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Abstract: Superpixels, as a state-of-the-art segmentation paradigm, have recently been widely
used in computer vision and pattern recognition. Despite the effectiveness of these algorithms,
there are still many limitations and challenges dealing with Very High-Resolution (VHR) satellite
images especially in complex urban scenes. In this paper, we develop a superpixel algorithm as
a modified edge-based version of Simple Linear Iterative Clustering (SLIC), which is here called
ESLIC, compatible with VHR satellite images. Then, based on the modified properties of generated
superpixels, a heuristic multi-scale approach for building extraction is proposed, based on the stereo
satellite imagery along with the corresponding Digital Surface Model (DSM). First, to generate the
modified superpixels, an edge-preserving term is applied to retain the main building boundaries
and edges. The resulting superpixels are then used to initially refine the stereo-extracted DSM. After
shadow and vegetation removal, a rough building mask is obtained from the normalized DSM, which
highlights the appropriate regions in the image, to be used as the input of a multi-scale superpixel
segmentation of the proper areas to determine the superpixels inside the building. Finally, these
building superpixels with different scales are integrated and the output is a unified building mask.
We have tested our methods on building samples from a WorldView-2 dataset. The results are
promising, and the experiments show that superpixels generated with the proposed ESLIC algorithm
are more adherent to the building boundaries, and the resulting building mask retains urban object
shape better than those generated with the original SLIC algorithm.

Keywords: superpixels; building extraction; DSM refinement; stereo satellite imagery; multi-scale
segmentation; SLIC; ESLIC

1. Introduction

Segmentation, as an integral and basic part of computer vision and image processing, literally
means to segment the image into meaningful pieces or into the “ingredients” that a human mind
unconsciously does. Numerous studies have been published on the concept of image segmentation
but still it is a challenging problem to naturally segment the objects in an image. Regarding the
implementation of segmentation algorithms, different types of paradigm have been developed [1,2].
The early reported algorithms comprised region-based, edge-based and thresholding methods [3],
mainly employing image pixels as the basic component of the image. Therefore, generally the
traditional segmentation algorithms are known as pixel-based approach [4]. Pixels are not natural
entities and not efficient representative of the captured space. Since early in 2000s, Blaschke et al.
discussed the question: ‘what is wrong with pixels?” [5]. Then, they introduced a new paradigm in
image segmentation known as Object Based Image Analysis (OBIA) which led to the development
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of object-oriented GIS and remote sensing software. At the same time, recently we have been facing
a rapid progress in Very High-Resolution (VHR) image analysis and a high availability of data which
contain higher spatial and spectral information than before. Simultaneously, new image processing
techniques started meeting the need for faster and more powerful algorithms and to deal with the
huge amount of spatial and spectral data. Consequently, a set of methods has been developed called
superpixels [6]. Superpixels are small patches of pixels representing homogenous regions in an image.
Derived from a low-level grouping process, they can represent an image in a more abstract way.
Additionally, superpixels comprise more meaningful information than that of individual pixel and can
be used as an input for further processing algorithms. This leads to an increase in speed, simplicity
as well as efficiency of computation. Many of so-called superpixel methods were originally known
as interactive methods through which the segmentation starts from an initial predefined segment in
the image, followed by a convolutional algorithm [7,8]. Such algorithms such as Random Walk [9]
and level set [10] were commonly used in medical image analysis from the early stages. However,
during the last years these algorithms have been improved to be more automatic starting from regularly
distributed random pixels in the image as superpixel centers which are called ‘seeds’. The seeds are
then updated in each iteration to form the final superpixels [6]. Accordingly, they are generally known
as over-segmentation methods; segmenting an image into small regions which are smaller than objects.

Recently regarding the advantages of superpixel algorithms, many studies have been performed
for different remote sensing applications including optical imagery as well as SAR and hyperspectral
images with a diverse range of targets [11-13]. For satellite imagery from urban areas particularly
building boundaries are critical and have been the main target of many researches in urban remote
sensing. The accuracy and reliability of classification or object extraction, resulting from the
superpixel-based methods, are highly dependent on the accuracy of the superpixel generation
algorithm. Consequently, boundary adherence is an essential factor in the superpixel method selection.

Though here we are focusing on superpixel algorithms, to maintain the comprehensiveness of this
review, it is worth mentioning Deep Learning techniques which have received considerable attention
over the past few years [14]. Deep learning techniques are basically machine learning methods with
multi-layer (deep) convolutional neural networks, that can deal with huge amount of input data to
predict the output. They are increasingly being used in segmentation and classification problems in
the field of remote sensing applications as well and have been reported to get promising results [15].

