.05 101
Fn * 0.15 ± 0.08 0.16 0.39 0.03 101
Fp * 0.74 ± 0.16 0.70 0.91 0.13 101

Note: Fm, Fn and Fp is the fractions of picoplankton (<2 µm), nanoplankton (2–20 µm), and microplankton (>20
µm).

Figure 2. Maps of the matching HPLC data sets for MERIS, MODIS, and SeaWiFS.
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Figure 3. Histogram of the in situ HPLC data sets for the South China Sea (SCS).

3.2. Algorithm Evaluation Using In-Situ Data

Figure 4a–l shows the performances of different algorithms when in situ Chl-a and aph * (676)
were used as the algorithm inputs. The statistical results of MR, SIQR and RMSE are shown in Table 4.
Concerning picoplankton, Brewin2010 performed with the highest accuracy, with a median bias of
6.8% (MR = 1.068) and the RMSE was 44.5%; Uitz2006 and Hirata2011 slightly underestimated values
at the higher end of measured Fp, with median biases of −35.3% and −28.1%, and RMSEs of 205.3%
and 148.8% respectively. Concerning microplankton, Uitz2006 and Brewin2010 performed with higher
accuracy—the RMSEs for the Fm were 32.7% and 38.8% and the MR were 1.20 and 0.91, respectively;
Hirata2011 underestimated Fm when the fractions were low, with a median bias of −39% (MR = 0.61).
The detection of nanoplankton was generally worse than those of microplankton and picoplankton,
Brewin2010 showed the best performance (Fn) among all algorithms.

Figure 4. Cont.
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Figure 4. Scatter plots of estimated phytoplankton size classes (PSCs) versus in situ measurements:
Uitz2006 (a–c); Brewin2010 (d–f); Hirata2011 (g–i); Roy2013 (j–l). The solid line is the 1:1 line. The red
dashed lines are the 1:2 and 2:1 lines.

Table 4. Statistical results for the validation of the selected algorithms using in-situ data. The slope is
the linear regression results from retrieval values versus in situ ones. N is the number of samples.

Algorithm MR SIQR RMSE (%) R2 Slope N

Fm
Uitz2006 1.204 0.298 32.666 0.307 0.504 227

Brewin2010 0.906 0.246 38.848 0.292 0.487 227
Hirata2011 0.612 0.339 71.525 0.205 0.599 178

Roy2013 0.589 0.464 221.282 0.011 0.065 75

Fn
Uitz2006 2.421 1.005 49.956 0.039 −0.078 227

Brewin2010 0.778 0.187 32.090 0.355 0.368 227
Hirata2011 2.243 0.500 51.346 0.171 0.356 178

Roy2013 1.675 0.676 40.215 0.000 0.083 75

Fp
Uitz2006 0.647 0.081 205.294 0.418 0.332 227

Brewin2010 1.068 0.069 44.566 0.597 0.715 227
Hirata2011 0.709 0.102 148.755 0.481 0.433 178

Roy2013 0.854 0.253 238.369 0.008 0.254 75

With regard to the aph * (676)-based algorithm, Roy2013 showed the worst performance regarding
Fm and Fp with RMSE of 221.8% and 238.4%. However, Roy2013 performed better than Uitz2006 and
Hirata2011 at detecting Fn.

