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Abstract: Rice is an important food resource, and the demand for rice has increased as population has
expanded. Therefore, accurate paddy rice classification and monitoring are necessary to identify and
forecast rice production. Satellite data have been often used to produce paddy rice maps with more
frequent update cycle (e.g., every year) than field surveys. Many satellite data, including both optical
and SAR sensor data (e.g., Landsat, MODIS, and ALOS PALSAR), have been employed to classify
paddy rice. In the present study, time series data from Landsat, RADARSAT-1, and ALOS PALSAR
satellite sensors were synergistically used to classify paddy rice through machine learning approaches
over two different climate regions (sites A and B). Six schemes considering the composition of various
combinations of input data by sensor and collection date were evaluated. Scheme 6 that fused optical
and SAR sensor time series data at the decision level yielded the highest accuracy (98.67% for site A
and 93.87% for site B). Performance of paddy rice classification was better in site A than site B, which
consists of heterogeneous land cover and has low data availability due to a high cloud cover rate.
This study also proposed Paddy Rice Mapping Index (PMI) considering spectral and phenological
characteristics of paddy rice. PMI represented well the spatial distribution of paddy rice in both
regions. Google Earth Engine was adopted to produce paddy rice maps over larger areas using the
proposed PMI-based approach.

Keywords: paddy rice; Landsat; data fusion; paddy rice mapping index (PMI); ALOS PALSAR;
RADARSAT-1; time-series analysis

1. Introduction

Rice is one of the important food resources for most of the world’s population, especially those
in Asia [1,2]. The annual average of rice consumption per capita was approximately 54 kg during
2017–2018 (Agricultural Market Information System (AMIS), http://statistics.amis-outlook.org/), and
the consumption has increased with increasing world population [3]. Muthayya et al. [4] noted that the
demand for rice over the next 30 years is expected to increase by 90% in Asia. Paddy rice mapping and
monitoring are crucial for food security and agricultural mitigation because they allow for identifying
and forecasting rice production [5]. In general, the annual or seasonal surveys have been conducted
for measuring cultivated areas during the crop growing season [5,6]. The sampling survey, however,
is costly, labor-intensive, and time-consuming. In addition, the survey based paddy rice mapping
has a relatively slow update cycle (e.g., every five years). Rice cultivated areas often change due to
human activities as well as natural disasters such as drought, floods, and wildfire. Thus, up-to-date
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information on paddy rice areas is essential for decision makers, scientists, and also farmers to monitor
and manage the areas in a timely and sustainable manner.

Satellite remote sensing has been employed as an alternative with advantages of high temporal
resolution and spatial continuity. There are several studies for paddy rice classification using
single optical sensor data, such as Moderate Resolution Imaging Spectroradiometer (MODIS) and
Advanced Very High Resolution Radiometer (AVHRR) [7,8]. However, mixed pixels have often caused
misclassification when using single sensor data (e.g., MODIS) [9]. Multi-temporal and high-resolution
data have been used to overcome such a mixed pixel problem [10]. Recent studies have emphasized
the capability of multi-temporal data to identify paddy rice areas because paddy rice has its own
phenology (e.g., transplanting), which is a distinct characteristic of paddy rice compared to other
crop or land cover types [11–17]. Clauss et al. [18] mapped paddy rice in China using Support
Vector Machine (SVM) with MODIS time series data. Their approach performed well to map paddy
rice with an overall accuracy of 90%. Jin et al. [9] attempted to map paddy rice distribution using
multi-temporal Landsat data at regional scale with phenology information. They used a rule-based
decision tree approach to determine optimal threshold values to map paddy rice using multi-temporal
Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface
Water Index (LSWI) as input data. The results showed the coefficient of determination (R2) of 0.85
between satellite-based and census recorded paddy rice areas. Dong et al. [19] developed a time
series Landsat-based paddy rice mapping platform to produce paddy rice maps from 1986 to 2010.
Vegetation indices were used to conduct paddy rice mapping with a five-year interval based on a land
cover-adapted thresholding approach.

Although optical sensor data are useful to map paddy rice, there is a limitation for data acquisition
due to cloud contamination. Synthetic Aperture Radar (SAR) data have been used to complement
the cloud problems of optical sensor images because SAR data are not influenced by weather
conditions [20,21]. Several studies employed SAR data for land cover/land use as well as paddy
rice mapping [1,21–24]. Optical sensor and SAR data have complementary information. Multi- or
hyperspectral data provide information of reflective and emissive features of the Earth’s surface, while
the SAR data provide information about the surface roughness, texture and dielectric properties of
natural and man-made objects [22,25]. Thus, the integration of multispectral and SAR data produces
more reliable results than those from single sensor data [25]. Over the years, research efforts have been
made in fusion of different sensor data in the remote sensing field [1,23,26,27]. Torbick et al. [26] aimed
to monitor paddy rice agriculture fusing optical vegetation indices from Landsat 8 and dual-polarization
C and L band backscattering coefficients from Sentnel-1 and PALSAR-2 across the Myanmar using a
random forest (RF) approach. The results showed the accuracy with R2 of 0.78 for the harvested rice
areas in comparison with census statistics. They concluded that the fusion of optical and SAR data has
a great potential to monitor and analyze paddy rice production.

