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Abstract: Nighttime light data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night
Band (DNB) provides a unique data source for mapping and monitoring urban areas at regional
and global scales. This study proposes an object similarity-based thresholding method using VIIRS
DNB data to map urban areas. The threshold for a target potential urban object was determined by
comparing its similarity with all reference urban objects with known optimal thresholds derived from
Landsat data. The proposed method includes four major steps: potential urban object generation,
threshold optimization for reference urban objects, object similarity comparison, and urban area
mapping. The proposed method was evaluated using VIIRS DNB data of China and compared with
existing mapping methods in terms of threshold estimation and urban area mapping. The results
indicated that the proposed method estimated thresholds and mapped urban areas accurately
and generally performed better than the cluster-based logistic regression method. The correlation
coefficients between the estimated thresholds and the reference thresholds were 0.9201–0.9409 (using
Euclidean distance as similarity measure) and 0.9461–0.9523 (using Mahalanobis distance as similarity
measure) for the proposed method and 0.9435–0.9503 for the logistic regression method. The average
Kappa Coefficients of the urban area maps were 0.58 (Euclidean distance) and 0.57 (Mahalanobis
distance) for the proposed method and 0.51 for the logistic regression method. The proposed method
shows potential to map urban areas at a regional scale effectively in an economic and convenient way.
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1. Introduction

Although only occupying less than 3% of Earth’s terrestrial surface, urban areas have
accommodated more than half of the global population by 2015 [1] and have exerted enormous
influence on their surroundings [2,3]. Urbanization in the past four decades has created great
opportunities for anthropogenic social development and also has driven dramatic changes in land
use and land cover, biodiversity, hydrosystems, atmosphere, and ecosystems, as well as climate,
locally to regionally [4,5]. Thus, accurate and timely updated information on the spatial extent and
dynamics of urban areas at regional and global scales is vital for analyzing the impact of urban areas
and understanding urbanization dynamics.

Remote sensing provides a powerful data source for mapping urban areas and monitoring
urbanization dynamics at different scales. High- to medium-resolution images with relatively high cost,
limited scene extent, and long revisit period, such as QuickBird, IKONOS, and Landsat series images,
are widely utilized in urban area mapping for local regions [6–8]. Moderate- and coarse-resolution
images are more effective for the extraction of urban areas at regional and global scales [9–12] because of
wide coverage and high temporal resolution. In recent years, nighttime light data of coarse resolution,
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capturing information on human activities, have been widely available and providing unique and
valuable data sources for mapping urban areas and monitoring urbanization dynamics. The Defense
Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) has been collecting
nighttime light emission from the earth surface since 1992, and its recorded nighttime light (NTL)
data have been widely used in urban area mapping and monitoring [13–18]. The Day/Night Band
(DNB) from Visible Infrared Imaging Radiometer Suite (VIIRS) sensor, onboard the Suomi National
Polar-Orbiting Partnership (NPP), which was launched in October 2011, presents an unprecedented
night observation capability [19]. Compared with its predecessor (DMSP/OLS), VIIRS DNB performs
better at ground footprint, quantization, and calibration [20–22]. In particular, VIIRS DNB has a
broader radiometric measurement range and outperforms at low-light detection, which significantly
reduces the saturation and over-glow problem inherent to DMSP/OLS data [20,21].

Because of the improved performance, VIIRS DNB data have been used in various applications,
such as extracting urban areas [23–27], reflecting demographic and socioeconomic conditions [25,28–33],
monitoring nocturnal surface air quality [34–36], and so on [26,37–41].

The methods for extracting urban areas with VIIRS DNB data developed so far are generally
categorized into two types, i.e., classification method and thresholding method. Zhang et al. [42]
explored a one-class classifier named support vector data description (SVDD) to map urban extent,
using VIIRS DNB and normalized difference vegetation index (NDVI) data, but the global and
uniform parameters set for SVDD were not met in regions of different economic development
levels. Thresholding methods are more commonly used because of their simplicity and reasonable
accuracy [16,23,25,27,43]. With thresholding methods, pixels with light magnitudes larger than a
predefined threshold value are labeled as urban area, and otherwise as nonurban area. However,
it is widely recognized that applying a single threshold at a regional or national scale is possibly
problematic [44,45], as thresholds for separating urban and nonurban areas vary with physical
environments and socioeconomic development levels. Therefore, in recent studies, local thresholds
were used, e.g., a threshold for a city or a tile region [27]. For example, Shi et al. [23] utilized census data
as reference and set the threshold for a city as the DNB value that produced the minimum difference of
urban area between the extracted results and the census data. Similarly for a city, Xie et al. [25] chose
the light magnitude value under which the number of delineated contiguous urban areas reached the
peak as the threshold. Sharma et al. [27] proposed an index combining the MODIS multispectral data
and VIIRS DNB data and applied thresholds that were derived on the basis of the index histogram
of different land cover classes to tile regions (10◦ latitude × 10◦ longitude divided out of the globe
surface). In the studies mentioned above, the threshold for each local region was determined using
reference data, which means that large quantities of reference data are required for extracting urban
areas in a large region. Therefore, these methods are not suitable for regional and global scales because
of the heavy demands for reference data. The extraction of urban areas at regional and global scales in
a convenient and low-cost way remains a conundrum.

In a related study, Zhou et al. [16] developed a cluster-based method to map urban extent from
DMSP/OLS data, where optimal thresholds were fitted by a logistic regression model for potential
urban clusters (objects) generated from image segmentation. The method provided a new way of
determining thresholds for local regions (i.e., image segments rather than fixed city or tile regions) and
produced promising results. Moreover, reference data of merely a portion of the study area, instead of
the whole area were required. However, this method was built on a logistic functional relationship of
optimal thresholds and cluster features observed from DMSP/OLS NTL data. It is unknown whether
this method, developed for DMSP/OLS data, is applicable to VIIRS DNB data as well.

With regard to these problems, it is necessary to exploit a cost-effective and regionally applicable
method for urban area extraction using VIIRS DNB data. In this paper, we propose a new local
thresholding method based on object similarity to map urban areas at a regional scale from VIIRS
DNB data. The method aims at estimating thresholds of potential urban objects with the use of as
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little reference data as possible. In addition, the logistic regression method [16] was also applied using
VIIRS DNB data and assessed to find out whether it also performs well with DNB data.