3.3. Algorithm Evaluation Using Satellite Data

All algorithms were applied to the ocean colour satellite products of MODIS, SeaWiFS and MERIS,
and the derived values were compared with the in situ HPLC data (Figures 5 and 6). The statistical
results are shown in Tables 5 and 6. When comparing the results from the four methods listed in Table 1,
it firstly appears that abundance-based algorithms performed with higher accuracy than the IOP-based
method. For abundance-based algorithms, the evaluation results using in situ and satellite-derived
Chl-a showed good tendency towards accuracy. Concerning picoplankton, Brewin2010 performed
with the highest accuracy—the median biases of the three satellites were −0.02%, −0.51% and −0.49%
for MODIS, SeaWiFS and MERIS, respectively, the RMSEs were 81.6%, 52.1%, and 56.5% and the
coefficients of determination were 0.61, 0.61, and 0.40, respectively. For Uitz2006 and Hirata2011,
underestimation of the satellite-derived Fp was observed—the average median satellite/in situ ratios
were 0.65 and 0.70. Concerning microplankton, Uitz2006 and Brewin2010 were found to perform
with higher accuracy—the median biases of the three satellites were 21.8%/−3.5%, 36.2%/17.0%
and 25.8%/5.5% for MODIS, SeaWiFS and MERIS, respectively and the RMSEs were 59.4%/68.0%,
18.1%/15.4%, and 18.7%/16.9%; Hirata2011 underestimated the measured Fm when the concentration
of microplankton was low, with median biases of −37.0%, −20.0% and −40.1%, and RMSEs were
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70.9%, 21.4% and 35.7% for MODIS, SeaWiFS and MERIS, respectively. Concerning nanoplankton,
Uitz2006 and Hirata2011 were found to have bad performances, the average RMSEs were 52.1% and
56.6%. With regard to the aph * (λ)-based PSCs algorithm, the performances of GIOP-Roy2013 and
GSM-Roy2013 are shown in Figure 6, and the corresponding statistical results are provided in Table 6.
GIOP-Roy2013 performed with higher accuracy for detecting microplankton than GSM-Roy2013,
especially when Fm was high. Concerning picoplankton, when Fp < 0.5, GSM-Roy2013/GIOP-Roy2013
showed an overestimation/underestimation. MODIS derived Fn (GIOP-Roy2013) seemed to have
higher accuracy than MERIS and SeaWiFs.

Figure 5. Scatter plots of satellite-derived PSCs versus in situ measurements: Uitz2006 (a–c);
Brewin2010 (d–f); Hirata2011 (g–i). The solid line is the 1:1 line. The red dashed lines are the 1:2 and
2:1 lines.
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Figure 6. Scatter plots of satellite-derived (Roy2013) PSCs versus in situ measurements: aph(676)
was estimated by the Garver–Siegel–Maritorena (GSM) model (a–c); aph(676) was estimated by the
Generalized Inherent Optical Property (GIOP) model (d–f). The solid line is the 1:1 line. The red dashed
lines are the 1:2 and 2:1 lines.

Table 5. Statistical results for the validation of abundance-based algorithms for MERIS, MODIS and
SeaWiFS. The slope is the linear regression results from retrievals versus in situ ones. N is the number
of samples.

Algorithm MR SIQR RMSE R2 Slope N

Fm
Uitz2006MODIS 1.218 0.396 59.382 0.584 0.584 48
Uitz2006Meris 1.362 0.314 18.091 0.304 0.331 41

Uitz2006Seawifs 1.258 0.248 18.696 0.288 0.572 42
Uitz2006Average 1.275 0.333 38.814 0.504 0.579 131

Brewin2010MODIS 0.965 0.277 68.146 0.624 0.563 48
Brewin2010Meris 1.170 0.248 15.408 0.325 0.294 41
Brewin2010Seawifs 1.055 0.223 16.878 0.357 0.605 42
Brewin2010Average 1.042 0.268 43.211 0.536 0.558 131
Hirata2011MODIS 0.631 0.255 70.907 0.591 0.673 48
Hirata2011Meris 0.808 0.214 21.581 0.274 0.383 41
Hirata2011Seawifs 0.599 0.255 35.700 0.184 0.663 42
Hirata2011Average 0.697 0.252 48.955 0.421 0.666 131

Fn
Uitz2006MODIS 2.983 1.281 51.083 0.198 0.276 48
Uitz2006Meris 2.612 0.904 51.448 0.183 0.272 41

Uitz2006Seawifs 3.759 1.408 54.118 0.237 0.299 42
Uitz2006Average 3.028 1.256 52.188 0.197 0.286 131

Brewin2010MODIS 1.417 0.609 32.511 0.000 −0.050 48
Brewin2010Meris 1.105 0.441 22.535 0.122 0.182 41
Brewin2010Seawifs 1.373 0.538 26.131 0.347 0.406 42
Brewin2010Average 1.306 0.524 27.661 0.083 0.199 131
Hirata2011MODIS 2.715 0.788 55.639 0.447 0.602 48
Hirata2011Meris 2.685 0.320 58.472 0.043 0.092 41
Hirata2011Seawifs 2.897 0.527 55.838 0.024 0.054 42
Hirata2011Average 2.755 0.497 56.604 0.287 0.336 131
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Table 5. Cont.