In this paper, inspired from the state-of-the-art superpixel generation algorithm, we propose an
improved method adapted to VHR multispectral satellite images in urban scenes. Since buildings are
of high interest in urban remote sensing, in the proposed algorithm we are particularly focusing on the
building boundaries.

This work is composed of two main parts: modified superpixel generation and building mask
extraction. In the next section, Section 2, first we have a review on some of the most popular superpixel
segmentation algorithms reported in the literature, then a modification on the SLIC superpixel
algorithm is proposed. In Section 3, based on the modified properties of the derived superpixels,
a multi-scale approach for building mask generation is applied. The results and discussion come in
Sections 4 and 5 respectively, and Section 6 conclude the findings.

2. Superpixel Generation

2.1. Background and Motivation

As mentioned above, most of so-called superpixel algorithms are modified versions of popular
segmentation methods and have the same basics. In this part we review some of the most widely
known superpixels and their concepts.

Considering the image as a graph, is the basic idea behind a set of superpixel generation algorithms
in computer vision [16-19]. In 2000, Shi and Malik [18] developed a segmentation algorithm based
on graph theory known as Normalized Cuts (Ncuts). They consider the image segmentation as
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a graph partitioning problem based on a normalized cut criterion which measures both the total
dissimilarity between the different superpixels as well as the total similarity within the groups [18].
Later some studies have been proposed superpixel algorithms based on the multi-scale formation
of Ncuts in [20,21], and more recently [22] in which a Linear Spectral Clustering (LSC) superpixel
algorithm as a normalized formation of Ncuts is proposed that measures the color similarity and space
proximity between image pixels. However, generally the Ncuts algorithm, with the complexity of
O(N?), is computationally expensive especially when the number of pixels increases.

Graph cuts superpixel segmentation, first proposed by Boykov et al. in 2001, is one of the common
superpixel segmentation methods based on graph and energy function optimization [17]. Given a set
of pixels as graph nodes, a cut is a subset of edges and is equivalent to the minimum cost and it
happens at the image boundaries. The algorithm has the complexity of O(N?) when N is the number
of pixels, therefore it is not a fast algorithm [23]. Various superpixel algorithms have been reported in
the literature based on the same idea [16].

Another popular segmentation method with the concept of modeling an image as a graph, is the
Random Walk (RW) algorithm proposed by Grady [9]. The basic idea of the RW method is to model
the image as a graph in which each pixel corresponds to a node which is connected to neighboring
pixels by edges, and the edges are weighted to reflect the similarity between the pixels [9]. The RW
was originally developed as an interactive image segmentation using the foreground and background
seeds by the user. As a modification of the RW method, Shen et al. in [24] proposed an algorithm
called Lazy Random Walk (LRW). In the RW the model ignores the whole relation of the current pixel
to the other seeds, therefore it may fail in weak boundaries and complex textures. To make it globally
in comparison to the RW which operates locally, they add a ‘self-loop” over the graph vertex and called
the algorithm ‘lazy’. The complexity of LRW algorithm is O(N?) which is relatively high. However,
as an advantage they reported this algorithm to be boundary adherent even in weak boundaries and
complex textures [24].

The second group of superpixels are those from the family of active contour and level set methods.
Levinshtein et al. in 2009 [25] proposed the Turbopixel superpixel algorithm based on a restricted form
of level set [10]. Level set segmentation as a very common algorithm in medical image processing has
been increasingly applied to image segmentation in the past decade [18,20,26]. The idea is to represent
the boundary of a superpixel in an image, as a curve C with normal vector N and the speed of curve
evolution which is then %—f = SN. Considering the signed Euclidean distance of each image pixel to
the closest point on the boundary, a pixel’s distance is positive if the pixel is inside the region and
negative if not. Accordingly, it is zero for the pixels on the region boundaries. Therefore, through the
level set algorithm the curve is iteratively evolved and finally the zero-level curve is regarded as the
region boundary [25]. Through the Turbopixel algorithm, starting from the uniformly placed initial
seeds, a localized level set is applied. The algorithm complexity has been reported to be roughly linear
to the total number of pixels; O(N).

Generally, four basic principles are considered to establish a superpixel algorithm; connectivity,
uniform size and shapes, edge preserving and getting non-overlapped superpixels [25]. Besides,
different superpixel algorithms are commonly compared and evaluated regarding three main
principles: boundary adherence, compactness, computational complexity, or speed [23,27].