Given the increasing interests in remote sensing-based paddy rice mapping and monitoring,
several review papers on this topic have been published [5,17,28]. Dong et al. [17] divided paddy rice
mapping studies into four categories, using (1) reflectance data and statistical approaches, (2) vegetation
index (VI) and enhanced statistical approaches, (3) temporal analysis approaches with VI or RADAR
data, and (4) phenology-based approaches. They discussed the current challenges and opportunities in
future paddy rice mapping: to improve algorithms with the development of land cover classification
approaches, to improve data acquisition capacity with high spatial resolution (~30 m) such as combined
Landsat and Sentinel-2 data, and to improve computing capacity such as using Google Earth Engine.
In particular, the Landsat series have been provided for free with an opening from the archive datasets
to the general public. Added to this benefit are large swaths with a width of 185-km and a 16-day
temporal resolution, which produces valuable information for the repeated measurement of space and
time [29,30]. Moreover, accumulated archives with more than 40 years of data have the potential to
fuel long-term studies with regional and global land cover classifications [31]. Given this background,
we identified some issues that should be improved. This present study investigated the following
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approaches to improve the identification of paddy rice areas over two distinct regions with different
climatic and environmental characteristics:

1. paddy rice classification using multi-sensor fusion (optical sensor and SAR) and multi-temporal
data through machine learning approaches (RF and SVM);

2. development of a paddy rice mapping index (PMI) while considering spectral and phenological
characteristics; and,

3. paddy rice classification using Google Earth Engine based on the PMI approach over larger areas.

The present study aims at advance paddy rice classification by expanding the dimensionality
of data on both spectral and temporal domains. We conducted paddy rice classification through
fusion of optical sensor and SAR time series data using two machine learning approaches, RF and
SVM. This study examined six schemes to identify the effect of data dimensionality on paddy rice
classification. The six schemes composed of various combinations of input data by sensor and collection
date considering the phenology of paddy rice over two different regions. This study also proposed
Paddy rice Mapping Index (PMI) when considering the spectral and temporal characteristics of paddy
rice that can be applied to areas that have different climatic and environmental characteristics.

2. Study Area and Data

2.1. Study Area

The study area consisted of two regions with different climatic and environmental characteristics
(Figure 1). The first study site (site A) was Sutter County in California State, United States, which is
known for its high rice productivity. About 90% of site A is composed of vegetated areas, and almost
40% of the vegetated areas are paddy rice. Temperature ranges from 4.06 ◦C in January to 36.11 ◦C in
July on average, and the annual precipitation is around 558.8 mm. In site A, rice is planted mid-May
by dropping rice seeds into flooded paddies from small planes (i.e., direct seeding) and harvested
between September and October (Figure 2). The second study site (site B) was Dangjin in South Korea.
Site B is one of the highest rice production regions in South Korea. Site B has relatively heterogeneous
land covers, with many fragmented patches when compared to site A. The annual mean temperature
is 11.4 ◦C and the annual precipitation is 1158.7 mm. Since South Korea has a rainy season between
June and July caused by the Asian Monsoon, it is not easy to collect cloud-free satellite optical sensor
images during this time. Rice planting and harvesting in site B occur at similar time intervals as site A
(Figure 2). Unlike site A, manual or machine-based rice transplantation in May is common in site B.
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Figure 1. Study area (Landsat 5 true color composition). (a) Site A is Sutter County in California State 
with the Landsat image collected on 26 July 2009 and (b) site B is Dangjin in South Korea with the 
Landsat image collected on 21 September 2003. 

 
Figure 2. Rice planting and harvest schedules, and satellite data availability. 

2.2. Satellite Data 

In this study, two types of time series satellite data (optical and SAR) were used. Multispectral 
Landsat 5, 7, and 8 level-1 images were acquired from the United States Geological Survey (USGS) 
(path/row 44/33 (for site A) and 116/34 (for site B)). Three visible bands, Blue (0.45–0.53 μm), Green 
(0.52–0.60 μm), and Red (0.63–0.69 μm), and three Infrared (IR) bands, near-infrared (NIR) (0.76–0.90 

Figure 1. Study area (Landsat 5 true color composition). (a) Site A is Sutter County in California State
with the Landsat image collected on 26 July 2009 and (b) site B is Dangjin in South Korea with the
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2.2. Satellite Data

In this study, two types of time series satellite data (optical and SAR) were used. Multispectral
Landsat 5, 7, and 8 level-1 images were acquired from the United States Geological Survey (USGS)
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(path/row 44/33 (for site A) and 116/34 (for site B)). Three visible bands, Blue (0.45–0.53 µm),
Green (0.52–0.60 µm), and Red (0.63–0.69 µm), and three Infrared (IR) bands, near-infrared (NIR)
(0.76–0.90 µm), shortwave-infrared 1 (SWIR1) (1.55–1.75 µm), and SWIR2 (2.08–2.35 µm), at 30 m
spatial resolution were used. A total of 16 Landsat 5 images from 2007 to 2009 for site A, and 11 images
from 2003 to 2005 at site B were acquired (Tables 1 and 2). Unlike site A, where enough cloud free
images for every month are available, it is hard to obtain clear images at site B during the rainy season
(June to July). Figure 2 shows data availability with crop schedules by month. Atmospheric correction
using ENVI Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) to Landsat images
were conducted to produce scaled reflectance data. Then, Normalized Difference Water Index (NDWI)
and Normalized Difference Vegetation Index (NDVI) were calculated using Green, Red, and NIR
reflectance data (Equations (1) and (2)).

NDWI =
Green−NIR
Green + NIR

(1)

NDVI =
NIR− Red
NIR + Red

(2)

Table 1. Acquisition dates of satellite data at site A.