Algorithm MR SIQR RMSE R2 Slope N

Fp
Uitz2006MODIS 0.668 0.075 216.880 0.608 0.536 48
Uitz2006Meris 0.646 0.033 212.641 0.401 0.416 41

Uitz2006Seawifs 0.648 0.052 253.765 0.639 0.532 42
Uitz2006Average 0.650 0.051 228.107 0.617 0.519 131

Brewin2010MODIS 0.980 0.117 81.580 0.612 0.810 48
Brewin2010Meris 0.951 0.053 56.528 0.396 0.354 41
Brewin2010Seawifs 0.949 0.071 52.072 0.613 0.686 42
Brewin2010Average 0.967 0.068 65.635 0.623 0.736 131
Hirata2011MODIS 0.650 0.077 190.522 0.600 0.414 48
Hirata2011Meris 0.592 0.034 218.544 0.277 0.231 41
Hirata2011Seawifs 0.628 0.039 169.353 0.584 0.492 42
Hirata2011Average 0.619 0.049 193.504 0.579 0.401 131

Average The average values of MODIS, SeaWiFS and MERIS.

Table 6. Statistical results for the validation of the inherent optical property (IOP)-based algorithm for
MERIS, MODIS and SeaWiFS. The slope is the linear regression results from retrievals versus in situ
ones. N is the number of samples.

Algorithm MR SIQR RMSE R2 Slope N

Fm
a Roy2013MODIS 4.804 1.507 100.427 0.225 −0.272 48
a Roy2013MERIS 4.982 1.426 72.642 0.014 0.321 41

a Roy2013SeaWiFS 4.882 1.067 69.773 0.143 0.492 42
a Roy2013Average 4.964 1.408 83.114 0.000 −0.068 131
b Roy2013MODIS 5.567 2.564 334.090 0.520 −1.189 41
b Roy2013MERIS 5.601 1.558 74.534 0.342 −0.842 39

b Roy2013SeaWiFS 5.278 1.683 73.616 0.249 −1.577 39
b Roy2013Average 5.567 2.065 205.068 0.361 −0.984 119

Fn
a Roy2013MODIS 2.705 1.585 47.053 0.041 −0.227 48
a Roy2013MERIS 2.864 1.055 53.279 0.010 −0.084 41

a Roy2013SeaWiFS 4.341 1.898 58.924 0.217 −0.210 42
a Roy2013Average 3.076 1.669 53.036 0.040 −0.196 131
b Roy2013M◦DIS 1.506 0.852 42.041 0.025 0.166 41
b Roy2013MERIS 2.719 1.087 51.524 0.155 0.238 39

b Roy2013SeaWiFS 3.568 1.701 53.018 0.028 0.372 39
b Roy2013Average 2.496 1.185 48.992 0.004 0.195 119

Fp
a Roy2013MODIS 0.032 0.019 1666.956 0.142 −0.108 48
a Roy2013MERIS 0.072 0.023 1211.414 0.053 0.077 41

a Roy2013SeaWiFS 0.092 0.023 1198.100 0.266 0.122 42
a Roy2013Average 0.066 0.033 1392.007 0.000 −0.008 131
b Roy2013MODIS 0.006 0.012 2934.519 0.274 −0.955 41
b Roy2013MERIS 0.056 0.017 1360.411 0.425 −0.207 39

b Roy2013SeaWiFS 0.068 0.046 1924.974 0.206 −0.670 39
b Roy2013Average 0.042 0.036 2188.129 0.099 −0.724 119

a The combined model, GIOP-Roy2013; b The combined model, GSM-Roy2013. Average The average values of
MODIS, SeaWiFS and MERIS.

3.4. Chl-a and aph(676) Assessment in the SCS

The comparison statistics associated with Chl-a and aph(676) are shown in Table 7. The Chl-a
concentrations derived from SeaWiFS, MODIS, and MERIS data were lightly overestimated,
with average satellite/in situ ratios of 1.22, 1.31, and 1.83, respectively. The RMSEs were 20.1%,
38.9%, and 26.1%. The average coefficients of determination were 0.64. Two IOP algorithms (GSM
and GIOP) were used to derive the absorption coefficient of phytoplankton, and the results clearly
showed that they underestimated the measured aph(676). The assessment showed a similar tendency
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towards accuracy between GSM and GIOP derived aph(676). Underestimation of aph(676) and the
slight overestimation of Chl-a could lead to an underestimation of a * ph(676), which is the input
of Roy2013 (see in Figure 7). As for a * ph(676), the validation result exhibited dispersion and poor
statistical correlation, the average RMSEs for SeaWiFS, MODIS, and MERIS were 43.9%, 44.5% and
48.3% and the R2 values were 0.03, 0.04 and 0.007.