In 2012 Achanta et al. [27] developed the Simple Linear Iterative Clustering algorithm (SLIC),
as localized k-means. The idea is to locally cluster the image pixels regarding the computed distance
using both spatial and color proximity to the initial centers. SLIC has shown to be a fast and powerful
algorithm with the highest boundary adherence and the lowest complexity [23]. Accordingly, SLIC has
been recently of great interest to researchers in computer vision and remote sensing [11,13,22,28].

There are other segmentation algorithms under the category of superpixel generation methods
such as Lattice [29], SEEDs [30], Quick-shift [31] as a kernelized mean-shift algorithm [32], which
in comparison to the above mentioned algorithms have relatively poor performance and/or higher
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complexity and lower speed [23]. Besides, in the literature one may find some other algorithms,
but they are mainly variations or modifications of the cited major methods.

In the following part we propose a modified superpixel algorithm for VHR satellite
images. The main target of our study is building detection, therefore here we focus on urban
scene segmentation.

2.2. SLIC

Basically, SLIC is a localized iterative k-means algorithm [27]. The algorithm starts from a regular
grid of seeds. The number and size of superpixels depend on the number of initial seeds. For each seed
point a neighborhood with size 2 x S is defined, where S is the initial grid interval, and the nearest
neighboring pixels are labeled to be in the same superpixel. The distance measure, D in Equation (1),
is composed of both color distance d. in CIELab space, as in Equation (2), and spatial Euclidean
distance ds, as in Equation (3), so the effect of each parameter can be controlled by the weighting
value m:

ds

D =4/(de)* + (g)zmz 1
de = \/(lj_li)2+ (a;j —a;)*> + (bj — b;)? )
ds = \/(xj—xl-)2+ (yj—yi)z (©)]

where [/, a, b] are color coordinates in the CIELab color space and [x, y] are pixel’s position in the image.
According to the standard SLIC algorithm, at the beginning each pixel in the image is likely to belong
to 4 regions (except for the peripheral seeds), Figure 1.
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Figure 1. Each seed k has a search area of 25 x 2S to generate superpixels with size S x S, and each
pixel p is likely to belong to 4 seeds.

Starting from the first seed, the nearest neighboring pixels with a distance lower than a very large
initial predefined value is assigned to the seed and in the meanwhile the initial distance value for those
pixels is updated. After formation of the first superpixel which is obviously expected to have a regular
shape, the second seed point is inspected in its own neighborhood and the distances as well as the
labels for the pixels through the common area with the previous neighborhood are updated again.
The procedure continues until every pixel in the image belongs to its nearest and at the same time
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the most spectrally similar superpixel. This is iteratively applied and after each run, the seed centers
are updated. Through this procedure, m as a weight parameter, tunes the relative importance of each
term in Equation (1) and has a significant rule on the shape of final superpixels. When m is small,
the resulting superpixels have higher boundary adherence but shape and size regularity decreases.
SLIC is O(N) complex. In comparison to the other superpixel segmentation algorithms, SLIC shows to
have higher speed, more boundary adherence, and a relatively low under-segmentation error [23].

2.3. Problem Statement and Modification

Figure 2 shows the resulting SLIC superpixels for different parameters of m and N on an urban
scene in central Munich. It can be seen that for large values of m, superpixels are regular-shaped and
do not fit especially to the weak object boundaries. On the other hand, smaller values of m make the
algorithm too sensitive to the color changes and again the superpixel boundaries do not fit properly to
the real meaningful objects. Accordingly, SLIC tends to fail in the building boundary reconstruction in
urban scenes from satellite images due to various reasons such as complexity of city structures and
intricate roof buildings, shadows, and sometimes abrupt illumination changes. In the standard form of
SLIC, the shape of final superpixels is highly affected by the color similarity of different surfaces on
roof tops and surrounding ground in the CIELAB color space [27]. Thus, considering the availability
of valuable spectral information, for instance 8 spectral bands of WorldView-2 images, it is reasonable
to modify the spectral feature space in the algorithm. In this paper, we propose a modified superpixel
algorithm, from now on called Edge-based SLIC and noted as ESLIC, to compensate for the drawbacks
of applying standard SLIC on VHR satellite images in urban areas.

WV-2 data, Munich city N=3500, m=0.008 N=1000, m=0.008 N=1000, m=0.001

Figure 2. Results of SLIC superpixels on a sample WV-2 urban scene. The algorithm tends to fail on
weak boundaries which are pointed by arrows.