2. Study Area and Data

2.1. Study Area

In this study, China was selected as the study area. As the most populous country, China has
been experiencing an unprecedented urbanization with rapid economic growth since the initiation
of economic reforms in 1978 [46,47]. However, urbanization in China presents significant regional
inequality, reflected mainly on aspects of the population and economy [48–50]. The diverse physical
environments and socioeconomic development levels make China suitable to evaluate the effectiveness
of different urban area mapping methods using nighttime light data.

2.2. Data and Preprocessing

VIIRS DNB Cloud-Free Composites (version 1) and Landsat 8 OLI (Operational Land Imager)
data were used in this study. VIIRS DNB Cloud-Free Composites are a suite of monthly/annual
mean radiance composite images, where the impacts of stray light, lightning, lunar illumination,
and cloud-cover have been excluded. The products span the globe from 75N to 65S of latitude in 15
arc-second geographic grids. Though the monthly images collected from April 2012 to now and the
annual image of 2015 have been released by the National Oceanic and Atmospheric Administration
(NOAA) (http://ngdc.noaa.gov/eog/viirs/download_monthly.html), only images of April and
October 2012 and January 2013 were available at the start of this study. Considering the absence
of Landsat data of 2012 in the study area, the DNB image of January 2013 was chosen. The image was
reprojected into Albers Conical Equal Area projection with the resampling pixel size of 750 m by 750 m
and was clipped according to Chinese administrative boundaries (Figure 1). It is seen clearly from
the magnified views of several cities in Figure 1 that VIIRS DNB data captured fine internal urban
structures, lighted road networks, and small towns surrounding central big cities.

It should be noted that the nighttime-lights monthly composites still contained lights from aurora,
fires, boats, and other temporal lights, and had not been separated from background (non-light)
values. Thus, these confounding factors were eliminated or reduced. First, the background noise
was removed using a thresholding method [28,29,37]. Specifically, pixels with DNB values lower
than 0.5 were assigned a value of zero. Second, the pixels with very high DNB values which may
not be resulted from human activities were removed. It is usually assumed that the maximum pixel
value of an image is located in the most developed region [23,25]. However, it was found that, in the
denoised DNB image, the maximum pixel value of the study area (as high as 1923.002) was much
higher than the maximum value (259.065) of the most developed cities in China, i.e., Beijing and
Shanghai. Therefore, these abnormal strong lights (higher than 259.065) that might be caused by other
factors, e.g., gas flares [25,31], were assigned the pixel value of zero.

To collect reference data for developing and validating the proposed method, 45 cities scattered
all over China (Figure 2), involving all provincial administrative regions, were utilized as reference
cities. These cities were selected from all classes of urban size [51] with different levels of urbanization
and economic development. For the sake of comparison, the selected reference cities were divided
into four groups by simplifying the urban classification scheme in [51]. Group 1, super large cities,
contains cities with urban population of more than 5 million. Group 2, large cities, contains cities with
urban population of 3–5 million. Group 3, medium cities, contains cities with urban population of
1–3 million. Group 4, small cities, contains cities with urban population of less than 1 million.

http://ngdc.noaa.gov/eog/viirs/download_monthly.html
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Figure 1. Visible Infrared Imaging Radiometer Suite Day/Night Band (VIIRS DNB) imagery of China 
in 2013 (unit of the pixel value: n·W·cm−2·sr−1). Insets show the zoomed-in images of Beijing, Chengdu, 
and Yinchuan. 

Landsat 8 OLI images were used to generate urban area maps acting as reference data. A total 
of 59 cloud-free Landsat 8 OLI images, acquired mostly from June to September 2013, covering the 
45 reference cities, were downloaded from the United States Geological Survey (USGS) 
(http://earthexplorer.usgs.gov/) and reprojected into Albers Conical Equal Area projection, the same 
as the projection of DNB data. The Support Vector Machine (SVM) classifier, a recently developed 
and widely used classifier, was used to classify the Landsat OLI images into four land-cover types 
present in the study area, i.e., urban area, vegetation (including forest, grassland, and farmland), 
water, and bare soil. After classification, the vegetation, water, and bare soil classes were merged into 
a nonurban class, and urban land classification results (urban class and nonurban class) were thus 
produced. 

The 30 m resolution urban land classification results obtained from Landsat OLI data were then 
upscaled to urban area maps of 750 m resolution, the same as the pixel size of DNB data. Specifically, 
750 m urban fraction maps were first produced by calculating the proportion of 30 m urban class 
pixels in each 750 m pixel. Then, 750 m binary urban area maps were produced by thresholding the 
obtained urban fraction maps. An appropriate threshold of urban fraction should be determined. In 
the National Land Cover Database (NLCD) [52], the land use category of developed area was defined 
as pixels with impervious surfaces accounting for more than 20%. However, in [53], for global cities 
from different geographical settings and levels of economic development, a pixel with urban and 
built-up land dominating more than 50% was labelled urban. In this study, urban fraction values 
from 20% to 50% were tested to select an appropriate threshold for urban area extraction. The test 
results showed that the use of 35% as threshold produced the most similar urban areas to those from 

Figure 1. Visible Infrared Imaging Radiometer Suite Day/Night Band (VIIRS DNB) imagery of China in
2013 (unit of the pixel value: n·W·cm−2·sr−1). Insets show the zoomed-in images of Beijing, Chengdu,
and Yinchuan.

Landsat 8 OLI images were used to generate urban area maps acting as reference data.
A total of 59 cloud-free Landsat 8 OLI images, acquired mostly from June to September 2013,
covering the 45 reference cities, were downloaded from the United States Geological Survey (USGS)
(http://earthexplorer.usgs.gov/) and reprojected into Albers Conical Equal Area projection, the same
as the projection of DNB data. The Support Vector Machine (SVM) classifier, a recently developed
and widely used classifier, was used to classify the Landsat OLI images into four land-cover types
present in the study area, i.e., urban area, vegetation (including forest, grassland, and farmland),
water, and bare soil. After classification, the vegetation, water, and bare soil classes were merged
into a nonurban class, and urban land classification results (urban class and nonurban class) were
thus produced.