ALOS PALSAR Landsat 5

29 December 2007 15 January 2009
31 January 2009

26 March 2007 20 March 2009
28 March 2008 2 April 2008

5 April 2009
21 April 2009

13 May 2008 7 May 2009
23 May 2009
8 June 2009

24 June 2009
1 July 2009 10 July 2009

26 July 2009
13 August 2006 27 August 2009

26 September 2007 7 September 2007
1 October 2009 30 October 2009

13 November 2008 15 November 2009
27 December 2008

Multi temporal SAR images from the Advanced Land Observing Satellite (ALOS) Phased Array
type L-band SAR (PALSAR) (site A) and RADARSAT-1 (site B) for horizontal transmit and horizontal
receive (HH) polarization data were used. According to Zhang et al. [32] and Le Toan et al. [33], among
the SAR signals at different polarizations, horizontal (HH) and vertical (VV) polarizations, the HH
backscattered signals are higher and are more dominated by specular reflection for the rice canopy and
water surfaces than the VV backscattered ones. HH polarization data have been used in many paddy
rice mapping studies [17,32,34,35]. ALOS PALSAR L band fine beam data with HH polarization at
6.25 m spatial resolution were used. A total of 10 images from ALOS PALSAR between 2006 and 2009
were used for site A (Table 1). A total of 6 images collected from the RADARSAT-1 C band standard
mode with HH polarization at 30 m spatial resolution between 2003 and 2005 were used for site B
(Table 2). Preprocessing of SAR data was carried out with Alaska Satellite Facility (ASF) Map Ready
software (http://www.asf.alaska.edu), and the backscatter coefficient σ0 (dB) was calculated through
Equation (3) [36].

σ0 = 10 × log[DN]2 + CF (3)

http://www.asf.alaska.edu
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where DN is the digital number of a SAR image and CF is a calibration factor. SAR data were resampled
to a 30 m pixel size and were projected to the Universal Transverse Mercator (UTM) coordinate system
to collocate with Landsat data. SAR images have high speckle noise; hence, many filters, including
Lee, Kuan, Frost, and Gamma MAP have been used to despeckle SAR images in the literature. In this
study, Lee filter [37], one of the well-known despeckling filters, was applied to remove noise with 3 × 3
window size. Geometric correction was conducted using ninety-five ground control points (GCP)
collected from both Landsat and SAR images, and the resultant root mean square error (RMSE) ranged
from 10 m to 15 m (less than one pixel).

Elevation data at 30 m resolution from the Shuttle Radar Topography Mission (SRTM) digital
elevation models (DEM) that was obtained from Earth Explorer (https://earthexplorer.usgs.gov/) was
used as an input variable for paddy rice classification. DEM provides land cover related information.
For example, most paddy rice is located in relatively flat areas and low elevations. Many studies have
used elevation data as input variable for land cover classification [38–40].

Table 2. Acquisition dates of satellite data at site B.

RADARSAT 1 Landsat 5

18 February 2004 12 February 2004
13 March 2003

25 March 2005 18 March 2005
29 March 2003
31 March 2004

6 May 2003 30 April 2003
30 May 2003 1 June 2003

3 June 2004
27 September 2003 21 September 2003

15 October 2004 9 October 2004
12 December 2004

2.3. Reference Data

Ground reference data were collected from the 2004 Sutter County land use survey data and
United States Department of Agriculture (USDA) 2009 Cropland Data Layer (CDL) with 1:100,000 scale
(site A) and 2002 Korea land cover data with 1:25,000 scale (site B), which were provided by California
Department of Water Resource, USDA, and Korea Ministry of Environment, respectively. USDA CDL
was produced using Landsat data and Resourcesat-1 based on a decision tree approach [41], and Korea
land cover was produced using Landsat, Indian Remote Sensing satellite-1C (IRS-1C), and Satellite
Pour l’Observation de la 5 (SPOT 5) Terre data. Since there was a 2–3 years gap between ground
reference data and satellite data, we refined ground reference data using high resolution Google
Earth images that were collected in the corresponding years through visual inspection. There are
nineteen (site A) and twenty-two (site B) land cover classes in the ground reference data and they were
aggregated to six (site A) and eight (site B) land cover classes by grouping similar classes (Table 3).
A total of 1100 sample points were randomly extracted from input variables at each site. These samples
were divided into training data (800 samples) and test data (300 samples), and the number of samples
for each class was determined considering the area percentage for each class throughout the study
area. The original land cover, aggregated land cover, the number of samples, and the area percentage
of each class are summarized in Table 3.

https://earthexplorer.usgs.gov/
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Table 3. The original land cover, aggregated land cover, the number of samples (1100), and the percentage
of area for each class.

(a) Site A

Original Land Cover Aggregated
Land Cover Area (%) # of Training

Sample
# of Test
Sample

Urban, municipal, commercial, industrial urban landscape,
residential, semi-agricultural Built up 4.1 40 12

Paddy rice Paddy rice 36 291 120

Citrus and subtropical, deciduous fruits and nuts, field
crops, grain and hay crops, idle, Pasture, truck, nursery and

berry crops, vineyards
Field 33.3 265 91

Riparian vegetation, native vegetation Vegetation 23.3 177 66
Barren and wasteland Bare soil 1.9 13 6

Water Water 1.2 14 5

(b) Site B

Original Land Cover Aggregated
Land Cover Area (%) # of training

sample
# of test
sample

Residential, industrial urban landscape, commercial,
recreational facilities, trafficked areas, municipal Built up 6 58 30

Paddy rice Paddy rice 29 236 88

Crop field, protected cultivation, orchard, other field Field 14.5 138 73

Deciduous tree, coniferous tree, mixed forest Forest 25 200 58
Native grass, artificial grassland Grass 1.4 51 11
Inland wetland, coastal wet land Wetland 1.5 17 11

Barren, wasteland Bare soil 1.6 12 12
Inland water, coastal marine water water 21 89 17