2.4. ESLIC

As discussed above, to increase the capability of the superpixel algorithm to distinguish different
surfaces with similar optical behavior, in the proposed algorithm, three modification are introduced.
First, we use the original spectral bands instead of the CIELAB colors. In this way, the input feature
vector to calculate color distance, from a 3-dimensional vector is turned to a higher dimensional one
consisting of the 8 spectral bands for WorldView-2 data.

i=n

=Y [(gi _gki)z} (4)

i=1
where g; refers to the intensity value of a pixel in the ith band and k is the index for the kth seed point.
Besides, urban areas having complex textures may cause significant intensity fluctuations which
can lead to weak boundaries. This makes it more difficult for the algorithm to meet the boundary
adherence condition in the satellite images. Therefore, as the second modification, to get sharp
edges with the most coincidence to the real object boundaries, an edge indicator is introduced to



Remote Sens. 2018, 10, 1824 6 of 18

the superpixel shape formation phase in the proposed modified algorithm. Therefore, not only the
spectral variations through the image, but also the geometry of study area are considered. To allow
this indicator to affect the shape of superpixels, a new term related to the edge indicator, E, is added
as an extra element in the input feature vector. This leads to an increase in dimensionality of feature
space. Therefore Equation (2) will change into the form:

1=n

d; 21 [(gi —gu)’ + Ez} ®)
i=

An edge indicator E for each pixel in the image generally can be defined for example using
image gradients, image Laplacian or other expressions like in [33]. In this study, we have first tested
the magnitude of gradient and Laplacian as edge indicator in Equation (5). However, the Laplacian
image is too sensitive to noise as well as intensity changes and the resulting superpixels are rough
and noisy in both shape and size, as shown in Figure 3. Image gradient represents directional change
in the intensity or color in the image. Therefore, on weak boundaries which is a common case in
satellite urban scenes, it will have a very small magnitude. That will reduce the power of the algorithm
for boundary adherence and can lead to a leakage of superpixels near the boundaries. As we need
a powerful constraint on the building boundary for superpixel formation, and according to the fact that
SLIC is basically a region-based clustering algorithm, we reinforce the edge indicator with a textural
term in Equation (5).

Figure 3. A building in a PAN image (a), and corresponding superpixels generated using a Laplacian
constraint (b). Red dots are superpixel centers. Laplacian constraint in the formation of superpixels
makes the algorithm too sensitive to noise and color fluctuations.

Texture is a description of the image homogeneity based on local spatial variations of intensity
or color brightness that has an important role in remote sensing [34]. Especially the gray level
co-occurrence matrix (GLCM) is a classic common method which calculates the local correlation of
pixels to obtain the texture feature values. Among all reported feature statistics based on GLCM to
describe the image texture features [35], we found contrast a proper reinforcement for the edge-term in
our algorithm. Texture contrast (CON) which can be described as 'generalized gradient’ [36], for a 2D
image f (i, ) is defined by Equation (6):

N N
CON = ZZ(i—j)ZP(i,]’) (6)

J
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where i, j refer to the image coordinates and P refers to the GLCM, i.e., square matrix whose size
represents the probability of the gray value g7, distanced from a fixed spatial location relationship
(size and direction) to another gray value g, [34], and can be expressed as:

Plij) = #{[(i1, 1), (12, 2)] € SIf (i1, 1) = §1&f (i2, j2) = g2}

49 @)

where S is the set of pixels with a certain spatial relation in the region. As a result, the edge indicator
term E in Equation (5) can be defined by:

where dg and dgrcym represent the difference of image gradients and the difference of texture GLCM
for each pixel, respectively.

As the third modification, the connectivity constraint is altered. Connectivity constraint is
usually one of the main factors considered in superpixel generation procedures. Many existing
superpixel methods, such as Normalized Cuts, Graph Cuts and Turbopixels, meet this constraint
inherently through the algorithm [17,18,25]. SLIC in the standard form doesn’t explicitly enforce
connectivity and uses a connected components algorithm as a post-processing stage before final
superpixel generation [27]. This causes some details to be ignored or some unwanted bulges and
artifacts on the boundaries to appear. Here in contrast, we suggest enforcing the decomposition before
final superpixel generation. This is well adapted to preserve fine details in satellite images from
very complex city scenes. It is also able to improve the boundary representation on which further
experiments are based. In Figure 4, the effect of using the proposed ESLIC, is shown.
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Figure 4. Effect of gradient term on the shape of superpixels; building in a Pan WV-2 image (a),
superpixels resulting from SLIC (b), superpixels resulting from ESLIC (c,d). The results shown in (c,d)
can be compared to Figures 2 and 3b respectively.

