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Abstract: Surface roughness is a key parameter that reflects topographic characteristics and influences
surface processes, and characterization of surface roughness is a fundamental problem in geoscience.
In recent years, although there have been basic studies on roughness, few studies have compared
the concept and quantification of roughness, and there have been few studies that have evaluated
the ability of partition terrain features. Based on 1” resolution Shuttle Radar Topography Mission
(SRTM) data and previous studies, we selected the Qinba Mountain region of China and its adjacent
areas as our study area, and used 13 different roughness algorithms to extract roughness in this study.
Using spatial patterns and statistical distributions, the results were analyzed, and the best algorithm
suited to partitioning terrain features was selected. We then evaluated the ability of the algorithm
to distinguish the terrain morphology. The results showed the following: (1) The 13 algorithms
were able to be classified into four types, that is, gradient (SLOPE), relief (root mean squared height,
RMSH), local vector (directional cosine eigenvalue, DCE) and power-spectral (two-dimensional
continuous wavelet transform, 2D CWT). (2) The SLOPE and RMSH algorithms were better able to
express and distinguish terrain, as they were able to macroscopically distinguish between four types
of terrain in the study areas. Based on power-spectral methods, 2D CWT had the same discrimination
ability as the first two methods following a normalization transform, whereas the DCE method had
a general effect and could only distinguish two types of terrain. (3) Different roughness algorithms
had their own applicability for different terrain areas and application directions.

Keywords: land surface roughness; terrain partition; applicability

1. Introduction

The basic definition of roughness is the degree of deviation between a real surface and an ideal
surface (geoid) in the vertical direction. If the deviations are large, the surface is rough. If the deviations
are small, the surface is smooth [1]. The concept of roughness in the literature has been used in three
ways: For local variation in surface elevation [2,3], for the influence of topography on surface fluid
(flow resistance or roughness height, a property of a flow) [4–6], and for random variation in soil
surface elevation [7]. These three aspects emphasize the structural characteristics of the topography,
the relationship between the surface and airflow or water flow, and the influence of the surface
microrelief on runoff at the subpixel level. This article primarily discusses the first aspect.

All surface material movements, such as slope runoff, rivers, wind and sand flows, air currents
on vegetation or buildings, and ocean currents, are inevitably affected by rough land surfaces: At the
same time, new rough surfaces also evolve over the course of surface movement [8]. The roughness of
the surface can effectively reflect the terrain characteristics and degree of erosion. Therefore, surface
roughness is an important parameter that is used to identify the individual characteristics of erosive
terrain and to analyze the relationship between roughness and surface processes [3]. Accordingly,
many scholars have studied land surface roughness.
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Hobson was the first to discuss the concept and algorithms of roughness, and summarizes the
roughness algorithm as three kinds: The area ratio, the statistical distribution irregularity of the
elevation, and the aggregation degree of the unit direction vector [9]. Hoffman specified the various
characteristics that the roughness algorithm should have (effect, property, meaning) [10]. Using 60 data
sets, Shepard et al. analyzed seven quantitative metrics of roughness and discussed the scale-dependent
problems of roughness [2]. Based on Light Detection And Ranging (LiDAR ) topographic data,
McKean, Roering, and Glenn et al. and Booth et al. analyzed landslide location distributions
and characteristics using different roughness calculation methods [11–13]. Grohmann evaluated
six roughness algorithms at different spatial scales and resolutions [3]. Pommerol et al. compared and
evaluated the degree of roughness by calculating the slope distribution of two types of topography of
three planets [14]. Berti et al. used mathematical artificial surfaces and natural surfaces to compare and
analyze 10 roughness algorithms and explored the ability of the different algorithms to identify and
predict active landslides for automatic mapping [15]. Lane and Smith comprehensively analyzed the
concept, quantity and application of roughness [8,16]. However, the main research gaps are as follows:
(1) There is a lack of comparison between the concepts and results of the different algorithms, so it is
not clear which algorithms are better; (2) there are relatively few studies on the ability of the various
algorithms to distinguish rough terrain of large regions, which has profound research significance.

Based on these problems, we used the Qinba Mountain region and its adjacent areas of China as
the study area in our research, where the relief is obvious. First, various algorithms were systemically
arranged, and the slope [17] and topographic relief [18] were included in the index of roughness.
In addition, we calculated a variety of thematic roughness layers in the study area. Second, through
analysis of the statistical distribution of the spatial patterns, we determined the optimal algorithm for
the partitioning of terrain features based on roughness. Finally, we analyzed and evaluated the ability
of this optimal algorithm on the terrain partition and quantization of the terrain shape. This study
is of high theoretical significance for classifying surface morphology and analyzing the relationship
between roughness and surface processes.

2. Materials and Methods

2.1. Study Area

The study area was located in a transitional zone between central and western China at a latitude and
longitude range of 105◦13′40” E–110◦44′38” E and 30◦5′38” N–35◦53′49” N respectively. The study area
covered an area of 347,500 km2 and spanned Shaanxi Province, Gansu Province, Ningxia Hui Autonomous
Region, Sichuan Province, Chongqing City, Hubei Province, Henan Province, and Shanxi Province (Figure 1).
The study area was located on the second topographic terrace. The topography in the study area is complex
and diverse, and the terrain is quite undulating. Loess hills and platforms, stony hillsides, alluvial plains,
and other types of topography are distributed from north to south in the study area. The study area is a typical
area for studying the partitioning of terrain features by extracting roughness.
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Figure 1. Map of the study area (digital elevation model derived from 1” Shuttle Radar Topographic
Mission (SRTM) data).