3. Methodology

A total of 10 input variables—Landsat bands 1–5 and 7, NDVI, NDWI, SAR backscattering
coefficients, and DEM—were used for paddy rice classification. Figure 3 shows a flowchart of this
study. Classification models were constructed using training data through two machine learning
approaches, RF and SVM.
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RF is based on classification and regression trees (CART), which is a non-parametric model and
constructs rule sets from data [42,43]. RF has two randomization processes, randomly selecting a
subset of training samples (e.g., ~70%) for each tree and selecting a subset of variables at each node of a
tree (e.g., squared root of the number of total variables). RF consists of many decision trees (the number
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of trees is 1000 in this study), and each tree has a decision. Finally, the class of an unknown pixel is
determined through the majority voting of the results of trees. RF has been successfully conducted
for various classification tasks in the literature [38,44–51]. RF also provides information about relative
variable importance. Relative variable importance is based on an increased mean squared error
(MSE) using out-of-bag data (i.e., unused training samples for each tree), which is calculated when
randomly permuting an independent variable [52,53]. In this study, RF was implemented by R software
(https://www.r-project.org/) through Random forest package with default settings (i.e., the number
of randomly sampled variables as candidates at each split is the square root of the number of input
variables; the minimum size of the terminal node is 1), except for the number of trees.

SVM is a supervised non-parametric approach and has been used in many studies in the remote
sensing field [54–60]. The use of SVM has significantly increased because it works well in cases of
limited training data sets and produces higher accuracy than other traditional approaches, such as
Maximum Likelihood (ML) [61,62]. SVM conducts classification by determining hyperplanes that
optimally separates classes [63]. One hyperplane only separates two classes so multiple hyperplanes
are used to classify multiple classes. Kernel functions are typically adopted to transform the data
dimensionality to make it easy to identify optimum hyperplanes. There are various kernel functions
including linear, polynomial, radial basis function (RBF), and sigmoid [64]. This study used RBF kernel,
widely used in classification tasks, and a grid-search method was used to determine the optimum
values of parameters (i.e., gamma in the kernel function and penalty parameter) [65,66].

In this study, six schemes were tested to identify the improvement of classification performance
when fusing multi-sensor time series data. Accuracy assessment was conducted under each scenario
using test data (300 samples). Overall accuracies of multi-class classification (six classes for site A and
eight classes for site B) and binary classification (i.e., paddy rice vs. non-paddy rice) were calculated
for six schemes. The six schemes were designed considering sensor types and collection dates.

• Scheme 1 (S1): only Landsat data on each date were used for classification.
• Scheme 2 (S2): only Landsat data on all dates were used for classification.
• Scheme 3 (S3): only SAR data on all dates were used for classification.
• Scheme 4 (S4): Landsat, SAR, and DEM data during no growing season (November to March)

were used for classification.
• Scheme 5 (S5): Landsat, SAR, and DEM data during the growing season (April to October) were

used for classification.
• Scheme 6 (S6): Landsat, SAR, and DEM data on all dates were used for classification.

In order to evaluate the significant difference between classifications, the McNemar test, a
non-parametric test based on the proportion correct/incorrect was conducted. Large error matrices
can be collapsed to a binary size (i.e., 2 × 2) as the binary distinction between correct and incorrect
class allocations should be focused for comparison [67,68]. The standardized normal test statistics (z)
from the McNemar test is calculated as:

z =
fAB − fBA√
fAB + fBA

(4)

where fAB indicates the samples correctly identified in classification A, but is incorrectly classified
in classification B; and, fBA means the samples correctly identified in classification B, but incorrectly
classified in classification A. The 5% level of significance (α = 0.05) was used for the McNemar test.

Important spectral and temporal characteristics for paddy rice classification were identified from
the temporal pattern of each variable and variable importance, as provided by RF. In this study, Paddy
rice Mapping Index (PMI) was proposed by considering the phenological characteristics of paddy
rice in NIR and SAR backscattering coefficients. NIR reflectance and SAR backscattering coefficients
are low during the planting/transplanting season (May) and increase during the growing season
(Figures 4 and 5). Paddy rice maps were produced from two classification models and PMI. The spatial

https://www.r-project.org/
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distribution of the paddy rice maps was also compared with the reference paddy rice maps. PMI-based
paddy rice mapping over a larger area (i.e., entire California State) was also conducted using Google
Earth Engine.Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 22 
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4. Results

4.1. Evaluation of Paddy Rice Classification

Tables 4 and 5 show the accuracy assessment results of each approach for both multi-class and
binary classifications. This experiment is repeated for 10 times, and the highest overall accuracy and
kappa coefficient are shown in Tables 4 and 5. In scheme 1, summer season data showed high accuracy
in both sites because of the greenness of the paddy rice. While schemes 2 and 6 showed the highest
accuracy in site A (100% and 1.00) and site B (99.33% and 0.99). It is not surprising that the accuracy is
high when using time series data since they provide the phenology information of paddy rice. The use
of SAR data only (i.e., scheme 3) did not work well for paddy rice classification, resulting in relatively
low accuracy (~91%). The McNemar test results showed that there was a significant difference between
scheme 3 and the other schemes for both sites (Tables 6 and 7). It is because scheme 3 uses SAR
data of all dates only for classification and showed worse accuracy than the other schemes, which
indicates that optical sensor data are crucial for paddy rice classification. In site B, scheme 5 showed a
significantly higher accuracy than scheme 4, which implies that data from the growing season would
be more contributing than data from the no growing season (from November to March) for paddy
rice classification.