In this research we have used our modified superpixel algorithm in a heuristic approach for
building extraction from VHR satellite images.

3. Building Mask Extraction

Building mask generation is a challenging problem in urban remote sensing. Due to the
importance of buildings as the main objects in urban areas, various algorithms on building detection
and extraction have been developed and many researches have been reported in the literature since
the 1980s [37,38]. Recent advances in computational information technology as well as in development
of high-resolution sensors lead to a wide range of heuristic and innovative approaches for urban object
detection in satellite images. We can divide all the reported algorithms into two general categories;
data-driven and model-driven methods. Although many of reported algorithms are hybrid models of
data-driven and model-driven schemes. In the model-driven scenario, first some predefined models are
constructed for the buildings and then they are projected onto the image to be adapted to the extracted
features [39]. When the spatial resolution of the image is relatively low in comparison to the object
extent, the model-driven approaches have better performance [40]. However, data-driven methods are
usually based on image grouping or segmentation. Therefore, compared to the model-driven methods,
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they are more adaptive to complex building shapes and types. In this paper, we propose a data-driven
method for building extraction, supported by our modified superpixel segmentation, ESLIC.

3.1. Methodology

The heuristic method we developed in this research is based on VHR satellite images and relies
on the proposed superpixel algorithm described above. As shown in Figure 5 the workflow starts
with the stereo images as input data. Then, using the Normalized Difference Vegetation Index (NDVI)
and shadow extraction from Pan-Sharpened image (PS) an initial coarse mask is generated from
the normalized DSM (nDSM). This initial mask is then imposed on the PS and ESLIC is applied on
building candidate areas to generate superpixels with different sizes. Finally, multi-scale superpixels
are integrated to generate the final building mask. In the next sub-sections, the workflow is described
in detail.

Input Data . Stereo Images

Pan- spectral bands
DSM sharpened & edge S ———
Tmage indicators 3 8

@ |: \ integrated
\ building
N mask

NDVI 4D \ multiscale superpixel integration
1DSM ? building £
Shadow H candidates
coarse mask generation ESLIC

Figure 5. Workflow of building mask extraction supported by multi-scale ESLIC.

3.1.1. Data Preparation

Digital surface models (DSM) can be efficiently generated from VHR optical stereo images with
the Semi-Global Matching (SGM) algorithm first proposed in [41], and later improved for satellite
data in [42]. The DSM is used here for two main purposes; to generate the orthorectified image to be
segmented, and to extract building candidates. As described earlier in Section 2.4, ESLIC employs
spectral as well as spatial and geometric features derived from input images. Therefore, first the input
satellite image needs to be PS and orthorectified. Then, shadows and vegetation (NDVI) are removed
from the nDSM to estimate building locations.

3.1.2. DSM Refinement

Since stereo DSMs, are suffering from various local defects through errors in stereo matching
and 3D model generation, and due to different natural phenomena such as illumination variations
and occlusions, therefore containing holes so-called DSM voids; in the first step the DSM needs
to be refined to get a seamless model. To fill the voids a range of algorithms have been proposed,
mainly including interpolation alone or along with using an auxiliary DSM. Here as in [43] we employ
a segmentation-based filling approach, shown in Figure 6.
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Stereo Pan MS
Tmtial Pan-
unfilled sharpened
DSM Image
refined
DSM

Figure 6. Data preparation; DSM refinement through void filling using spectral information from
multispectral image.

In this way, no external DSM is needed to fill the voids. First a neighborhood around every void
in the unfilled DSM and its corresponding area in the multispectral image is defined. Then, these
areas in the image are segmented using the ESLIC algorithm, so that according to the corresponding
superpixel, a label is assigned to each cell in the voids. Finally, these void cells in the DSM are filled by
the interpolated value of their co-labeled neighbors.

3.1.3. Multi-Scale Building Extraction

Having a coarse building mask as described in Section 3.1.1, regarding the maximum elevation
in the study area, a 2D initial mask is created. The mask is overlaid on the image and the modified
superpixel algorithm is applied on the candidate areas to reduce the computation load and to increase
the focus on the specified regions. To get rid of the parameter dependency of the superpixel shape and
size, a multi-scale approach is used and ESLIC is applied on every scale. That gives multiple sets of
superpixels with different size parameters. Our proposed ESLIC algorithm guarantees that in each
scale there are some fixed small patches, say anchors, in common with the other scales, containing
edge points.