2.2. Basic Research Data

The raw data for extracting roughness in this manuscript were 1” Shuttle Radar Topographic Mission
(SRTM) data downloaded from the United States Geological Survey (USGS) website (https://e4ftl01.cr.
usgs.gov/SRTM/) using WGS-84 geographic coordinates and HGT as the data format. Before extracting
roughness, the data were first converted to an ArcGrid format, and then a 3× 3 window Gaussian low-pass
filter algorithm was used to preprocess the digital elevation model (DEM) to filter the noise on the surface
of the DEM. Finally, the projection was converted to Universal Transverse Mercator (UTM) coordinates with
a central meridian of 108◦ E.

3. Research Methods and Models

3.1. Introduction of the Algorithms

This paper uses the surface roughness to express the topographical structural features (local
variation of surface elevation) as the starting point of the study. The algorithm for quantifying surface
roughness was compiled by previous research (key characteristics of methods are shown in Table 1).
Considering that the calculation results are quantitative expressions of roughness, the calculation
methods described below are collectively referred to as algorithms.

https://e4ftl01.cr.usgs.gov/SRTM/
https://e4ftl01.cr.usgs.gov/SRTM/
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(1) Slope (SLOPE), defined as the angle between the tangent plane and horizontal plane at any point
on the surface, is one of the most important surface morphological indicators. By calculating the
elevation gradient, the Evans algorithm [19] was adopted to calculate the slope in this study.

(2) The local elevation range (RANGE), which is measured as the height deviation within a certain
amplitude of distances from the ground [5], is the most common algorithm of topographic relief.

(3) The area ratio (AR) is a commonly used method to measure surface roughness, which is calculated
as the ratio of the actual area to the projected area of the surface [3]. In a moving window, the area
ratio of each pixel is calculated as the reciprocal of the cosine value of the slope. This principle is
based on the triangular relationship between the inclined slope and horizontal projection surface.

(4) The root mean squared height (RMSH) is the most commonly used algorithm to calculate and
evaluate roughness, and its parameters are also easy to obtain. RMSH expresses surface roughness
as the standard deviation of the elevation of a set of geographic data (Shepard et al., 2001) [2].

(5) The root mean squared deviation (RMSD) is the height difference between two points of a constant
lag distance in the local range. In the roughness calculation, the RMSD is the mean square
deviation of the height difference between an edge pixel and center pixel in a moving window [2].

(6) The root mean squared slope (RMSS) is another method for calculating roughness based on the
mean square root and is defined as the ratio of the mean square deviation of the local elevation to
the horizontal distance [2].

(7) The standard deviation of slope (SDS) calculates the standard deviation of the slope and quantifies the
roughness of the surface according to the complexity of the changes in the local surface slope [20].

(8) The absolute slope (AS) is similar to the root mean square slope. Both are essentially a deformation
of SLOPE [21]. This algorithm can reduce the influence of outliers on the RMSS.

(9) Vector dispersion (VD) can be effectively used to quantify surface roughness based on the spatial
variability of the unit direction vector (variability in slope and aspect in local patches of the
DEM) [9] (Figure 2). In addition, the variation is measured by calculating the vector strength
from the three cosine subvectors of the united orientation vector. The higher the vector intensity,
the lower the vector deviation value and the smoother the corresponding ground.

(10) The directional cosine eigenvalue (DCE) shares some similarities with the VD in principle, but the
two methods are different. In this algorithm, an orientation matrix is constructed with direction
cosines, and the matrix eigenvalue ratio is solved to quantify roughness. The magnitude of the
resultant value is positively correlated with the degree of surface smoothness [11].
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Figure 2. Schematic block diagrams showing how the surface roughness of the terrain can be reflected
by the unit direction vector of each pixel in a digital elevation model (DEM). If the ground surface is
smooth, the unit direction vectors are aggregative. If the ground surface is rough, the unit direction
vectors are dispersed.

(11) In recent years, two-dimensional semivariograms (2D SEMs) have been gradually used to measure
surface roughness. A 2D SEM can directly show the spatial variation characteristics of regionalized
variables and can simultaneously describe the randomness and structure of regionalized variables.
The rougher the surface, the greater the spatial difference. In this case, the correlation is quickly lost,
and the shorter the lag (space length), the higher the sill (the difference value where points are no
longer autocorrelated) [12].
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(12) The discrete Fourier transform (2D DFT) is a typical method used to describe surface roughness
through spectral analysis [13]. This method transforms discrete data into the frequency domain
and provides the distribution characteristics of the amplitude of the terrain in a certain
frequency range. The spatial domain can still show different distribution characteristics after
being transferred to the frequency domain because of the different surficial spatial domains.
For example, flatter terrain features show stronger low-frequency components in the frequency
domain, whereas variable terrain shows stronger high-frequency components in the frequency
domain. Therefore, it is possible to determine the surface roughness of a particular area by
analyzing the characteristic frequencies in the frequency domain.

(13) A two-dimensional continuous wavelet transform (2D CWT) can be used to calculate the energy
distribution in the frequency domain using the amplitude information in the spatial domain.
This method transforms discrete spatial data into the position–frequency space. The algorithms
provide the frequency distribution characteristics of the amplitude information of the terrain at
each position in space [13]. This method extracts the high-frequency components of the terrain
by selecting a wavelet scale parameter s. When the wavelet scale parameter s is large, it extracts
the long wavelength characteristics of the dataset. When the wavelet scale parameter s is small,
the short wavelength characteristics of the dataset are extracted. Therefore, by selecting a range of
wavelet scale parameters, we could extract the wavelet coefficients of the required characteristic
frequency range of surface roughness.