There is no big difference in classification accuracy by classification model. The McNemar test also
showed that there was no significant difference between RF and SVM classifications (Tables 6 and 7).
However, the accuracy of SVM was slightly higher (~1–3%) than that of RF at both of the sites. The
producer’s accuracy (PA) and user’s accuracy (UA) of SVM were also higher than RF (Supplementary
Tables S1 and S2). The classification accuracies for site A (95% (0.93) in multiclass classification, 100%
(1.00) in binary classification) were higher than those for site B (88.67% (0.86) in multiclass classification,
99.33% (0.98) in binary classification). The PA and UA in site A were also higher than those in site B
(Supplementary Tables S1 and S2). In comparison with site A, site B is very cloudy during summer
due to the Asian Monsoon, so there were not enough Landsat data for site B during summer which is
important to classify land cover and paddy rice.

Table 4. Summary of classification accuracies (%) at site A. The highest accuracy identified by model
and classification type (i.e., multiclass vs. binary) is shown in bold.

Multiclass Classification Binary Classification

RF SVM RF SVM

OA (%) Kappa
Coefficient OA (%) Kappa

Coefficient OA (%) Kappa
Coefficient OA (%) Kappa

Coefficient

Scheme 1
15 January 75.00 0.64 76.00 0.65 85.00 0.68 86.00 0.70
31 January 76.33 0.65 80.67 0.72 85.33 0.69 89.33 0.77
20 March 84.33 0.77 85.67 0.79 94.67 0.89 96.67 0.93
2 April 66.00 0.51 72.00 0.59 78.67 0.56 81.33 0.61
5 April 83.33 0.76 87.67 0.82 95.00 0.89 95.67 0.91
21 April 84.67 0.78 86.00 0.80 95.67 0.91 96.33 0.92
7 May 85.33 0.79 88.00 0.83 97.00 0.94 98.33 0.96
23 May 85.00 0.78 87.00 0.81 99.67 0.99 99.67 0.99
8 June 86.33 0.80 90.33 0.86 98.33 0.96 99.00 0.98

24 June 85.00 0.78 87.67 0.82 98.33 0.96 97.67 0.95
10 July 86.33 0.80 88.67 0.84 98.33 0.96 99.00 0.98
26 July 86.33 0.80 91.33 0.87 98.67 0.97 100.00 1.00

27 August 86.67 0.81 88.67 0.84 96.67 0.93 97.67 0.95
7 September 73.67 0.62 75.67 0.65 88.67 0.76 89.67 0.77
30 October 82.33 0.74 82.67 0.75 90.33 0.80 89.67 0.78

15 November 84.33 0.77 85.33 0.79 93.67 0.87 94.67 0.89
Scheme 2 92.33 0.89 94.33 0.92 100.00 1.00 99.33 0.99
Scheme 3 80.00 0.71 78.33 0.69 90.67 0.80 91.33 0.81
Scheme 4 93.33 0.90 93.00 0.90 99.33 0.99 98.33 0.96
Scheme 5 90.00 0.85 92.33 0.89 99.67 0.99 99.33 0.99
Scheme 6 94.33 0.92 95.00 0.93 100.00 1.00 100.00 1.00
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Table 5. Summary of classification accuracies (%) at site B. The highest accuracy identified by model
and classification type (i.e., multiclass vs. binary) is shown in bold.

Multiclass Classification Binary Classification

RF SVM RF SVM

OA (%) Kappa
Coefficient OA (%) Kappa

Coefficient OA (%) Kappa
Coefficient OA (%) Kappa

Coefficient

Scheme 1
12 February 73.00 0.65 74.67 0.68 87.33 0.72 87.00 0.71

13 March 77.33 0.71 77.00 0.71 91.33 0.81 90.67 0.79
18 March 79.33 0.74 80.00 0.74 91.33 0.81 91.33 0.81
29 March 77.33 0.71 77.00 0.70 88.00 0.73 85.67 0.69
31 March 81.67 0.77 81.67 0.77 91.33 0.81 92.00 0.82
30 April 81.67 0.77 82.33 0.78 95.67 0.90 95.00 0.89
1 June 82.67 0.78 83.67 0.79 96.67 0.92 97.33 0.94
3 June 84.33 0.80 84.00 0.80 98.67 0.97 98.00 0.95

21 September 81.67 0.77 81.33 0.76 95.00 0.88 95.67 0.90
9 October 80.33 0.75 81.33 0.76 92.67 0.83 95.00 0.88

12 December 76.33 0.70 76.67 0.70 90.00 0.78 90.00 0.78
Scheme 2 86.33 0.83 88.67 0.86 98.00 0.95 99.33 0.98
Scheme 3 71.67 0.64 72.67 0.65 89.33 0.76 90.67 0.78
Scheme 4 84.67 0.80 85.67 0.82 94.00 0.86 94.67 0.88
Scheme 5 88.00 0.85 87.00 0.84 97.67 0.95 97.67 0.95
Scheme 6 88.00 0.85 87.67 0.84 98.00 0.95 98.67 0.97

Table 6. Summary of McNemar test results (|z|-values) of binary classifications for site A. The best
classification for scheme 1 was used. |Z|-values are in bold if significantly different using α = 0.05.