The 30 m resolution urban land classification results obtained from Landsat OLI data were then
upscaled to urban area maps of 750 m resolution, the same as the pixel size of DNB data. Specifically,
750 m urban fraction maps were first produced by calculating the proportion of 30 m urban class
pixels in each 750 m pixel. Then, 750 m binary urban area maps were produced by thresholding the
obtained urban fraction maps. An appropriate threshold of urban fraction should be determined.
In the National Land Cover Database (NLCD) [52], the land use category of developed area was
defined as pixels with impervious surfaces accounting for more than 20%. However, in [53], for global
cities from different geographical settings and levels of economic development, a pixel with urban and
built-up land dominating more than 50% was labelled urban. In this study, urban fraction values from

http://earthexplorer.usgs.gov/
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20% to 50% were tested to select an appropriate threshold for urban area extraction. The test results
showed that the use of 35% as threshold produced the most similar urban areas to those from Landsat
data, thus the threshold of 35% was considered optimal. Therefore, pixels with an urban fraction of
more than 35% were defined as urban area and otherwise as nonurban area.
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Figure 2. The 45 reference cities selected for developing and validating the proposed method with
their urban population in 2013 [54].

3. Methods

In this study, we proposed an object similarity-based thresholding method to estimate optimal
local thresholds and to map urban areas from VIIRS DNB data. Instead of using a single threshold for
a predefined region, e.g., a city, a threshold separating urban and nonurban pixels for each potential
urban object, mainly generated by image segmentation, was determined. The pixels with DNB
values larger than the determined threshold were labeled as urban area and otherwise as nonurban
area. The method was built on the assumption that similar potential urban objects have similar
DNB threshold values for extracting urban areas. Given a set of reference urban objects with known
thresholds estimated from Landsat data beforehand, a target potential urban object was assigned
the same threshold value as that of the reference urban object which was the most similar to the
target object. The proposed method consisted of four major steps: potential urban object generation,
threshold optimization for reference urban objects, object similarity comparison, and urban area
mapping. First, potential urban objects were produced. Second, threshold values of reference urban
objects (used for the development and validation of the method) were optimized using Landsat-based
urban area maps, and reference urban objects for training were then selected. Third, object features
were defined in terms of the object size and luminance, and the threshold for a target potential urban
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object was estimated by quantitatively comparing with training objects in terms of the defined features.
Finally, the urban area was mapped with the estimated threshold for each object. The flowchart of the
proposed method is illustrated in Figure 3.Remote Sens. 2018, 12, x FOR PEER REVIEW  6 of 22 
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3.1. Potential Urban Object Generation

Image segmentation was first conducted on VIIRS DNB images to generate initial urban
objects, which served as the basic processing units for local threshold optimization and urban area
mapping. Image segmentation, which is widely used in very high-resolution image processing [55–57],
aims at partitioning an image into homogeneous and meaningful objects [58]. The multiresolution
segmentation approach implemented in the eCognition software (Trimble: Westminster, CA, USA)
was adopted in this study, since it is considered a high-quality solution applicable and adaptable to
diverse problems and data types [59]. The multiresolution segmentation adopts a region-merging
technique [59]. It starts with each pixel forming one image object or region. At each step, a pair of
image objects is merged into one larger object. The merging decision is based on local homogeneity
criteria describing the similarity of adjacent image objects. A ‘merging cost’, which represents the
degree of fitting, is also assigned to each possible merge. For a possible merge, the degree of fitting
is evaluated, and the merge is fulfilled if it is smaller than a given ‘least degree of fitting’, termed
the scale parameter. The procedure stops when there are no more possible merges. A smaller-scale
parameter permits fewer merges and smaller segments. It should be noted that other segmentation
algorithms could also be used for object production.

In fact, in the obtained initial segmentation results, there were a large number of pixels with zero
or very low DNB values, which were obviously not urban areas and irrelevant to urban area mapping.
To reduce the computation of the subsequent procedures, these urban-irrelevant pixels were removed.
Specifically, for the objects where the proportion of zero-value pixels was more than 90%, the entire
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objects were excluded. For the objects where the proportion was less than 90%, only the zero-value
pixels were eliminated. The remaining nonzero-value pixels made up the final segmentation results
that were considered as potential urban objects. It should be noted that not all pixels in a potential
urban object were urban, and the proportion of urban pixels varied with the objects. Cases existed
where the entire object was composed of nonurban pixels.

3.2. Threshold Optimization for Reference Urban Objects

In this step, we created reference urban objects and determined optimal thresholds for these
objects. Reference urban objects are the potential urban objects overlapped with reference urban
areas. By overlapping the potential urban objects and the 750 m urban area maps of the reference
cities derived from Landsat data, the completely overlapped potential urban objects were considered
reference urban objects.

Following the method used in [16], optimal DNB thresholds for reference urban objects were
determined using the Landsat-based urban area maps in an iterative process. For a reference urban
object, different threshold values between the minimum and maximum DNB light magnitude in the
image with a step increment of 0.01 were applied to extract the urban area, and the threshold that
produced from the DNB image the urban area that was the closest to that from the reference urban
area map was considered optimal. For cases where more than one threshold led to the same urban area
that was the closest to the reference, the best matching one with regard to spatial extent was selected.

The obtained reference urban objects with optimized thresholds were then divided into two
portions, one for estimating the optimal thresholds for target potential urban objects (training objects)
and the other for validation (validation objects). Considering that the reference urban area data are
provided at city level in practical applications, the training objects were also generated at city level.
A portion of the reference cities were selected by stratified random sampling from the four city groups,
and the reference urban objects located in these cities were considered as training objects, whereas the
reference urban objects in the remaining reference cities were considered as validation objects.

3.3. Object Similarity Comparison

A key step of the proposed method was to compare each target potential urban object with all
training objects with known threshold values to find the most similar training object for the target
object. The target object was then assigned the same threshold value as that of the most similar
training object.

For quantitatively comparing a target potential urban object and a training object, appropriate
object features were defined to measure the object similarity. In [16], the NTL mean and the pixel
number of a potential urban cluster (object) were used to fit the functional relationship with optimal
thresholds. In this study, in addition to these two features, other features, such as the standard
deviation and the sum and maximum light, depicting the luminance and size of a potential urban
object, were also tested by estimating the thresholds for the validation objects. It was found that the
combination of mean and standard deviation of the light magnitude, and the pixel number of the
object resulted in the thresholds closest to the optimal thresholds, and thus these three features were
selected to quantify the similarity between objects.

Two distance measures, i.e., the Euclidean distance (ED) and the Mahalanobis distance (MD) [60],
were used for measuring the similarity between a target potential urban object and a training object.
Both distances are commonly used similarity measures [61–64]. The ED assumes that each feature
is equally important and independent from others, while the MD accounts for correlations between
features and the variability of features, weighting each feature differently by the range of variability [63].
Specifically, in MD, features with high variability receive less weight than features with low variability.