Table 1. Algorithms of roughness.

Sequence Number Algorithms (ALG) Formula Dimension

1 Slope (SLOPE)
θ = arc tan

√
p2 + q2

p, q = ( ∂H
∂x

, ∂H
∂y
)

Degree

2 Local Elevation Range
(RANGE) Range = Hmax − Hmin m

3 Area Ratio (AR) AR =
N2

∑
i=1

1
cos Si

None

4 Root Mean Squared
Height (RMSH)

RMSH =√
1

N2−1

N2

∑
i=1

(
Hi − H

)2 m

5 RMS Deviation
(RMSD)

RMSD =√
1

4(N−1)

4(N−1)
∑

b=1
(Hc − Hb)

2 m

6 RMS Slope (RMSS)
RMSS =√

1
4(N−1)

4(N−1)
∑

b=1

(
Hc−Hb

∆xb

)2 Degree

7 Absolute Slope (AS) AS = 1
4(N−1)

4(N−1)
∑

b=1

|(Hc−Hb)|
c(N−1)

2

Degree

8 Standard Deviation of
Slope (SDS) SDS =

√
1

N2

N2

∑
i=1

(
Si − S

)2 Degree

9 Vector Dispersion (VD) VD =
(N2−R)
(N2−1)

None

10 Direction Cosine
Eigenvalue (DCE) DCE = [ln(S1/S2)]

−1 None
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Table 1. Cont.

Sequence Number Algorithms (ALG) Formula Dimension

11 2D Semivariogram
(2D SEM)

γ =
1

2n

n
∑

i=1
[z(xi, yi)− z(xi+h, yi+h)]

2 m2

12 Discrete Fourier
Transform (2D DFT)

DFT =
f 2
∑

f− f 1
VDFT( f ) m2

13 Continuous Wavelet
Transform (2D CWT)

CWT =
f 2
∑

f− f 1
VCWT( f ) m2

Note: In the roughness algorithms, p and q denote the rate of change of height in the x and y directions, respectively.
Hmax is the maximum height value of a pixel in the moving window. Hmin is the minimum height value of a pixel
in the moving window. N refers to the width of the moving window (the number of pixels). Hi is the height
value of the pixel in the moving window. H is the average height value of pixels in the moving window. Hb is the
height value of pixels in the moving window edge, and ∆xb is the distance from the center pixel to the edge pixel.
Si is the slope value of the ith pixel in the moving window (in radians). S is the mean value of the average slope
of pixels in the moving window. R refers to vector strength, which is the square root of the sum of the squared
three cosine components and the square root of the three cosine components. S1 and S2 are eigenvalues obtained
in the 3 × 3 direction cosine matrix. Xi and Yi are the spatial coordinates of the ith pixel in a moving window,
h is the lag distance, and f1 and f2 represent the lower limit and upper limit of the typical frequency range of
terrain roughness. VDFT is the power spectrum of the 2D Fourier transform. VCWT is the power spectrum of the 2D
continuous wavelet transform.

3.2. Roughness Analysis Methods

Using the 13 algorithms listed in Table 1, the roughness of the study area was calculated, and
the spectral analysis method was implemented in MATLAB. The remainder of the surface roughness
algorithm was extracted using Python scripting language, with a moving window of 5× 5 pixels using
the neighborhood analysis method. The goal was to create a group of roughness grid thematic layers,
and then on a scale of the entire region and 4 sample regions, we analyzed the results of different
roughness algorithms from three aspects: Spatial patterns, correlations, and statistical distributions.

3.2.1. Spatial Patterns and Structure

In order to better compare the extraction results of different roughness algorithms, the concept
of geospatial patterns was cited, and the difference between the sample region and the information
capacity of the image was effectively evaluated by effect size and entropy.

(1) Effect size: The effect size (ES), which can reflect the degree of closeness or difference between
variables, is a statistic proposed by Cohen [22]. In this dissertation, we used this indicator to calculate
the differences in roughness values between the two sample regions according to the results of the
different roughness algorithms. Cohen’s evaluation criteria are as follows: If ES ≥ 0.8, the difference
between the two samples is large. If 0.5 ≤ ES < 0.8, there is a moderate difference between the two
samples. If 0.2 ≤ ES < 0.5, the difference between the two samples is small. If ES < 0.2, the two samples
are nearly the same:

ES =
m1 −m2

S
. (1)

In Equation (1), ES is the effect size, m1 and m2 are the mean roughness of the two sample regions,
and S is the standard deviation of all roughness values in the four sample regions.

(2) Entropy: In this study, the concept of entropy proposed by Shannon was used to evaluate the
integrity and complexity (richness of the image) of the results of different roughness algorithms [23].
The larger the entropy, the greater the information capacity, the better the expression degree of the
details, and the richer the surface information it contains:

H = −∑ pi(x) ln pi(x). (2)
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In Equation (2), H is entropy, pi(x) is the frequency of a roughness value in images, and ln pi(x)
is the natural logarithm of the frequency.

3.2.2. Statistical Distribution

To simply and intuitively show the differences of the results of the different roughness algorithms,
the roughness values extracted by each algorithm was stretched from 0–100 by using the range
normalization method after the roughness was extracted. Then, frequency curves were drawn to
compare the statistical distribution of the different results. We regularized the monotone descent
algorithm of the frequency curve and then compared the characteristics of the frequency curves.