S1RF S1SVM S2RF S2SVM S3RF S3SVM S4RF S4SVM S5RF S5SVM S6RF S6SVM

S1RF - - - - - - - - - - - -
S1SVM 2.00 - - - - - - - - - - -
S2RF 2.00 0.00 - - - - - - - - - -

S2SVM 0.81 1.41 1.41 - - - - - - - - -
S3RF 4.54 5.29 5.29 4.75 - - - - - - - -

S3SVM 4.02 5.10 5.10 4.54 0.45 - - - - - - -
S4RF 0.81 1.41 1.41 0.00 4.91 4.71 - - - - - -

S4SVM 0.38 2.24 2.24 1.73 4.42 4.04 1.73 - - - - -
S5RF 1.34 1.00 1.00 0.58 5.01 4.81 0.58 1.63 - - - -

S5SVM 0.82 1.41 1.41 0.00 4.91 4.71 0.00 1.34 1.00 - - -
S6RF 2.00 0.00 0.00 1.41 5.29 5.10 1.41 2.24 1.00 1.41 - -

S6SVM 2.00 0.00 0.00 1.41 5.29 5.10 1.41 2.24 1.00 1.41 0.00 -

Table 7. Summary of McNemar test results (|z|-values) of binary classifications for site B. The best
classification for scheme 1 was used. |Z|-values are in bold if significantly different using α = 0.05.

S1RF S1SVM S2RF S2SVM S3RF S3SVM S4RF S4SVM S5RF S5SVM S6RF S6SVM

S1RF - - - - - - - - - - - -
S1SVM 1.00 - - - - - - - - - - -
S2RF 0.82 0.00 - - - - - - - - - -

S2SVM 1.41 2.00 2.00 - - - - - - - - -
S3RF 5.52 5.06 5.49 5.84 - - - - - - - -

S3SVM 5.60 5.15 5.43 5.78 1.51 - - - - - - -
S4RF 3.13 2.56 2.83 3.58 3.33 3.28 - - - - - -

S4SVM 2.83 2.24 2.36 3.30 3.48 3.78 0.63 - - - - -
S5RF 1.34 2.00 0.58 2.24 5.10 5.19 2.40 2.06 - - - -

S5SVM 1.13 1.41 0.45 2.24 5.10 5.06 2.30 1.96 0.00 - - -
S6RF 0.82 0.00 0.00 2.00 5.49 5.43 2.83 2.36 0.58 0.44 - -

S6SVM 0.00 0.82 1.41 1.41 5.67 5.60 3.13 2.83 1.73 1.73 1.41 -

4.2. Analysis of Temporal and Spectral Characteristics of Paddy Rice

Figures 4 and 5 shows the temporal patterns of nine variables (visible, NIR and SWIR bands, and
SAR backscattering) for each land cover class at sites A and B, respectively. Although atmospheric
correction was conducted through ENVI FLAASH, there are some fluctuations (Figure 5). This is
because the graphs are not in order of years, but in order of months to better show both the phenological
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and spectral patterns of the paddy rice (refer to Tables 1 and 2). Fluctuant patterns are more visible at
site B, as it suffers from more severe atmospheric affects (e.g., clouds, fogs) than site A. Built-up class
(refer to Table 3) generally results in a flat temporal pattern (Figure 4), but there are outliers in the built
up class on 29 March, 1 June, and 3 June due to the atmospheric effect (Figure 5). SAR backscattering
coefficients were not relatively affected by atmospheric conditions and the order of years with the flat
temporal pattern in built-up class (Figures 4 and 5).

There are no noticeable temporal characteristics in the visible bands (bands 1–3). The reflectance
is low and shows typical characteristics, including the highest reflectance in built up areas, and the
lowest reflectance in water. The reflectance of paddy rice and vegetation (e.g., field, forest, grass)
increase in the NIR band during their growing season. In paddy rice, the reflectance of the NIR band
shows a peak in August when photosynthesis is most active, and decreases in September to October
when the color of paddy rice turns yellow (Figures 4 and 5). SWIR2 is sensitive to leaf water content,
and the more leaf water content there is, the lower the reflectance of SWIR2 is. Paddy rice shows the
lowest reflectance of SWIR2 during the growing season, including the transplanting season (May)
when the paddy is flooded (Figures 4 and 5).

NDVI increases during the growing season in vegetation (paddy rice, grass, field, and forest),
and paddy rice especially grows after transplanting (May). Contrary to NDVI, NDWI sensitive
to water deficit during the growing season in vegetation. SAR backscattering shows the lowest
roughness in water and the highest (brightest) in built up. Paddy rice shows a distinct phenological
pattern in comparison with other land cover classes because paddy rice is flooded during the planting
(transplanting) season, unlike other vegetation classes that have a continuously increased/decreased
pattern (Figures 4 and 5).

While paddy rice is distinguishable between July and September at site A, vegetation related
classes (paddy rice, field, forest, and grass) show a similar pattern in NIR, MIR2, NDVI, and NDWI
at site B. This is because sites A and B have different climatic and environmental characteristics:
data availability due to clouds (site B has a high cloud cover rate) and the composition of land
cover, especially in vegetation types (site B has more forests and denser vegetation areas than site
A). However, the difference between planting and harvest seasons of paddy rice is distinct in both
sites, and the characteristics of paddy rice are well depicted, especially in NIR spectral bands and SAR
backscattering coefficients.

4.3. Paddy Rice Mapping Index (PMI)

PMI was developed when considering the phenological characteristics of paddy rice in terms of
NIR and SAR backscattering coefficients (Equations (5) and (6)). PMI means the slope of NIR or SAR
backscattering coefficients between the transplanting and harvest seasons because the difference of
NIR and SAR backscattering coefficients between the two seasons in paddy rice is much higher than
other classes. Since optical sensor data has higher data availability at a lower cost than SAR data, NIR
based PMI might have a higher practicality than SAR based PMI.