In this study, with the features defined, the ED is expressed as Equation (1):
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dE(a, bj) =
√
(ln m(a)− ln m(bj))

2 + (ln σ(a)− ln σ(bj))
2 + (ln s(a)− ln s(b))2, j ∈ {1, 2, . . . , n} (1)

where dE(a, bj) stands for the ED between a target potential urban object a and a training object bj,
n is the number of the training objects, and m(•), σ(•), s(•) denote the mean of the light magnitude,
the standard deviation of the light magnitude, the pixel number of the object, respectively. It should be
noted that, as the ED captures a scale variant discrepancy, the three feature variables were transformed
through a natural log for the purpose of accommodating their different ranges of magnitude value [16,19].

The MD is expressed as Equation (2):

dM(
→
a ,
→
bj) =

√
(
→
a −

→
bj)

T
Σ−1(

→
a −

→
bj), j ∈ {1, 2, . . . , n},→a ,

→
bjε (m, σ, s) (2)

where dM(
→
a ,
→
bj) stands for the MD between a target potential urban object a and a training object bj,

→
a ,
→
bj are object feature vectors of the vector space consisting of three dimensions, i.e., mean of the light

magnitude m, standard deviation of the light magnitude σ, pixel number s of the object; Σ denotes
the covariance matrix of the feature matrix. The sample set was made up of all target potential urban
objects and training objects. As MD is scale-invariant, so the features were not transformed through a
natural log in the calculation.

Smaller distance means higher similarity. For the target potential urban object a, the distances
d(a, bj) for all training objects (j ∈ {1, 2, . . . , n}) were calculated, and the optimal threshold t was the
threshold for the training object with the smallest distance, i.e.,

t = arg min{d(a, bj)}, (3)

3.4. Urban Area Mapping

After the thresholds for potential urban objects were obtained, the pixels in a potential urban
object with DNB values larger than the estimated threshold were labeled as urban area, and otherwise
as nonurban area. The urban area mapping result was produced. To further improve the initial
mapping result, a post-processing procedure was applied to remove the urban objects of very small
size. Specifically, the urban patches with a size of less than four pixels were eliminated.

3.5. Validation

The proposed method was evaluated in two aspects. First, the estimated object thresholds
were quantitatively compared to the optimal thresholds derived from classified Landsat images
(i.e., reference thresholds) in terms of the correlation coefficient (r) and Root Mean Squared Error
(RMSE). Second, the urban area mapping results were quantitatively compared with reference urban
area maps from Landsat images. Two commonly used accuracy measures, the overall accuracy (OA)
and the Kappa Coefficient, were adopted.

For a full validation of the proposed method, two existing local thresholding methods were
conducted for comparison.

The first comparative method is a local-optimized thresholding method [65] (called the
city-optimized method hereafter), which determines a single threshold for one city by matching
the urban area mapped from VIIRS DNB data to that from Landsat images as closely as possible.

The second comparative method is the cluster-based thresholding method [16] (called the logistic
regression method hereafter), initially proposed for mapping urban areas from DMSP/OLS data.
Using this method, the optimal thresholds for potential urban clusters (i.e., objects) were estimated
by fitting a logistic model of the relationship between an index integrated of cluster size and mean of
light magnitude, and the threshold. The logistic model was expressed as follows:
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t =
1

1 + e−(α ln m+β ln s+η)
(max−min) + min, (4)

where t is the optimal threshold for the urban cluster, m and s denote the mean of the light magnitude
and the pixel number of the object, max and min are the maximum and minimum DNB radiance
values in the study area, α, β, and η are coefficients of the logistic model. Equation (4) was converted
to a linear form through a natural log (Equation (5)), and the coefficients were calculated using the
ordinary least squares regression.

ln (
max−min

t−min
− 1) = −(α ln m + β ln s + η), (5)

The training samples used for developing the logistic model were identical to the training objects
for the proposed method.

To evaluate the robustness of the proposed method, five tests were conducted using different
training objects and validation objects, generated by stratified random sampling of the reference urban
objects, as described in Section 3.2. In each test, the three methods were evaluated using the identical
validation objects.

4. Results

4.1. Potential Urban Objects

In the preprocessed DNB image of the study area, the light radiance value range was 0.5–259.065.
It was found that 97% of pixels were of values lower than 30, and only few pixels located in urban core
areas of big cities were of larger values. This means that the values of most pixels in small cities and
fringe areas of big cities were densely distributed within a narrow range, and the local homogeneity
of pixel values was very high, which could result in overlarge segments in these areas. Therefore,
to reduce the local homogeneity of pixel values and produce objects with appropriate sizes, the pixel
values were first enlarged by 10 times prior to segmentation.

Image segmentation results from the multiresolution segmentation method with the scale
parameter of 25 were used in this study. A total of 30,313 image objects were initially produced
from image segmentation. After removing urban-irrelevant pixels, 18,848 potential urban objects were
left for urban area mapping (Figure 4). It is seen from the magnified images of Beijing, Chengdu,
and Yinchuan in Figure 4 that the sizes of the obtained urban objects in urban core areas were apparently
smaller than those in fringe areas. This indicates that the DNB light radiance of urban core areas has a
higher variation.

Table 1. The numbers of reference urban objects for training and validation from different city groups
in five tests.

Test Reference Urban Objects Group 1 Group 2 Group 3 Group 4

1
Training 256 152 214 29

Validation 462 209 260 39

2
Training 368 117 202 32

Validation 350 244 272 36

3
Training 285 84 226 35

Validation 433 277 248 33

4
Training 357 146 262 32

Validation 361 215 212 36

5
Training 239 223 220 17

Validation 479 138 254 51
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Figure 4. Potential urban objects in a VIIRS DNB image of the study area. The insets show the zoom-in
for Beijing, Chengdu, and Yinchuan. Different potential urban objects are identified by different
non-white colors. The white background corresponds to non-urban area.

As mentioned in Section 3.5, five tests were conducted for validation of the proposed method.
In each test, 20 cities were selected for providing training objects by stratified random sampling and
the remaining 25 cities were used for providing validation objects. The numbers of training objects
and validation objects from different city groups used in different tests were listed in Table 1.