The regularization transform uses the Box–Cox transformation method, which was proposed
by Box and Cox in 1964, to satisfy the linearity, independence, variance, and normality of the linear
regression model without losing information [24]. The transformation formula was as follows:

y(λ) =
xλ − 1

λ
, λ 6= 0, (3)

y(λ) = log λ, λ = 0. (4)

3.2.3. Correlation Analysis

The measurement methods of different roughness algorithms are different. By comparing
the correlation between every two roughness thematic layers in the study area and analyzing the
applicability of the different roughness algorithms, we eliminated redundant algorithms. The closer
the correlation coefficient was to 1, the stronger the correlation. The correlation algorithm was as
follows:

Covi,j =
∑n

k=1(Zik − µi)
(

Zjk − uj

)
N − 1

, (5)

Corri,j =
Covi,j

δiδj
, (6)

where Covi,j is the covariance between layer i and layer j, N is the number of pixels, Z is the pixel
value, k is a specific pixel, µ is the average layer value, Corri,j is the correlation coefficient value of two
grid layers, and δ is the standard deviation of the layer.

3.2.4. Terrain Partition Method

The roughness calculation results include the high frequency components of the surface, so it
was necessary to remove the influence of the higher frequency topographic information from
the partitioning of macroscopic geomorphological types before analyzing its ability to partition
geomorphologic types. In this study, the mean filtering method was used to filter small relief features
from roughness images to preserve the macroscopic information. Then, the frequency curve was
created, and the terrain in the study area was divided according to the peak distribution of the
frequency curve from the valley value. Finally, we evaluated the macroscopic partition ability of the
terrain partition method.

4. Results and Analysis

4.1. Spatial Structure and Pattern

4.1.1. Image Surface Feature

The calculation results of the various roughness algorithms in the study area showed the following
(Figure 3): (1) Compared to the elevation surface, the calculated results of the various roughness
algorithms represented high-frequency information and, to a certain extent, they could identify the
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different terrain types (such as plain, hill, and mountain) in the study area. Meanwhile, the calculated
results showed good agreement with the spatial variation of the topographic types. For example,
the roughness of the Qinba Mountains and loess hilly regions was obviously greater than that of
the Hanzhong Basin and Guanzhong Plain. (2) The roughness values extracted by the five AR, VD,
2D SEM, 2D DFT, and 2D CWT algorithms were overall smaller, and the high values were mainly
reflected in the area where the elevation of the Qinba Mountain region was changing drastically.
However, these algorithms could still reflect the regional variation of the surface roughness even if the
values of these algorithms were small.
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Figure 3. Extraction results of the different roughness algorithms: (a) SLOPE; (b) RANGE; (c) AR;
(d) RMSH; (e) RMSD; (f) RMSS; (g) AS; (h) SDS; (i) VD; (j) DCE; (k) 2D SEM; (l) 2D DFT; (m) 2D CWT;
(n) original SRTM.

4.1.2. Effect Size and Entropy

The effect size of the different roughness results in the different regions (Table 2) clearly showed
that each method was able to highlight differences between the plain area and mountain area (the effect
size was between 1.1 and 2.2), and there was almost no difference between the Qinling Mountains and
the Bashan Mountains (with an effect size in the range of 0.01–0.28). We simplified the sample area into
three groups: plain–hill, plain–mountain, and hill–mountain (Figure 4), which reflected the effect of
the different roughness algorithms on terrain differences in an effective way. The results showed that
SLOPE, RANGE, RMSH, RMSD, RMSS, and AS had a similar ability for terrain partition, that their
effect sizes were similar (no more than 0.1 difference), and that the differences among the three sample
areas were obvious (all of which were larger than 0.8). Among the rest of the algorithms, AR, VD, 2D
SEM, and the frequency spectral analysis method did not show significant differences between the
plain and hilly areas (with an effect value between 0.5 and 0.8). In addition, the results of the SDS, VD,
and DCE algorithms showed little difference between hilly and mountainous areas (with an effect
value between 0.2 and 0.5).
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Table 2. Effect size for different roughness values in different regions.

ALG
Effect Size

Guanzhong
Plain–Loess Hills

Guanzhong
Plain–Qinling Mountains

Guanzhong Plain–Bashan
Mountains

Loess Hills–Qinling
Mountains

Loess Hills–Bashan
Mountains

Qinling Mountains–Bashan
Mountains

SLOPE 1.273 2.083 1.837 0.899 0.645 0.245
RANGE 1.175 2.109 1.853 0.934 0.678 0.257

AR 0.703 1.816 1.542 1.113 0.839 0.274
RMSH 1.181 2.092 1.845 0.911 0.664 0.247
RMSD 1.220 2.131 1.882 0.911 0.661 0.250
RMSS 1.218 2.126 1.877 0.909 0.660 0.249

AS 1.203 2.118 1.863 0.916 0.661 0.255
SDS 1.355 1.609 1.637 0.254 0.282 0.028
DCE 1.325 1.619 1.548 0.294 0.223 0.071
VD 0.792 1.302 1.084 0.427 0.262 0.218

2D SEM 0.499 1.509 1.293 1.010 0.794 0.216
2D DFT 0.306 1.134 0.965 0.828 0.659 0.169
2D CWT 0.473 1.155 1.139 0.762 0.666 0.016
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Figure 4. Comparison of the effect sizes between different roughness algorithms in different regions.