PMI (NIR) =
NIR1 (Harvest)−NIR1 (transplanting)
NIR1 (Harvest) + NIR1 (transplanting)

(5)

PMI (SAR) =
SAR (Harvest)− SAR (transplanting)
SAR (Harvest) + SAR (transplanting)

(6)

Since PMI is related to the probability of a pixel being paddy rice, it is necessary to determine
an optimum threshold to identify paddy rice areas. The optimization of the threshold of NIR based
PMI was conducted using reference data for the entire study areas (3,354,085 pixels at site A and
2,694,510 pixels at site B) based on the overall accuracy of binary classification (paddy rice or non-paddy
rice). The optimization of SAR based PMI was not conducted due to the limited number of time series
data. Figure 6 shows the change of accuracy with increasing thresholds of NIR-based PMI from −0.4



Remote Sens. 2018, 10, 447 13 of 22

to 0.4 at interval of 0.02 for 13 years for both sites A and B (from 2004 to 2016). There are missing
years due to clouds. PMI was calculated using NIR images from Landsat 5, 7, and 8. The highest
accuracies were achieved when the threshold was near 0.2 for 10 years at both sites. Site A (~85%)
shows higher accuracy than site B (~80%) because site A consisted of relatively homogeneous land
cover, as discussed above. Figure 6c shows the box plot of optimal thresholds for 13 years at both
of the sites. We determined 0.2 to be the optimal threshold of PMI, and a pixel is determined to be
paddy rice when the PMI value of the pixel is greater than 0.2. In addition, it should be noted that the
accuracy did not change much with the thresholds between 0.18–0.22 for both sites.
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PMI threshold for 10 years.

4.4. Spatial Distributions of Paddy Rice Maps

4.4.1. Comparisons of Spatial Distributions of Paddy Rice Maps

The visual comparison of paddy rice maps from RF-, SVM-, PMI (NIR)-, and PMI (SAR)-derived
classification at both sites appears in Figures 7 and 8. Machine learning-based paddy rice maps
(Figures 7c,d and 8c,d) were produced through scheme 6, which resulted in the best performance
among the six schemes (Tables 4 and 5) using RF and SVM classifiers. There is not much difference
between two classifiers at site A, while the SVM result shows clearer paddy rice parcels than RF at
site B. Paddy rice was not well detected and underestimated at site B because paddy rice and field are
mixed within a pixel, especially at site B (Figure 8c–f).
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Figure 7. Spatial distribution of paddy rice maps at site A. (a) Landsat 5 RGB image on 26 July
2009; (b) reference map; (c) Random forest (scheme 6)-derived map; (d) Support Vector Machine
(SVM) (scheme 6)-derived map; (e) PMI (NIR)-derived map; and, (f) PMI (Synthetic Aperture Radar
(SAR))-derived map. Paddy rice fields are shown in yellow.
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Figure 8. Spatial distribution of paddy rice maps at site B. (a) Landsat 5 RGB image on 21 September
2003; (b) reference map; (c) Random forest (scheme 6)-derived map; (d) SVM (scheme 6)-derived map;
(e) PMI (NIR)-derived map; and, (f) PMI (SAR)-derived map. Paddy rice fields are shown in yellow.

PMI based paddy rice maps were calculated using NIR and SAR backscattering coefficients
(Equations (5) and (6)) and, the thresholds applied were 0.2 (NIR) and −0.15 (SAR). The threshold of
SAR based PMI was not fully optimized because the availability of time series of SAR data was very
limited, so the threshold, (−0.15), was derived by averaging one year PMI optimized thresholds from
two sites. SAR based PMI produced more noisy paddy rice maps than NIR based PMI due to speckle,
which is one of the limitations of SAR images [69]. The overall accuracy of binary classification (paddy
rice or non-paddy rice) for the entire study areas (3,354,085 pixels at site A and 2,694,510 pixels at site
B) was calculated. That classification results with two machine learning classifiers (~95% at site A and
~90% at site B) were more accurate than PMI (NIR) based results (~87% at site A and ~83% at site B).
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4.4.2. PMI-Based Paddy Rice Mapping Using Google Earth Engine

PMI was applied to a larger area (paddy rice cultivated area in California State; Figure 9) using
the threshold of 0.2. Figure 9 shows PMI based paddy rice maps on the Google Earth Engine platform.
The reference paddy rice map was obtained from USDM CDL 2016. Paddy rice was well detected
through PMI, although there were some false alarms that were caused by clouds. These results indicate
that PMI can effectively map and monitor yearly paddy rice areas at a national or larger scale through
Google Earth Engine through the improvement of computing capacity. We also tested the PMI-based
paddy rice mapping for other regions where rice is cultivated (Pohang in South Korea, Acadia county
in Louisiana State, and Arkansas county in Arkansas state, United State; Supplementary Figure S1).
Paddy rice was well detected through PMI where the fields are flooded during the transplanting
season (Pohang and Acadia County).
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Figure 9. Spatial distribution of paddy rice maps at California State based on Google Earth Engine.
(a) RGB image from Landsat 8 on 26 May 2016 (planting season); (b) RGB image from Landsat 8 on
30 August 2016; (c) PMI result; and, (d) reference map. Paddy rice fields are shown in yellow.

5. Discussion

Paddy rice classification was conducted by expanding the dimensionality of data on both spectral
and temporal domains using two machine learning approaches, RF and SVM. The six schemes that
were composed of various combinations of input data by sensor and collection date were carried
out, and the effect of data dimensionality was analyzed over two different regions. The spectral and
temporal characteristics of paddy rice were identified, and Paddy rice Mapping Index (PMI) was
proposed based on the phenological characteristics of paddy rice.