Table 7. Statistical results for the validation of abundance-based algorithms for MERIS, MODIS and
SeaWiFS. The slope is the linear regression results from retrievals versus in situ ones. N is the number
of samples.

Name MR SIQR RMSE R2 Slope N
a aph(676)MODIS 0.403 0.084 20.785 0.858 0.334 37
a aph(676)MERIS 0.485 0.096 15.168 0.475 0.242 21

a aph(676)SeaWiFS 0.443 0.096 16.920 0.672 0.299 37
a aph(676)Average 0.434 0.104 18.183 0.745 0.328 95
b aph(676)MODIS 0.306 0.064 22.423 0.858 0.800 37
b aph(676)MERIS 0.448 0.104 15.152 0.453 0.513 21

b aph(676)SeaWiFS 0.430 0.077 17.593 0.617 0.797 37
b aph(676)Average 0.376 0.097 19.161 0.723 0.795 95

Chl-aMODIS 1.305 0.228 38.896 0.785 0.556 37
Chl-aMERIS 1.834 0.308 26.108 0.472 1.546 21

Chl-aSeaWiFS 1.224 0.258 20.114 0.496 1.745 37
Chl-aAverage 1.429 0.373 24.713 0.643 0.573 95

a * ph(676)MODIS 0.265 0.084 44.495 0.038 0.016 37
a * ph(676)MERIS 0.257 0.042 48.389 0.007 −0.006 21

a * ph(676)SeaWiFS 0.339 0.157 43.918 0.027 −0.009 37
a * ph(676)Average 0.265 0.103 45.165 0.004 0.005 95

a The combined model, GIOP-Roy2013; b The combined model, GSM-Roy2013. Average The average values of
MODIS, SeaWiFS and MERIS.

Figure 7. Scatter plots of satellite-derived values versus in situ measurements in the SCS: GSM derived
aph(676) (a); GIOP-derived aph(676) (b); Chl-a (c); GIOP-based a * ph(676) (d). The solid line is the 1:1
line. The red dashed lines are the 1:2 and 2:1 lines.
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4. Discussion

In this study, MERIS, MODIS, and SeaWiFS PSCs products for SCS were compared with in situ
data collected from 2007 to 2011. Our purpose here was to inter-compare the performances of different
PSCs algorithms. This work can aid in selecting the proper satellite PSCs model to best fit the required
application in the SCS.

There are two main reasons for a mismatch between in situ-measured and satellite derived PCSs.
The first is the possible uncertainty of satellite-derived phytoplankton abundance data (Chl-a) and
IOP data and the second is the choice of PSCs algorithms. For the abundance-based algorithms,
the comparison results of Chl-a generally showed reasonable agreement in the SCS (RMSE < 38%
for all three satellites, Table 7); this is why the evaluation results using in situ and satellite-derived
Chl-a showed a good tendency towards accuracy. Regarding the algorithms themselves, three of the
abundance-based approaches presented above were designed to estimate fractions of size classes in
a given Chl-a concentration. The Uitz2006 method assigns size classes according to a finite number of
trophic status defined on the basis of surface Chl-a and on whether or not the euphotic zone may be
treated as stratified or mixed [5]. The Brewin2010 and Hirata2011 methods are both based only on
the Chl-a concentration but differ from each other in the functional relationships assigned to relate
total Chl-a to size classes [10,12]. The performance of reparameterized Brewin2010 using seven years
of pigment measurements acquired in the SCS is in agreement with the results of [26,34]. Regarding
Uitz2006, comparison results of satellite derived Fm in the SCS is consistent with [5] which resulted from
numerous field campaigns; while the derived Fp showed an obvious underestimation (but has good
tendency towards accuracy). With regard to Hirata2011, both Fm and Fp were underestimated relative
to previous results (which are based on a dataset from oceans around the world) [14]. The observed
different performance compared with other areas indicated that the choice of a proper PSCs algorithm
seems to be critical. It should be noted that Uitz2006 and Hirata2011 were originally not designed
for coastal and shelf waters; this difference may impact the algorithm’s performance in the SCS
(especially for water depth < 200 m). In addition, the observed different performances of the three
abundance-based algorithms are likely related to different pigment-to-size methods (DPA). With regard
to Brewin2010, part of the matched data for satellite validation (less than 1/5) was used to re-tune
the algorithm; this could be helpful for the comparison result. For our regional application, it is
better to reparameterize using the HPLC measurements collected in the SCS [4]. Regarding the a *