As mentioned in Section 2.4, we remove the connectivity constraint in ESLIC. This removal benefits
our approach in two ways. First is to highlight and distinct the superpixels which are completely inside
the mask. As a result, of this constraint, surrounding superpixels with high probability of comprising
boundaries as well as leaked ones, are removed and interior superpixels are regarded to be labeled
as building parts. In addition, using the edge-term in the proposed algorithm through Equation (8),
make the superpixels follow the basic shape of the building skeleton say ridge lines and its boundaries.
This reduces the risk of uncertain superpixels, i.e., those that are not completely inside the building
area, and saves only the safe ones as small pieces of buildings. These remaining small pieces obtained
from every scale, are then integrated larger area, here named as “object core” is created, such as the
sample shown in Figure 7.

Next, we generate a mean-image, so that every pixel in this image receives the average value of
the corresponding intensities regarding the new integrated superpixels. Expectantly, the object core in
the new segmented image gets homogeneous intensities and textures. Therefore, if this mean-image is
again segmented using the ESLIC, as a result, the edge constraints on the interior parts are automatically
removed and only surrounding superpixels follow the building boundary shape. Since the superpixels
especially those containing weak boundaries or high textured areas, are composed of several smaller
parts, first we impose detachment. This is to remove exterior small patches regarding the shape of
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object core. The main key to the success of the algorithm in this stage is the reinforced edge-term,
in Equation (8), which provides a continuous and seamless constraint along the building boundaries.

Figure 7. ESLIC on the pan-sharpened image (a), ESLIC on the mean-image generated using the
integrated superpixels on the object core (b).

3.2. Remark

In Figure 8 a sample building in the Munich dataset is shown and one can see the confusion
problem through some boundaries and building edges. Due to the geometry of perspective projection,
the shape and position of objects in the optical satellite images are exposed to relief displacement or
height distortion. Displacement increases with the radial distance from nadir point and with the height
of objects. Orthorectification transforms the central projection of the image into an orthogonal view
of the ground, thereby removing the errors and distortions including relief displacement. However
usually relief distortion cannot fully be corrected in the orthorectified image, because of deficiencies in
the DSM, registration, etc. Therefore, to get rid of this problem, we can use the original images instead
of the orthorectified one, as the input in the algorithm (Figure 5). If we use un-orthorectified image
as input, we need a co-registered height model and DSM cannot be employed anymore. Therefore,
instead we employ the height map (HM), which is the first product of SGM following epipolar lines
using sensor parameters or Rational Polynomial Coefficients (RPC). This epipolar rectification through
the height map generation, makes it co-registered to the master image. Like the stereo DSM, this
HM contains some gap areas and voids, so the filling and refinement as described in Section 3.1.2,
is still essential. The main advantage of this replacement is that the edges and boundaries in the
un-orthorectified image are sharper; so the artifacts around the urban objects are eliminated and the
ESLIC algorithm may preserve building boundaries more reliably. For each HM, in the same way
described earlier, after removing NDVI and shadow from corresponding master image, the regions as
building candidates are extracted first. Then, the master image is segmented, and the corresponding
HM is filled. Both are the input for ESLIC superpixel segmentation.
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(a)

Figure 8. Artifacts around building boundaries in the orthorectified image (a), made us use the
un-orthorectified image (b). (c) shows the result of ESLIC superpixel segmentation on the image (b).

4. Results

4.1. Data

The input data used in this study are satellite images from Munich and Istanbul city taken
with WorldView-2 in 2012. The DSMs were generated from panchromatic stereo images with 0.50 m
resolution. To perform the experiments, we picked different buildings in the cities from the DSM and
the corresponding parts in panchromatic and multispectral images.

4.2. Experimental Setup and Results

To generate the modified superpixels with our proposed algorithm, only two parameters should
be set as in the original SLIC parameters; number of superpixels (N) and the weight parameter (m).
As described in Section 3, we apply the algorithm in multiple scale, therefore setting a precise value for
N no longer matters critically. Instead, the algorithm starts with an initial N and continues for larger
values. Obviously, increasing N creates smaller superpixels and the maximum value of N would be
equal to the image size, resulting in superpixels each of which is equivalent to a single pixel in size.