From Figure 5, it can be concluded that for different topographical areas using the same algorithm,
the entropy information of areas with more complex topography (such as mountains and hills) was
clearly higher than that of areas with flat terrain (such as plains), which shows that the results of these
algorithms were in accordance with the distribution of the topographic structure. Among them,
the information entropy of the five roughness algorithms—AR, VD, 2D SEM, 2D DFT, and 2D
CWT—was slightly higher than that of other algorithms in hilly and plain areas, which means that the
five roughness algorithms were more sensitive to areas with large terrain differences and they had
a weak ability to represent the details of roughness in areas with less terrain relief. The difference in
the information entropy of SDS, VD, and DCE was lower than that of the other algorithms, which was
consistent with the results obtained for the effect size. The information entropy of different algorithms
in the same area showed that SLOPE had the highest information entropy, followed by SDS, DCE,
RANGE, RMSH, RMSD, RMSS, and AS, all of which had a similar order of magnitude of information
entropy. Among them, the information entropy of RMSH was the highest. The entropy of the two
algorithms that used spectral analysis methods was almost the same order of magnitude, and 2D CWT
was better. The remaining three roughness algorithms had a lower order of magnitude of information
entropy, which indicated that the roughness extraction results from the remaining three algorithms
had lower integrity and complexity.
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Based on this, the results of the effect size and information entropy showed that SLOPE, RANGE,
RMSH, RMSD, RMSS, and AS all had a moderate ability to accurately represent and distinguish terrain
types. However, AR, 2D SEM, 2D DFT, and 2D CWT were not good enough to identify regions with
less topographic relief, and SDS, DCE, and VD lacked the ability to distinguish complex terrain areas.
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4.1.3. Correlation between Algorithms

As mentioned before, surface roughness algorithms can be divided into three categories: Those
based on elevation (or its variation), those based on the slope normal vector, and those that use spectral
analysis. By calculating the correlation between the various algorithms (Table 3), it was observed that:
(1) The correlation coefficient between seven algorithms—RANGE, AR, RMSH, RMSD, RMSS, AS and
2D SEM, and SLOPE—was higher than 0.8, and the correlation between the root mean square of the
elevation and the SLOPE was the highest. Based on these results, we assigned these eight algorithms
to a group. (2) The VD and DCE algorithms had correlation coefficients greater than 0.5 with SDS.
Therefore, these three algorithms could be assigned to a group. Although two of the algorithms were
based on the normal slope vector, they were independent of each other, and their correlation was not
high. (3) The correlation coefficients of the two algorithms based on spectral analysis methods were
greater than 0.9, so these two algorithms were assigned to one group.

In terms of the mechanisms of the algorithms, the basic meaning of the first group of algorithms
was similar to that of the slope, but the specific forms were different. Although some algorithms were
based on the elevation difference, the height difference per unit area within a certain distance was
similar to the slope algorithm that used a fixed calculation window. In the second group of algorithms,
SDS was equivalent to the third derivative of the height, which overemphasized high-frequency
information, so it was not comparable to the other algorithms. VD and DCE shared a certain similarity
in principle, with both describing the complexity of terrain using the spatial variability of normal
vectors of surface elements. However, due to their different mathematical calculation methods,
the correlation between the two algorithms was low and more independent than the results of the
other algorithms. The third group used the distribution characteristics of the range information in the
terrain to represent the roughness over a certain frequency range, so these algorithms were highly
correlated. Additionally, because of the particularity of the spectral analysis methods compared to
other algorithms, the third group of algorithms had no obvious correlation with other algorithms.

Therefore, we combined the results of the effect size and information entropy in the previous
section to extract the best performance methods from each group of roughness algorithms, and then
classified them into four categories: SLOPE (slope), RMSH (relief), DCE (based on the slope normal
vector), and 2D CWT (based on frequency analysis).

Table 3. Correlation between the extraction results of the roughness algorithm and the slope.

ALG SLOPE RANGE AR RMSH RMSD RMSS AS SDS DCE VD 2D SEM 2D DFT 2D CWT

SLOPE 1.0000
RANGE 0.9420 1.0000

AR 0.8655 0.9420 1.0000
RMSH 0.9671 0.9871 0.9491 1.0000
RMSD 0.9403 0.9804 0.9542 0.9897 1.0000
RMSS 0.9442 0.9792 0.9540 0.9905 0.9997 1.0000

AS 0.9447 0.9764 0.9510 0.9907 0.9958 0.9959 1.0000
SDS 0.4573 0.4791 0.4630 0.4870 0.5411 0.5396 0.4953 1.0000
VD 0.2590 0.3268 0.3757 0.3129 0.4070 0.4029 0.3681 0.7383 1.0000

DCE 0.3366 0.3573 0.3112 0.3519 0.3950 0.3928 0.3757 0.5508 0.5191 1.0000
2D SEM 0.8191 0.8950 0.9466 0.9034 0.8834 0.8826 0.8889 0.2864 0.1813 0.1155 1.0000
2D DFT 0.2833 0.3191 0.3439 0.3179 0.3444 0.3426 0.3272 0.4274 0.2567 0.4069 0.2493 1.0000
2D CWT 0.2693 0.3055 0.3285 0.3014 0.3334 0.3312 0.3148 0.4471 0.2781 0.4572 0.2164 0.9013 1.0000

4.2. Characteristics of the Statistical Distributions

4.2.1. Statistical Distribution

The frequency curve of the distribution of the roughness resulting from different algorithms
(Figure 6) showed the following: (1) The SLOPE, RANGE, RMSH, RMSD, RMSS, AS, and SDS
algorithms all had a bimodal distribution, which indicated that two types of terrain could be identified
based on the above algorithms, but that the actual topographic structure should have been larger
than two. In terms of the shape of the frequency curve, the differences between RANGE, RMSH,
RMSD, RMSS, and AS were not clear. (2) DCE tended to have a normal distribution and was relatively
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independent. (3) The curve distributions of the AR, VD, 2D SEM, 2D DFT, and 2D CWT algorithms all
decreased monotonically, indicating that the values of the roughness extraction of these five algorithms
were small and that the distribution of the roughness values was concentrated in small regions.