SAR data contributed to paddy rice classification more for site A than site B, which implies that it
might not be ideal to use SAR data only for paddy rice classification in areas with rugged terrains and
heterogeneous land cover. Nonetheless, SAR data were able to improve classification accuracy when
using with Landsat data. Although it is considered that the fusion of Landsat and SAR might not be
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necessary for areas with low cloud cover, such a fusion can be effective to paddy rice classification for
Asia because most regions in Asia are very cloudy, especially for the growing season, which limits the
availability of optical time series data.

The performance of SVM was better than that of RF at both sites, which is consistent with
Pouteau et al. [70] and Raczko & Zagajewski [71]. In this study, classifications were conducted in a
10-dimensional feature space for scheme 1, and more than 60-dimensional feature space for the other
schemes. As SVM is known to work well in a large dimensional feature space, it could be better for
SVM to classify paddy rice than RF [70]. Raczko and Zagajewski [71] stated that the number of training
samples has an impact on the performance of a classifier, and Kavzoglu & Mather [72] stated that more
than 400 pixels per class are needed for robust classification. In this study, a relatively small number of
training samples (less than 200 pixels per class) were used, which might explain the better performance
of SVM than RF because SVM works well with a small sample size as well as mixed pixels [56,73].

Land cover was more heterogeneous in site B than site A with a higher number of classes (six
classes in site A and eight classes in site B). The population density of site B (249 people/km2) was
about four times more than that of site A (61 people/km2), and classes were more patched and thus
more mixed within a pixel in site B than site A. Those factors influenced the classification accuracy
at site B. The size of paddy rice fields needs to be considered in the future research as discussed in
Dong et al. [17]. Higher resolution data, such as RapidEye, are needed to classify paddy rice where
the size of paddy rice field is small, such as in site B.

The approach proposed in this study have benefited from the use of phenological characteristics
of paddy rice (i.e., time series data). The phenology of paddy rice in terms of various spectral bands
and vegetation indices can be used for numerous applications because such phenology is a relative
characteristic that varies by region. There are many fields that use the phenological characteristics
of crops (e.g., paddy rice), such as classifying different vegetation (crop) types [74,75], crop yield
estimation [76,77], gross and net primary production (GPP/NPP) estimation [78], and quantifying crop
water requirements [79]. In addition, the approach that was developed in this study can be applied
to any inaccessible regions where in situ data are not available, such as North Korea. For example,
previous studies conducted classification over inaccessible regions applying training samples from
different areas that have similar climate and environmental characteristics [80] or unsupervised
classification [81].

While machine learning-based classification requires training data, which is often challenging for
certain areas, PMI-based paddy rice mapping does not require any in situ data for training. Although
the validation accuracy of PMI based results was relatively lower than those of the machine learning
approaches, the spatial distribution of paddy rice well matched that of the reference paddy rice data.
PMI can be applied to different regions with the same threshold (greater than 0.2) or an adjusted
threshold considering the dates of data acquisition. Consequently, PMI is considered to be useful to
map paddy rice because PMI is calculated using a very simple equation and needs only two Landsat
images or similar satellite data with NIR bands during the planting and harvest seasons. An annual
update of paddy rice maps is possible using PMI. However, the availability of optical sensor data
due to cloud contamination could be a limiting factor, especially for East Asia. This limitation can
be overcome using geostationary satellite data, such as planned Geostationary Ocean Color Imager
(GOCI)-2, which have high temporal resolution (~hourly) with 250 m spatial resolution. It is expected
that fully clear images during two seasons can be successfully obtained every year using geostationary
satellite data.

Paddy rice mapping at a regional or continental scale can be conducted using PMI through Google
Earth Engine with an aid of the continued improvement of computing capacity. However, in this study,
paddy rice detected using PMI was somewhat confused with other crops where paddy rice is planted
in dry fields. It is one of the limitations of using PMI, in that PMI can be successfully applied only
where paddy rice is planted in flooded fields.
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6. Conclusions

As the population in the world increases, the demand of rice also increases. Thus, providing
accurate and up-to-date paddy rice maps is very important. A satellite-based approach produces paddy
rice maps with a fast update cycle in comparison with the traditional survey approach. In this study,
Landsat, SAR, and SRTM data were used to classify paddy rice at two sites that have different climatic
and environmental characteristics. This study evaluated six schemes to identify the improvement of
classification performance through the investigation of the characteristics of study areas, classifiers,
and fusion of multi-sensor time series data. As expected, the classification accuracy was the highest
when using multi-sensor time series data (scheme 6). Site A showed better performance than site B
because Site A consisted of more homogeneous land cover and had higher data availability during
the growing season than site B. The performance of SVM classifier was slightly better (accuracy of
1–3%) than RF, especially at site B because SVM works well in a small sample size and at a mixed
pixel. Paddy Rice Mapping Index (PMI) considering spectral and phenological characteristics of paddy
rice was proposed in this study. NIR and SAR backscattering coefficients detected the phenological
characteristic of paddy rice well. Although the performance of PMI is slightly worse than the RF or
SVM classifications based on multi-sensor time series data, PMI is useful to operationally map paddy
rice, because PMI is simply calculated only using two scenes and does not require training data, which
implies that the PMI-based approach can be applied to different regions. In addition, paddy rice can
be easily mapped using the Google Earth Engine platform.

There are some limitations in the use of PMI. PMI can be applied only where paddy rice areas
are flooded during the transplanting season. As the current threshold, greater than 0.21, based on the
results for 13 years is a little arbitrary, more robust and adaptive thresholding approaches should be
considered. There are some misclassified pixels due to the heterogeneous composition of the land
cover within a pixel at site B. In further studies, the size of paddy rice fields need to be considered
when selecting satellite images, and higher resolution data, such as RapidEye or Worldview series,
need to be evaluated to detect small size paddy rice patches.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/10/3/447/s1.
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