4.2. Estimation of Thresholds for Potential Urban Objects

The 30 m urban land classification results from Landsat OLI images of the 45 reference cities
were validated using reference samples. For each city, 200–300 samples were generated using the
stratified random sampling method, where the numbers of samples were proportional to the pixel
numbers of the urban and nonurban classes. The class attribute of each sample was determined with
the support of higher-resolution images from Google Earth. The overall accuracies were in the range
of 88.31–98.05%, with the average of 94.03%, and the Kappa Coefficients were in the range of 0.69-0.93,
with the average of 0.83. The accuracies of urban land classification results from Landsat OLI images
were acceptable for being used as reference data, considering that the spatial resolution of Landsat
OLI images is much higher than that of the VIIRS DNB images.

Figure 5 shows the scatter plots of the thresholds estimated from different methods against the
reference optimal thresholds for the validation objects.

As seen from Figure 5a, the correlation coefficients (r) between the thresholds from the logistic
regression method and the reference thresholds were 0.9435–0.9503, which are very high. The RMSEs
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of the method were 8.1856–10.4821. It was found that the thresholds of small values (smaller than circa
50) were estimated accurately by the logistic regression method, while the thresholds of large values
(larger than circa 50) were underestimated. The sample points of the logistic regression method were
compact and very close to the 1:1 line for small threshold values. However, the slope of the sample
points significantly changed as the threshold increased, from larger than 1 to smaller than 1, resulting
in the sample points deviating far from the 1:1 line for large threshold values.

From Figure 5b, it can be seen that the correlation coefficients (r) between the thresholds from the
proposed method using ED as similarity measure and the reference thresholds were 0.9201–0.9409,
slightly lower than those of the logistic regression method, and the RMSEs were 8.4139–9.5720,
slightly lower than those of the logistic regression method. From Figure 5c, it can be seen that the
correlation coefficients (r) between the thresholds from the proposed method using MD and the
reference thresholds were 0.9461–0.9523, very similar to those of the logistic regression method, and the
RMSEs were 7.4340–7.9845, much smaller than those of the other two results. It is clearly shown that
the sample points of the proposed method, using either ED or MD, were distributed close to the 1:1line,
with a constant slope of circa 1 for the entire body of the points. However, compared to those of the
logistic regression method, the sample points of the proposed method using both ED and MD were
more scattered, and this was even worse for the proposed method using ED.
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Figure 5. Scatter plots of the estimated thresholds (n·W·cm−2·sr−1) against the reference optimal
thresholds (n·W·cm−2·sr−1) for the validation objects in Tests 1–5 for the logistic regression method (a);
the proposed method using Euclidean distance (ED) as similarity measure (b); the proposed method
using Mahalanobis distance (MD) as similarity measure (c).

Overall, in threshold estimation, the proposed method using MD achieved the smallest RMSEs.
The proposed method using MD and the logistic regression method achieved higher correlation
coefficients than the proposed method using ED.

4.3. Urban Area Mapping Results

The urban area mapping result from VIIRS DNB using the proposed method is displayed in
Figure 6. As the results from the proposed method using ED and MD are very similar, only the result
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using ED is shown. From the figure, there is a notable spatial discrepancy in the distribution of urban
areas in China. The great majority of urban areas were distributed in east China region, particularly
in the eastern coastal region. Large urban agglomerations, including the Beijing–Tianjin–Tangshan
Metropolitan Region, the Yangtze River Delta, and the Pearl River Delta were clearly identified.
In contrast, only a small portion of urban areas were scattered in west China region.

The urban area mapping results of eight selected reference cities of different sizes (two cities
from each city group) using different methods are illustrated in Figure 7. To present clearly the
differences between the results from the different methods and the reference images derived from
Landsat, the common parts, overestimation parts, and underestimation parts compared to the reference
are shown in different colors for each city. The complete urban area mapping result of a city from
a method is composed of the common parts (grey pixels) and the overestimation parts (red pixels).
Generally, all the three thresholding methods produced relatively accurate mapping results. However,
these three methods showed different characteristics.
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Figure 6. Urban area mapping result of China with VIIRS DNB data from the proposed method (using
ED as similarity measure) in Test 3.

The urban area mapping results from the city-optimized method (Figure 7c) had the maximum
common parts and the minimum overestimation and underestimation parts for every selected city
among the results from all methods. This indicates that the results from the city-optimized method are
the most similar to the reference data and are the most accurate. Besides, the area of the overestimation
parts was always as large as that of the underestimation parts, indicating that the extracted urban area
was as large as that of the reference data.
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In the urban area mapping results from the logistic regression method (Figure 7d), there were
apparently more overestimation parts than underestimation parts for almost all selected cities, except
for Beijing. Moreover, it was also found that this problem was more noticeable in smaller cities.
In Beijing, the underestimation parts were more than the overestimation parts. However, in smaller
cities, the underestimation parts were less. For example, in Hefei and Lhasa, there are barely no
underestimation parts.

The urban area mapping results from the proposed method using ED as similarity measure
(Figure 7d) and using MD as similarity measure (Figure 7e) were almost the same, except that the
overestimation parts in Xi’an and the underestimation parts in Lanzhou were more when using MD
than when using ED. Compared to the logistic regression method, the results from the proposed
method had more underestimation parts but obviously less overestimation parts for all selected cities.

Remote Sens. 2018, 12, x FOR PEER REVIEW  13 of 22 

 

than when using ED. Compared to the logistic regression method, the results from the proposed 
method had more underestimation parts but obviously less overestimation parts for all selected cities. 

 

Figure 7. VIIRS DNB images of eight selected reference cities in Test 3 (a); 750 m reference urban area 
maps from Landsat classification (b); corresponding urban area mapping results from different 
methods: results from the city-optimized method (c); results from the logistic regression method (d); 
results from the proposed method using ED (e) and using MD (f). The combined pixels in gray color 
and in red color are the urban areas generated from different mapping methods. 

4.4. Accuracy Assessments 

The quantitative evaluations of the urban area mapping results from different methods are listed 
in Table 2. For the city-optimized method, there was only one mapping result and one accuracy result 
for each city. For the logistic regression method and the proposed method, five tests were carried out, 
with each using 25 reference cities for validation. Thus, every reference city was selected for 
validation twice or more. To integrate different accuracies (OA and Kappa Coefficient) of more than 
one mapping result for a city from one method, the average and standard deviation of the accuracies 
were calculated and used for the assessment. 

In Table 2, the OAs and Kappa Coefficients of the city-optimized method are in the range of 
75.69–94.29% and 0.49–0.79, with an average of 88.14% and 0.68, respectively. For every reference 
city, the accuracies of the city-optimized method were the highest among the three methods. This is 
consistent with the evaluation of the urban area mapping results of the selected reference cities in 
Section 4.3.