For different small sample areas: (1) In bimodally distributed algorithms applied to the entire
study area, the SLOPE algorithm was most similar to the normal distribution. Nevertheless,
the differences between several algorithms were not obvious in terms of the frequency curve. All had
a single peak distribution, which indicated a single type of topography in the sample area. (2) DCE
tended to be normally distributed in the plains. In the sample areas where the topography was more
complicated (hilly, mountainous), the degree of deviation was obviously increased. The change in
the frequency curve was clear, but it still had a single peak. (3) In the plains, the frequency curves
of AR and VD had a single peak, whereas the curve distributions of the 2D SEM, 2D DFT, and 2D
CWT algorithms all monotonically decreased. In hilly and mountainous regions, although the values
of the five algorithms were still concentrated in small regions, the frequency curves had a single
peak distribution.
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Figure 6. (a) Frequency curves of different roughness algorithms of whole study area; (b) Frequency
curves of different roughness algorithms of Guanzhong plain sample area; (c) Frequency curves of
different roughness algorithms of loess hill sample area; (d) Frequency curves of different roughness
algorithms of Qinling mountains sample area; (e) Frequency curves of different roughness algorithms
of Bashan mountains sample area.
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4.2.2. Transformation

In general, deviations in non-normal distribution patterns affect the accuracy of statistical results
in many ways, such as during correlation analysis, regression analysis, and variance analysis. Therefore,
transformation is used to avoid this effect to increase the accuracy of the results [25]. From the point of
view of this study, the purpose was to quantitatively study the number of topographic types in the
study region using the number of frequency peaks in histograms, which were the result of roughness
calculations. Therefore, it was necessary to transform the results of the frequency histogram to
a monotone descent using a transformation method. Using Guanzhong Plain as an example, the results
obtained using the Box–Cox transformation were good and approximated a normal distribution.
Therefore, we used this method to perform transformation in the whole region for the roughness
results of five algorithms: AR, VD, 2D DFT, and 2D CWT. The results showed that the five algorithms
were bimodally distributed after the transformation (Figure 7), which showed that the five algorithms
could identify at least two different geomorphological types.
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plain; (b) The frequency curves after canonical transformation of the roughness algorithm of whole
study area.

4.3. Terrain Partition Based on Roughness

4.3.1. Ability to Distinguish Types of Terrain

Based on the previous analysis of the spatial patterns, statistical distributions, and correlations,
we removed the algorithms with high slope correlations from the 13 algorithms. We chose four
algorithms to partition the terrain types: SLOPE, RMSH, DCE, and 2D CWT.

In general, the frequency curve of the single terrain had a normal distribution once it reached
a mature stage [26]. Therefore, the mean filtering method was used to remove the small relief from
the roughness results, and the different terrain types in the study area were classified macroscopically.
After several attempts, we found that the result of a mean filter window of 41 × 41 was ideal for
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the SLOPE, RMSH, and DCE algorithms, whereas 2D CWT required a 71 × 71 window due to the
transformation. Based on Figure 8, we used a set of conditional functions (Equation 7) to subtract the
threshold value from the valley value of the frequency rate curve and partitioned the terrain type of
the original roughness result. The results showed that all three methods—SLOPE, RMSH, and 2D
CWT—had four peaks, which indicated that these three algorithms could recognize four types of
terrain. The results of these three methods were not significantly different from each other. The 2D
CWT results had a slightly more local mountainous area than the first two, which indicated that 2D
CWT emphasized the high-frequency components of the earth’s surface. Using the slope as an example,
the frequency curves of the four types of terrain were found to have a single peak distribution (Figure 9),
which showed that the four types of terrain were relatively separate. However, the residual DCE
algorithm had a poor ability to identify terrain and could only classify two macroscopic types:

RasterN = con(a ≤ rasterF or b ≤ rasterF < c or rasterF ≥ d, RasterX) (7)

In Equation (7), rasterF is the filtered roughness result, RasterX represents the original roughness
result, and RasterN represents the types of partition.
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curves of RMSH after mean filtering; (c) Frequency distribution curves of DCE after mean filtering;
(d) Frequency distribution curves of 2D CWT after mean filtering
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Figure 9. (a) Frequency curves of the SLOPE partition of plain; (b) Frequency curves of the SLOPE
partition of high-altitude platforms and low-altitude hills; (c) Frequency curves of the SLOPE partition
of high-altitude hills and low-relief mountains; (d) Frequency curves of the SLOPE partition of
high-relief mountains.

To evaluate the effect of the partition, we referred to the 1:1 million-scale geomorphologic map
of China (data from the Resource and Environmental Science Data Center of the Chinese Academy
of Sciences, http://www.resdc.cn). We used the same color partition to match the landmarks as
much as possible to better compare the roughness results. Figure 10 shows that among the four
geomorphological types partitioned by SLOPE, RMSH, and 2D CWT, the results of the partition
in the plain area of the first terrain type and mountainous area of the fourth terrain type were the
most ideal. High-elevation platform and low-elevation hills dominated the second type of terrain.
The third type of terrain included high-altitude hills and small-relief low mountains. Although the
partitioning of the second and third type of terrain was slightly weaker than that of the first and fourth
types, the geomorphological type was not absolutely unique, and the partition could also express the
macroscopic spatial variation of the topographic type.