Regarding Equations (5) and (8), 8 spectral bands of WV-2 images are used as well as an
edge-term containing the gradient values and texture features, GLCM, for each pixel to generate
the ESLIC superpixels. Since GLCM has high computational complexity and makes the algorithm
rather slow, to reduce computational burden, we apply the ESLIC algorithm only on the selected
area containing building candidates. The candidate areas are extracted initially from the nDSM,
after shadow and vegetation (NDVI) removal. For shadow detection from multispectral satellite
images, many algorithms have been proposed. We used the spectral index in [44] to automatically
detect shadows using a ratio defined by the Blue band, B, and two Near-Infrared bands, NIR1 and
NIR2, (NIR2-Blue)/(NIR2-Blue)-NIR1). Proper values for N are then set regarding the approximate
size of buildings and is determined by the number of pixels, 1y, divided by the initial minimum
desired size of superpixels, s; (%p). The latter value depends on the scene structure as well as the
Ground Sampling Distance (GSD). Accordingly, in the WV-2 data with 50-centimeter GSD, the size to
be regarded as a meaningful building part is considered to be around 16 meters equivalent to about
80 pixels. On the other hand obviously the minimum size of superpixels should be smaller than the
smallest building or building part in the scene.

We apply this for 5 scales and the accumulation of these labeled parts is used for the building
mask extraction. Multi-scale ESLIC-based building extraction is illustrated in Figure 9. After removing
external and border superpixels regarding the initial mask, only internal superpixels are kept for each
scale. These parts are then integrated (Figure 9f) and final building superpixels are extracted from the
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mean-image in the same way. Finally, using morphological operators the remaining tiny holes inside
the mask are covered and compensated. The results for the test dataset is shown in Figure 10.

data preparation

Mul ti-scale building extraction

Figure 9. The first row shows the data preparation phase results for a test building. In the second row

the mean-images generated from multi-scale ESLIC superpixels are shown. The last row illustrates
how the most probable building parts are derived and kept from the initial rough masks; starting
from bigger scale and larger superpixels to the smaller one (a-e), and how the integrated superpixel is
overlaid on the mean-images on each scale (f). In the last row each color represents a superpixel.

4.3. Quantitative Evaluation and Comparison

Generally, in computer vision, computational vision algorithms are evaluated in two different
ways. In the first approach, the algorithm is evaluated in the context of a particular task [45]. It means
to measure the contribution of the algorithm to the higher-level procedures, for example in remote
sensing, the image segmentation algorithm should be evaluated regarding its contribution to the
quality of the final detected objects. In the second approach, the performance of an algorithm is
evaluated regarding a given ground truth.

Using ground truth or generally reference data for superpixel segmentation evaluation, commonly
three measures are used: Boundary Recall (BR) as in Equation (9), measuring the fraction of ground
truth boundaries recovered by the segmentation results;

Epedc (mingess |lp =l < ¢)
4G

BR(S,G) = 9
Under-Segmentation Error (UE), measuring the percentage of pixel leakage from the ground truth
boundaries as in Equation (10);
i Ykesingi#o 15k — il

UE(S,G) = 5 s (10)
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and the highest Achievable Segmentation Accuracy (ASA), as the fraction of labeled pixels that are not
leaked from the ground truth boundaries, defined in Equation (11) [46];

ASA(S,G) = ZkMaxilse N gil (11)
i lgil
where S = s1, 57, 53, ..., 55, refers to the resulting segments and G = g1, 92,83, .-, gn, presents the ground
truth. The boundaries in the segmentation result and in ground truth are represented by dS and 4G
respectively. Table 1 shows the quantitative results for the test buildings presented in Figure 10.

V 4 N ¢
PN
o
o PN
o4

(i (ii) (iii) (iv)

Figure 10. Results for 7 test data (a—g); (i) pan image, (ii) DSM, (iii) ground truth, (iv) result as extracted
mask, (v) result as footprint overlaid on the pan image, (vi) overlaid on the DSM.
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Table 1. Evaluation of the generated building masks using ESLIC and comparison to the SLIC and
level set results, for the building samples a-g in Figure 10.

ESLIC SLIC Level Set

TestData ;g BR ASA UE BR ASA UE BR ASA
a 0053 083 094 0070 085 092 0.065 0.89 0.92

b 0052 093 096 0068 093 089 0.060 0.90 0.86

c 0048 098 095 0065 098 091 0.059 091 0.90

d 0058 088 093 0070 090 085 0.068 0.85 0.89

e 0032 093 098 0064 094 093 0054 0.92 0.94

£ 0042 094 095 0060 093 094 0061 0.93 0.95

g 0038 095 095 0058 092 092 0.070 0.93 091
mean 0046 092 095 0065 092 091 0.062 0.90 0.91

STD 0.009 0.050 0.016 0.005 0.040 0.030 0.005 0.028 0.030

In the last three columns of the table the quantitative evaluation result of the obtained building
masks from another primitive superpixel algorithm, level set, is shown. As described earlier in
Section 2.1, level set is originally introduced in the context of active contour model. It has achieved
good performance in image segmentation and boundary detection in computer vision and has been
recently tested on VHR satellite image in [47].