Figure 7. VIIRS DNB images of eight selected reference cities in Test 3 (a); 750 m reference urban
area maps from Landsat classification (b); corresponding urban area mapping results from different
methods: results from the city-optimized method (c); results from the logistic regression method (d);
results from the proposed method using ED (e) and using MD (f). The combined pixels in gray color
and in red color are the urban areas generated from different mapping methods.

4.4. Accuracy Assessments

The quantitative evaluations of the urban area mapping results from different methods are listed
in Table 2. For the city-optimized method, there was only one mapping result and one accuracy result
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for each city. For the logistic regression method and the proposed method, five tests were carried out,
with each using 25 reference cities for validation. Thus, every reference city was selected for validation
twice or more. To integrate different accuracies (OA and Kappa Coefficient) of more than one mapping
result for a city from one method, the average and standard deviation of the accuracies were calculated
and used for the assessment.

In Table 2, the OAs and Kappa Coefficients of the city-optimized method are in the range of
75.69–94.29% and 0.49–0.79, with an average of 88.14% and 0.68, respectively. For every reference
city, the accuracies of the city-optimized method were the highest among the three methods. This is
consistent with the evaluation of the urban area mapping results of the selected reference cities in
Section 4.3.

The proposed method performed the second best. The OAs and Kappa Coefficients of the method
using ED as similarity measure were in the range of 70.85–92.16% and 0.35–0.71, with an average
of 84.53% and 0.58, respectively, while the OAs and Kappa Coefficients of the method using MD
were in the range of 67.44–92.52% and 0.29–0.83, with an average of 84.20% and 0.57, respectively.
For almost all reference cities (except for Nanchang), the accuracies of the proposed method, using ED
or MD, were the second highest. The ED and MD performed very similarly in this study. The Kappa
Coefficients of the mapping results from the proposed method using ED were higher (or equal but
with less standard deviation) for 25 reference cities.

The OAs and Kappa Coefficients of the logistic regression method were in the range of
80.92–90.66% and 0.30–0.67, with an average of 80.92% and 0.51, respectively. In terms of Kappa
Coefficient, the logistic regression method had lower accuracies than the proposed method using ED
in all except for two reference cities, i.e., Nanchang and Xining, and it had lower accuracies than the
proposed method using MD in all except for four reference cities, i.e., Chengdu, Nanchang, Linfen,
and Xingtai.

In addition, it was also found that the accuracy of the urban area mapping results was not
completely dependent on the method, but it was related to the city size as well. For all the three
methods, the mapping accuracies for the cities in Group 2 and Group 3 were obviously higher than
those for the cities in Group 1 and Group 4. For example, for the city-optimized method, the average
Kappa Coefficient of Group 3 was 0.05 higher than that of Group 2, 0.06 higher than that of Group 1,
and 0.08 higher than that of Group 4. For the logistic regression method, the average Kappa Coefficient
of Group 3 was 0.01 higher than that of Group 2, 0.06 higher than that of Group 1, and 0.08 higher than
that of Group 4. For the proposed method using ED, the average Kappa Coefficient of Group 3 was
0.03 higher than that of Group 2, 0.07 higher than that of Group 1, and 0.11 higher than that of Group 4.
For the proposed method using MD, the average Kappa Coefficient of Group 3 was 0.04 higher than
that of Group 2, 0.11 higher than that of Group 1, and 0.13 higher than that of Group 4.

Figure 8 is the boxplot of the Kappa Coefficients of the mapping results from the different methods,
which graphically depicts their numerical ranges and distributions in different city groups. From the
figure, it is clearly shown that, for each city group, the city-optimized method achieved the highest
accuracy and the proposed methods achieved the second highest accuracy, with the use of ED and MD
producing similar accuracies, higher than that of the logistic regression method. It can also be seen
that Group 2 and Group 3 generally had higher accuracies than Group 1 and Group 4.
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Table 2. Overall accuracies and Kappa Coefficients of the urban area mapping results for reference cities from different methods in five tests.

City Group City City-Optimized Method Logistic Regression Method Object Similarity-Based Method

ED MD

OA (%) Kappa OA (%) Kappa OA (%) Kappa OA (%) Kappa

1

Beijing 81.26 0.62 73.97 ± 1.244 0.47 ± 0.027 76.46 ± 0.731 0.52 ± 0.015 76.33 ± 0.403 0.52 ± 0.007
Hong Kong 91.41 0.69 73.41 ± 2.542 0.40 ± 0.030 80.17 ± 0.330 0.50 ± 0.006 77.22 ± 2.685 0.43 ± 0.036

Nanjing 89.82 0.72 83.64 ± 0.415 0.56 ± 0.011 87.17 ± 0.882 0.64 ± 0.022 86.81 ± 1.449 0.64 ± 0.034
Shenyang 83.57 0.66 76.52 ± 0.523 0.51 ± 0.003 78.34 ± 0.658 0.54 ± 0.011 78.75 ± 1.416 0.55 ± 0.033

Wuhan 89.77 0.70 79.90 ± 2.129 0.50 ± 0.021 83.14 ± 1.943 0.56 ± 0.036 80.48 ± 2.221 0.51 ± 0.039
Xi’an 85.96 0.70 80.13 ± 0.706 0.58 ± 0.012 83.44 ± 0.161 0.64 ± 0.003 82.44 ± 1.969 0.63 ± 0.04

Chengdu 88.65 0.73 75.08 ± 2.763 0.49 ± 0.036 81.16 ± 1.861 0.58 ± 0.028 74.87 ± 5.019 0.48 ± 0.082
Chongqing 84.38 0.63 74.00 ± 1.847 0.44 ± 0.028 79.95 ± 1.481 0.53 ± 0.030 78.06 ± 3.205 0.52 ± 0.045

Tianjin 88.30 0.63 81.79 ± 1.360 0.50 ± 0.020 86.01 ± 1.161 0.58 ± 0.018 86.18 ± 0.947 0.58 ± 0.015
Guangzhou & Foshan 75.69 0.49 67.44 ± 2.002 0.36 ± 0.020 70.85 ± 2.908 0.42 ± 0.044 67.44 ± 5.231 0.37 ± 0.079

2

Changchun 84.29 0.67 75.11 ± 2.120 0.50 ± 0.035 76.14 ± 3.347 0.53 ± 0.052 77.55 ± 5.629 0.55 ± 0.100
Hangzhou 83.69 0.63 77.73 ± 0.829 0.52 ± 0.006 79.64 ± 0.910 0.54 ± 0.006 78.48 ± 2.108 0.53 ± 0.016