To evaluate the partition ability of terrain features more accurately, we used statistics from
a condition function to compare the degree of agreement between the whole study area and the four
types within the original geomorphologic map (Table 4). The results showed that the discriminative
ability of the SLOPE algorithm was similar to that of the RMSH algorithm. However, the results
of these two algorithms for the second type of terrain were not ideal (the matching degree was
only approximately 0.4). Based on the result of the 2D CWT algorithm, there were more expressive
components for the third and fourth types of terrain, hills, and mountains, respectively, which indicated
that the 2D CWT algorithm emphasized the high-frequency components of the surface, but its overall
effect was slightly weaker than that of the first two algorithms, which was consistent with the
previous results.

http://www.resdc.cn
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Table 4. Comparison of the terrain partition results to geomorphologic maps from different
roughness algorithms

.

Alg Study Area The First Type
of Terrain

The Second
Type of Terrain

The Third Type
of Terrain

The Fourth Type
of Terrain

SLOPE 0.682 0.609 0.407 0.561 0.814
RMSH 0.680 0.589 0.421 0.562 0.824

2D
CWT 0.637 0.502 0.408 0.617 0.863
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algorithms in the study areas. (a) Results of the terrain partition of SLOPE; (b) Results of the terrain
partition of RMSH; (c) Results of the terrain partition of DCE; (d) Results of the terrain partition of
2D CWT.

4.3.2. Application of Algorithms

The results of the spatial structure, statistical distribution, and terrain partition from different
algorithms showed that the SLOPE and several algorithms with high correlations could better describe
terrain features. As one of the roughness algorithms, SLOPE is simple to implement, and its application
is mature. The result of the SLOPE algorithm showed that its information entropy was the highest,
and it had significant differences for the plain–mountain and hilly areas, which indicated that SLOPE
could directly and effectively represent the steepness of surface units and the spatial variability of
terrain. The SLOPE algorithm was useful for partitioning terrain features. RANGE and RMSH
were better among several algorithms with high correlations with SLOPE. Theoretically, the former
algorithm represented the elevation range within a given range and was suitable for macroscopic
analysis of the terrain relief. The latter focused on the degree of terrain dispersion (the difference
between the elevation value and mean value of each pixel within the scope of the statistic), such that
compared with the former, RMSH was able to represent the spatial variability of local terrain more
effectively. AR and 2D SEM could also express the concave and convex changes of terrain effectively.
The information entropy and effect size results showed that these two algorithms were only weakly
able to express roughness details in flat terrain and could not clearly distinguish plains and hilly areas.
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As far as the overall effect was concerned, AR and 2D SEM were not as good as SLOPE and several
other algorithms with high slope correlation. Both the DCE and VD algorithms quantify roughness
using the spatial variability of the normal vector of the slope surface. These two algorithms could
effectively express the irregularity of the surface according to the degree of dispersion or aggregation
of the normal vectors. These two algorithms had high sensitivity to areas with large terrain differences
in the aspects of the effect size and information entropy, which indicated that the two algorithms
were more suitable for representing surface roughness at a fine scale. However, these algorithms
had little ability to macroscopically distinguish types of terrain, as they could only distinguish two
terrain types. The 2D DFT and 2D CWT algorithms can be used to distinguish the surface roughness
of a particular area by analyzing the spectral characteristics in the frequency domain. Their advantage
lies in the fact that they can quantify different terrain patterns according to their spatial frequency
distribution characteristics, and they have the ability to distinguish terrains. Meanwhile, their defect
lies in the fact that the frequency spectrum method cannot be directly transformed into a roughness
index. Thus, they did not provide a clear intuitive meaning of roughness.

5. Discussion and Conclusions

5.1. Discussion

(1) Hoffman (1990) has proposed that the characteristics of roughness algorithms should have the
following traits: (i) They should be able to effectively distinguish the relief, frequency, and correlation
of the surface; (ii) they should be able to represent the intrinsic properties of the earth’s surface,
rather than properties that arise after processing (rotation or translation); (iii) they should be able to
analyze at the pixel level rather than over the entire workspace; and (iv) they should have intuitive
physical meaning.

Based on these criteria, this study classified 13 roughness algorithms into four major types of
algorithms based on slope, relief, normal slope vectors, and frequency analysis.

After performing correlation analysis, we found that the correlation coefficients between seven
algorithms—RANGE, AR, RMSH, RMSD, RMSS, AS, and 2D SEM—had a high correlation with SLOPE.
RANGE and RMSH are frequently used as common indexes to evaluate relief. The former expresses
the height difference in a specific range. RMSH calculates the difference between the height and mean
value of each pixel in a moving window, so the expression of spatial variation in local scopes is better
in RMSH than in the other two algorithms. Therefore, RMSH was chosen as the optimal algorithm
for the degree of relief. In essence, RMSS and AS are slope’s variants. Both algorithms express
roughness as the degree of local variation (the ratio of the height difference to the horizontal distance)
of the surface elevation. AR measures roughness as the ratio of the surface area to the projected
area, but the low slope value is compressed because of the triangle function of slope, which leads to
a weak ability to distinguish low-relief areas. Thus, the different topographic features could not be
well represented. The 2D SEM algorithm also expresses the spatial difference of the surface elevation
value. This algorithm calculates the square of the local surface height difference and highlights the
obvious aspect of the surface elevation change. Therefore, the effect of 2D SEM was similar to that of
AR because the difference was not significant in areas with low relief. Overall, all of the algorithms
with high correlations with SLOPE have a substantial meaning similar to slope.