ph(λ)-based Roy2013 algorithm, the total absorption coefficient of phytoplankton in the red peak at
676 nm estimated from satellite remote sensing was used to compute the exponent of an assumed
power-law (ξ) for phytoplankton particle size spectrum. Two IOP algorithms (GSM and GIOP) were
used to derive the absorption coefficient of phytoplankton, and the results clearly show that they
underestimated the measured aph(676). This means the development of robust IOP algorithms is
still a challenge in the SCS. As for the algorithm itself, the validation result using in situ a * ph(676)
exhibited dispersion and poor statistical correlation (see in Figure 4), which implies much effort is
needed to improve the quantitative information on phytoplankton size structure, namely, the exponent
ξ of phytoplankton size spectrum and the equivalent spherical diameter of the population.

Other factors can confound comparison (between in situ and satellite) results. Firstly, there are
measurement errors. An inter-comparison of HPLC pigment methods indicates an instrument error of
7% for total Chl-a and, on average, 21.5% for other pigments (ranging from 11.5% for fucoxanthin to
32.5% for peridinin), and an inverse dependence on pigment concentration (with large disagreements
for pigments close to the detection limits) [38]. Secondly, there are uncertainties associated with the
use of pigment concentration to determine size class. The HPLC DPA does not strictly reflect the true
size of phytoplankton, and some taxonomic pigments might be shared by various phytoplankton
groups. Different diagnostic pigment methods can bring deviations in the comparison result [5,13,17].
In addition, multiple regression analysis of Chl-a and the concentration of accessory pigments collected
from the SCS need to be strengthened. Thirdly, the in situ observation was performed at a single
location, while the minimum satellite resolution is about 1 × 1 km, and thus, spatial mismatch exists
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between in situ and satellite values. When ocean waters are patchy, for example, in eddies, fronts or
river plumes, the two observational scales may eventually affect data comparison [13,39].

The detection of microplankton and picoplankton was generally better than that of nanoplankton
in the SCS. This result was consistent with previous studies. This may be because of higher diversity
in nanoplankton than pico- or microplankton, which may result in greater variability in their optical
characteristics, making them harder to detect from satellite/in situ measurement [13]. It is worth
noting that some of the results from the statistical analysis of satellite derived PSCs were slightly
better than those obtained from only using in situ data (e.g., Fp- Brewin2010Meris, Fm-Uitz2006Seawifs).
This abnormality might be partly explained by the differences in the dynamic range of the measured
data or because there was not enough matching data.

Throughout the inter-comparisons of the four algorithms, we found that the abundance-based
approaches provided better spatial retrieval of PSCs than IOP-based ones. Though abundance-based
approaches are easy to implement and offer a simple and effective method for revealing the expected
size structure of phytoplankton, they are indirect methods for detecting PSCs. They rely on observed
patterns of change in the size structure with a change in the concentration of Chl-a. Variability in
the optical properties of phytoplankton (e.g., changes in temperature, nutrient, species and light
regimes) can make the algorithms less suitable for long-term analysis as this will require on-going
comparison with in situ measurements [12,17]. Regarding IOP-based approaches, they are more
direct and capable of detecting changes in size structure independent of phytoplankton concentration.
However, accurately exploiting the optical characteristics (e.g., aph(676), bbp(λ)) of different PSCs to
build algorithms may not always be effective [12]. Further efforts to develop robust IOP algorithms
and IOP-based PSCs algorithms are desirable in the SCS. The three-component model is recommended
for use in the proposed procedure using satellite data to produce maps of surface PSCs in the SCS.

5. Conclusions

Four algorithms designed to detect phytoplankton size structure were assessed using in situ data
and satellite data (MERIS, MODIS, SeaWiFS) in this study. Results indicated that, abundance-based
approaches performed with better accuracy than optics-based ones, and the detection of microplankton
and picoplankton were generally better than that of nanoplankton in the SCS. For the abundance-based
algorithms, the selection of the PSCs algorithm seemed to be more critical to the performance of
ocean colour data. For the IOP-based PSCs algorithms, the selection of a proper inherent optical
property model and PSCs algorithm both had an impact on the satellite-derived results. The good
performance of satellite derived aph(676) implies a potential for IOP-based PSCs algorithms in the SCS.
Our comparison activity in the SCS advocated that (1) the three-component model is recommended for
use for the proposed procedure using satellite data for application in the SCS; (2) developing robust
IOP algorithms and optics-based PSCs algorithms is desirable; and (3) continuous support of dedicated
to in-situ data collection is needed for validation purposes.
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