Harbin 91.59 0.70 86.72 ± 1.182 0.58 ± 0.022 90.71 ± 0.218 0.67 ± 0.008 91.15 ± 0.282 0.70 ± 0.010
Jinan 91.09 0.74 85.14 ± 0.274 0.56 ± 0.031 87.98 ± 1.775 0.64 ± 0.043 87.36 ± 0.539 0.60 ± 0.013

Suzhou 83.39 0.67 78.87 ± 0.469 0.58 ± 0.009 80.77 ± 0.456 0.62 ± 0.009 80.38 ± 0.563 0.61 ± 0.011
Xuzhou 87.53 0.66 81.09 ± 0.832 0.49 ± 0.024 85.66 ± 0.639 0.57 ± 0.012 85.48 ± 0.317 0.55 ± 0.016

Zhengzhou 86.43 0.65 78.88 ± 1.137 0.50 ± 0.012 82.58 ± 1.197 0.57 ± 0.023 82.05 ± 2.852 0.56 ± 0.059

3

Changde 94.29 0.78 83.83 ± 0.437 0.38 ± 0.052 90.40 ± 2.756 0.64 ± 0.049 92.22 ± 1.551 0.69 ± 0.059
Fuzhou 89.08 0.74 83.58 ± 0.370 0.60 ± 0.019 87.02 ± 1.908 0.68 ± 0.054 86.34 ± 0.909 0.66 ± 0.025
Guiyang 92.38 0.69 90.10 ± 0.365 0.58 ± 0.029 91.99 ± 0.424 0.63 ± 0.030 91.51 ± 0.177 0.60 ± 0.011
Haikou 90.16 0.65 82.98 ± 1.864 0.46 ± 0.027 87.63 ± 1.107 0.57 ± 0.017 87.72 ± 0.847 0.57 ± 0.027
Hefei 90.83 0.73 86.68 ± 0.156 0.65 ± 0.004 89.71 ± 0.871 0.71 ± 0.020 89.57 ± 0.555 0.71 ± 0.015

Hohhot 86.22 0.70 75.52 ± 2.595 0.49 ± 0.027 84.20 ± 0.990 0.64 ± 0.035 82.84 ± 0.726 0.61 ± 0.032
Kunming 91.06 0.77 84.17 ± 0.566 0.62 ± 0.016 87.94 ± 0.226 0.70 ± 0.006 89.11 ± 0.204 0.73 ± 0.005
Lanzhou 91.82 0.79 86.60 ± 0.358 0.67 ± 0.010 88.94 ± 0.500 0.70 ± 0.008 88.02 ± 2.079 0.68 ± 0.058

Nanchang 88.81 0.73 85.32 ± 0.914 0.63 ± 0.039 84.07 ± 3.017 0.56 ± 0.111 85.51 ± 0.379 0.62 ± 0.022
Nanning 87.49 0.67 80.80 ± 2.114 0.53 ± 0.021 85.49 ± 1.301 0.63 ± 0.039 85.37 ± 2.559 0.63 ± 0.090
Nanyang 85.76 0.66 75.22 ± 1.011 0.43 ± 0.006 82.62 ± 2.220 0.56 ± 0.067 82.26 ± 1.914 0.58 ± 0.028

Shijiazhuang 82.86 0.63 76.43 ± 0.394 0.46 ± 0.007 78.41 ± 0.989 0.48 ± 0.032 80.49 ± 1.650 0.54 ± 0.050
Urumqi 91.60 0.77 86.21 ± 0.778 0.62 ± 0.014 88.66 ± 0.645 0.66 ± 0.023 88.11 ± 0.725 0.65 ± 0.034

Wenzhou 90.19 0.69 84.31 ± 0.834 0.53 ± 0.002 87.36 ± 1.175 0.60 ± 0.016 88.14 ± 0.157 0.60 ± 0.012
Xiamen 89.87 0.70 79.02 ± 2.878 0.50 ± 0.044 80.47 ± 4.066 0.53 ± 0.064 79.79 ± 7.477 0.53 ± 0.128
Xining 93.45 0.78 89.03 ± 0.211 0.60 ± 0.016 89.44 ± 0.756 0.59 ± 0.003 91.33 ± 0.847 0.65 ± 0.044

Yichang 92.90 0.69 84.89 ± 2.150 0.47 ± 0.034 91.18 ± 0.431 0.65 ± 0.002 90.77 ± 1.004 0.62 ± 0.043
Yinchuan 89.74 0.72 78.83 ± 1.372 0.49 ± 0.008 85.71 ± 0.834 0.62 ± 0.002 88.34 ± 0.398 0.69 ± 0.014
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Table 2. Cont.

City Group City City-Optimized Method Logistic Regression Method Object Similarity-Based Method

ED MD

OA (%) Kappa OA (%) Kappa OA (%) Kappa OA (%) Kappa

4

Bengbu 90.27 0.66 86.38 ± 0.410 0.53 ± 0.038 89.06 ± 1.280 0.60 ± 0.052 89.83 ± 0.920 0.62 ± 0.052
Chaoyang 87.18 0.64 77.41 ± 1.532 0.36 ± 0.067 83.49 ± 1.471 0.43 ± 0.078 82.85 ± 3.157 0.40 ± 0.135
Chengde 92.22 0.60 88.71 ± 0.104 0.47 ± 0.010 92.16 ± 0.502 0.54 ± 0.049 91.96 ± 1.535 0.47 ± 0.171

Hengyang 89.05 0.67 77.66 ± 1.039 0.36 ± 0.047 85.87 ± 0.297 0.50 ± 0.069 86.15 ± 0.537 0.50 ± 0.068
Jingdezhen 94.13 0.74 90.66 ± 0.356 0.48 ± 0.035 91.85 ± 0.477 0.53 ± 0.038 91.98 ± 0.210 0.54 ± 0.014

Lhasa 87.70 0.60 82.01 ± 0.940 0.56 ± 0.017 83.86 ± 1.666 0.56 ± 0.032 85.78 ± 0.939 0.59 ± 0.018
Linfen 78.33 0.55 75.14 ± 0.594 0.46 ± 0.023 75.84 ± 0.785 0.47 ± 0.020 73.47 ± 1.375 0.41 ± 0.041

Mudanjiang 93.75 0.72 90.17 ± 0.185 0.58 ± 0.006 92.07 ± 0.770 0.59 ± 0.037 92.52 ± 0.696 0.63 ± 0.049
Xingtai 80.39 0.58 69.42 ± 0.735 0.30 ± 0.012 73.68 ± 6.937 0.35 ± 0.227 71.87 ± 9.671 0.29 ± 0.328

Note: 1. The bold text and the underlined text represent, respectively, the largest and the second largest OAs and Kappa Coefficients for each city; 2. As Guangzhou and Foshan are
geographically too close to be split up, the two cities were processed as one and share only one incorporative accuracy assessment result; 3. a ± b stands for average ± standard deviation.
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a city of the object similarity-based method and the logistic regression method refers to the average
result of different tests; 2. the widths of the boxes are proportional to the square roots of the number of
observations in the groups.