5. Discussion

Table 1 shows that ESLIC generally achieves satisfying results for the test dataset used in this
research. It demonstrates that in comparison to SLIC and level set algorithms, ESLIC superpixels
have lower UE, meaning lower percentage of pixel leakage from the ground truth boundaries.
This advantage is due to using textural as well as spectral features in the ESLIC superpixel generation.
In the same way, comparing the ASA and BR measures in the table, approves the superiority of ESLIC
algorithm to the other methods. It means that ESLIC superpixels are generally more adherent to the
building boundaries and less leaked from the ground truth boundaries.

In Figure 11, one can also visually compare the resulting masks from ESLIC, SLIC and level set
for the 7 test buildings. It is clear that overall performance of ESLIC is higher than the other two tested
methods. In addition, inspecting the visualization of generated superpixels, in comparison to the SLIC,
ESLIC has the advantage of using a powerful edge constraint. This particularly makes sense through
the multi-scale approach. Scaling typically leads to some smoothing and approximation, therefore the
SLIC which is solely based on spectral features may generate quite different superpixel shapes in each
scale (Figure 12). However, the strong point of our proposed algorithm is the fact that regardless of the
desired scale, building boundaries as well as main ridge lines are preserved by the superpixel shapes.
It increases the reliability and robustness of the ESLIC algorithm for building mask generation.

On the other hand, comparing level set method to ESLIC and SLIC algorithms, it has more
parameters to be set, and many parameters must be tuned depending on the dataset. While in the
proposed multi-scale algorithm, only a single weight parameter (i), should be set for ESLIC and
SLIC segmentation.

Since our proposed algorithm has data-driven approach, the results can be affected by occlusions
in complex situations such as a building being partly covered by trees. A sample is shown in
Figure 10f in which the lower right side of the building is slightly covered by surrounded single
trees. The indentation along the extracted building boundary in this side can be seen clearly in
Figure 10f-iv. These kinds of occlusions can be partly corrected by more intelligent and context-aware
NDVI and shadow removal methods. However, some will remain the challenging issues in the field of
data-driven object detection approaches.

Here we tested the proposed method for WorldView-2 stereo images; however, the ESLIC
algorithm is compatible with every multispectral dataset. Besides, the proposed algorithm can be
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applied on the average size dataset as well. However, when dataset increases in size, the algorithm runs
slower, because the complexity of texture computation increases. To avoid this problem, we applied
the algorithm only on the cropped area containing building candidates.

(d)

(a) (b) (c) (e) () (2)
Q|+ e 20N
PR A 4

N
’ e ,
oo
RPN
Qle|s 20K
0‘ :
4
Qle s #|OA

Figure 11. Results of ESLIC in comparison to the ground truth (GT), SLIC and level set results for 7
dataset (a—g) tested in Table 1.
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Figure 12. ESLIC results (top), vs. SLIC superpixels (bottom), both for the same scales. ESLIC can
preserve boundaries and main ridge lines regardless of the scale.

6. Conclusions

In this paper, we proposed a modified superpixel algorithm, adapted to VHR remote sensing
images. To preserve weak boundaries in the image and to increase the boundary adherence of
superpixels, an Edge-based SLIC, named ESLIC, has been developed. The algorithm shows to
outperform the standard SLIC algorithm for VHR multispectral satellite images, due to the extra
spectral and geometric features introduced to distance computation. Then, a heuristic multi-scale
building detection method based on the modified superpixels is proposed, which employs the
approximate location from the DSM and the spectral and textural features derived from the
corresponding image. The proposed ESLIC is also used for DSM refinement as a preprocessing
phase to fill the unwanted gaps and void areas caused by the occlusions, shadows, etc.
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In this research the algorithm has been first tested on orthorectified image. Therefore, the artifacts
due to the relief displacement around the urban objects in the area, particularly the higher buildings,
destroyed the boundaries and disturbed the superpixel segmentation result. To solve this problem
and create sharper and more precise boundaries, we applied ESLIC on the original image before
orthorectification. The results are promising, and this scenario can be also used for an innovative
refined DSM generation procedure.

As a conclusion, attaining an improvement in the segmentation of VHR satellite images
consequently leads to two main achievements; first to more reliable and accurate results for
object/building detection and classification, and second, it can be used for an improvement in the
DSM refinement algorithm, i.e., in the void filling procedure. Both achievements are also directly
involved in many other applications such as city modeling and 3D object change detection [43,48,49].
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