However, the slope algorithm is mature and easy to implement, and various analyses show that it
has a significant ability to distinguish types of terrain. Moreover, the slope algorithm is not affected
by the calculation window size, so SLOPE and RMSH were selected as the optimal algorithms of
the group.

In the second group of algorithms, SDS is equivalent to the third derivative of the elevation. SDS
overemphasizes high-frequency information, and although it is able to express the complexity of slope
changes in a local area, it cannot be compared to other algorithms. Both VD and DCE are roughness
algorithms based on slope normal vectors: They have the same basis, but use different methods to
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calculate the aggregation degree of the normal vectors. Therefore, there are some differences between
them. Thus, the results of DCE are better than those of VD from various analytical perspectives.

The algorithms that use the spectral analysis method can express the distribution characteristics
of amplitude information over a certain frequency range. However, 2D CWT transforms discrete data
into the spatial–frequency domain and provides the frequency distribution of the terrain’s amplitude
information at every location in space. Meanwhile, this algorithm selects the range of the wavelet
scale parameter to extract the corresponding frequency range of the surface roughness features. Thus,
this algorithm is more optimized than the 2D Fourier transform. Therefore, we chose the 2D CWT to
evaluate the final partitioning of terrain features.

(2) Currently, with the development of advanced surveying technology, roughness algorithms
have become increasingly mature, which is reflected in the improvement of data resolution. With the
expansion of the scope of monitoring and the diversity of topographic data sets, it has become
a new trend to combine the former roughness theory research with advanced surveying technology
to quantitatively describe topographic changes and formation processes [27,28]. In recent years,
an increasing amount of high-resolution terrain data have been used to determine the complexity
of small-scale features (such as hillslope). In other words, with the increase of the precision of data,
the microterrain and geomorphic information that cannot currently be determined from low-resolution
data will be able to be evaluated. Nevertheless, roughness research at large, medium, and small
scales inevitably requires the selection of a DEM with an appropriate resolution and a window with
an appropriate size, which is helpful for improving the efficiency of data operations and the accuracy
of the results. Therefore, the relationship between different scales of research and optimal demand is
a problem that still needs to be explored.

(3) The conclusion of this study assigned the 13 roughness algorithms to four categories,
then analyzed and evaluated their ability to partition terrain. It was mainly aimed at the macroscopic
partition of different topographic types, such as plain, loess hills, and mountainous areas. Moreover,
the analysis results were relatively accurate. Therefore, the results have certain universality for terrain
differentiation with large differences within a large-scale study area, but the results still need to be
verified by actual derivation in regions where the small-scale difference is not significant.

With the new DEMs that are becoming available, based on the different data sources with the
input data to extract roughness (e.g., Aster GDEM, TanDEM-X DEM), the potential impact of DEM
data on the results of the analysis is also a meaningful research area.

(4) The slope roughness is the variation of the angle that the normal to a slope facet makes with
the gravity normal. This drives water and soil movement and land sliding. Surface texture roughness
applies to a plane surface as well as to slopes, and does not specifically involve the gravity normal.
It is a more detailed variation and affects resistance to flows over the surface. This research was most
interested in slope roughness. However, with higher resolutions of input data, finer detail surface
textures are also valuable and are being addressed in methods of spectral analysis. Finer detail surface
textures are perhaps the next stage of roughness research after primary slope roughness classification.

5.2. Conclusions

On the basis of the representative roughness algorithm studied in previous research, we integrated
and compared 13 roughness algorithms with slope and terrain relief as the indexes to measure
roughness in this study. The results were as follows.

(1) An ideal roughness algorithm should have the ability to distinguish surface relief (spatial patterns
and statistical distributions). From the macro point of view, the 13 algorithms were able to express
the spatial variability of the terrain from image surface features to some extent, but there were
some differences in their spatial patterns and statistical distributions. In terms of the ability
to express and distinguish the terrain, the effect of slope is relatively strong, and the SLOPE
algorithm is mature and easy to calculate and distinguishes the four types of terrain in the study
area. The statistical distribution characteristics of these four types of terrain had a single peak
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distribution according to the slope algorithm. The seven roughness algorithms that had a high
slope correlation were RANGE, AR, RMSH, RMSD, RMSS, AS, and 2D SEM, and the results
of RMSH were the best in terms of the spatial pattern, statistical distribution, and ability to
distinguish terrain types. The advantage of the algorithms based on spectral analysis was that
they could quantify different terrain patterns according to different frequency bands and had
an equivalent ability to partition terrain as the slope-based methods after canonical transformation.
SDS, DCE, and VD have the general ability to distinguish terrain and can only classify two types
of terrain.

(2) In terms of applicability, the SLOPE algorithm could directly reflect the degree of steepness
and irregularity of the surface unit. Among several algorithms having high correlation with
SLOPE, RANGE could express the undulation of terrain over a relatively wide range of heights,
and RMSH focused on expressing the degree of discreteness of the terrain. These algorithms
could distinguish terrain well. SDS, DCE, and VD were not suitable for distinguishing terrain
features, as the former algorithm is used to represent the complexity of slope variation in local
areas, whereas the latter two are more suited for the extraction of terrain features at a fine
scale. Two algorithms based on spectral analysis could be used to extract the required frequency
components by adjusting the range of characteristic frequencies. Although the obtained spectral
parameters could not be directly transformed into roughness indexes, and there was no clear and
intuitive roughness meaning, the advantage was that they can quantify different topographic
patterns and features according to the spatial characteristics of the frequency distribution.
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