5. Discussion

In this paper, we proposed a new local thresholding method of mapping urban areas at a regional
scale from VIIRS DNB data. In the proposed method, the threshold for a potential urban object
was estimated by comparing its similarity to reference urban objects. Two similarity measures, i.e.,
ED and MD, were used in the proposed method and compared. Two state-of-the-art local thresholding
methods, i.e., the city-optimized method and the logistic regression method, were conducted for
comparison. The methods were evaluated in terms of object threshold estimation and urban area
mapping, and the experimental results demonstrated the effectiveness of the proposed method.

From the experimental results, the city-optimized method produced the most similar urban areas
to the Landsat-derived reference urban areas and had the highest accuracies of urban area mapping
results among the three methods. However, the favorable assessment result does not simply imply that
the city-optimized method is practically applicable for urban area mapping in a large region. Actually,
the city-optimized method was implemented under the ideal circumstance where reference data for
all the urban areas to be mapped were necessarily available. For a large study area, the amount of
reference data required, e.g., statistical data of land use investigation or pre-existing urban area maps,
is expected to be large and difficult to collect. Therefore, the city-optimized method is not appropriate
for urban area mapping at a regional scale. The method was carried out here merely to provide an
ideal reference for the other two methods.

The logistic regression method produced comparatively accurate and acceptable results. However,
it was found from Figure 5a that the thresholds of large values were underestimated, and that there
may be a nonlinear relationship between the estimated threshold and the reference optimal threshold.
This means that the relationship between the optimal threshold and the two object features, i.e.,
the mean of the light magnitude and the pixel number, was not well fitted by the logistic model.
The logistic regression method was initially developed for DMSP/OLS data on the basis of the finding
that there was a slightly S-shaped relationship between the optimal threshold and an index combining
the mean of the light magnitude and the object size [16]. However, it has not been investigated if this
relationship exists in VIIRS DNB data. Figure 9 shows the relationship between the reference optimal
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threshold and the combined object features of the mean of the light magnitude and the pixel number
of the validation objects in Test 3. The coefficients α, β, η were optimized by ordinary least squares
regression using the training objects in Test 3. From the figure, the relationship of the optimal threshold
with the combined features is J-shaped, rather than S-shaped, which does not follow a logistic model.
Therefore, it may not be appropriate to fit the optimal threshold using the mean of the light magnitude
and the pixel number with the logistic model for VIIRS DNB data. Other nonlinear function models or
object features could work better. Although the robustness and reliability of the logistic regression
method has been evaluated in a global map of urban extent from DMSP/OLS data [17], the results
obtained in this study show that the logistic regression method may not be well applicable to VIIRS
DNB data.
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Different from the logistic regression method which fits a quantitative relationship between the
optimal threshold and the object features, the proposed method estimates thresholds on the basis of
the similarity between a target potential urban object and training objects in terms of object features,
with no dependence on a certain function model. Thus, the proposed method is not limited to some
particular nighttime light data with specific characteristics and may be applicable to different nighttime
light data. Another prominent advantage of the proposed method is the easily satisfied demand for
reference data. Over a large study area, only a small portion of the existing reference urban area maps
are needed. For example, in this study, the number of training objects that needs reference urban area
maps for threshold optimization accounted for only less than 4% of all potential urban objects, i.e.,
the reference urban area maps of only 20 cities were used for providing the training objects for urban
area mapping in the whole China region. Therefore, it is convenient to acquire urban area information
of a large region using the proposed method.

With regard to the similarity measure of the proposed method, the ED and MD performed
very similarly in this study. Although the method using MD estimated thresholds better than the
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method using ED (Figure 5b,c), the final urban area mapping results from both measures had no
obvious differences. Compared to ED, MD weighs features differently according to correlations
between features and variability of features. However, it was not analyzed in this paper whether other
distance-based similarity measures which account for the importance of features in different ways
could lead to better results. This could be explored in the future study.

It should be noted that the selection of training objects in the proposed method is important.
The training objects are required to be sufficiently representative of various target potential urban
objects. For a target object, the assigned threshold from the most similar training object was actually
an approximately optimal threshold, which could bring about approximately the same urban area as
that brought about by a reference-derived optimal threshold. Only if the training object was similar
enough, the target object could get an appropriate threshold and accurate urban area. In this study,
to maximize feature diversity, reference cities of different sizes, urbanization levels, and economic
development levels were chosen to provide training objects. However, in Figure 5b,c, the sample
points of large thresholds were distributed slightly further away from the 1:1 line than those of small
thresholds, which means that the estimation errors of the large thresholds were bigger. It could also be
noted that the majority of the DNB threshold values were in a relatively small range. Of all reference
urban objects, the ones with optimal thresholds larger than 50 accounted for only 13%. The sparseness
of large-threshold training objects may result in the insufficient variability of training object features,
making it difficult for a large-threshold target object to find a similar enough training object and then
get an effective threshold.

In the future study, three problems will be further explored. First, it is to be addressed whether
the similarity measures which have an optimal combination of weights for different features could
be found for improving urban area mapping. Second, new and effective training object selection
methods will be figured out to provide as few as possible representative training objects. Third, further
evaluation of the proposed method in other geographical regions or at a global scale is to be performed.

6. Conclusions

In this paper, an object similarity-based thresholding method was proposed to map urban areas at
a regional scale from VIIRS DNB data. Using a small quantity of reference urban objects with known
threshold values derived from Landsat data, the threshold separating urban and nonurban areas for
a potential urban object was estimated by comparing its similarity to training objects with known
optimal thresholds. The results showed that the proposed method generally outperformed the logistic
regression method in terms of both threshold estimation and urban area mapping. The proposed
method provides an efficient and effective method for large-scale urban area mapping and dynamics
monitoring with a flexible thresholding technique.
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