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Abstract: The Earth’s surface bistatic reflectivity ΓLHCP,CyGNSS is experimentally characterized using
the novel Global Navigation Satellite Systems Reflectometry (GNSS-R) L-band passive multistatic
radar technique from the Cyclone Global Navigation Satellite Systems (CyGNSS) eight-microsatellite
constellation. The focus of this study is to evaluate the influence of the GNSS satellites’ elevation angle
θe on ΓLHCP,CyGNSS, as a function of soil moisture content (SMC) and effective surface roughness
parameter h. As the average response, the change of the scattering regime at a global scale and
considering also vegetated surfaces appears at θe ≈ 55◦. This empirical observation is understood
as a change on the dominant scattering term, from incoherent to coherent. Then, the correlation of
ΓLHCP,CyGNSS and SMC is evaluated as a function of θe over specific sparsely vegetated target areas.
The smoother the surface, the higher the angular variability of the Pearson correlation coefficients.
Over croplands (e.g., Argentinian Pampas), an improved correlation coefficient is achieved over
angular ranges where the coherent scattering regime becomes the dominant one. As such, this
function depends on the surface roughness. The maximum correlation coefficients are found at
different θe for increasing mean roughness levels: rPampas ≈ 0.78 at θe ≈ [60,70]◦, rIndia ≈ 0.72
at θe ≈ [50,60]◦, and rSudan ≈ 0.74 at θe ≈ [30,40]◦. SMC retrieval algorithms based on GNSS-R
multi-angular information could benefit from these findings, so as to improve the accuracy using
single-polarized signals.

Keywords: GNSS-R; CyGNSS; bistatic reflectivity; elevation angle; coherent and incoherent scattering;
Soil Moisture Content (SMC); surface roughness

1. Introduction

Small satellites [1] are changing the paradigm in Earth remote sensing, taking advantage
of innovative payloads (e.g., References [2–4]). As such, the operation of constellations of these
instruments has the potential to observe Earth’s dynamic processes with a higher spatiotemporal
sampling than traditional techniques. In particular, the so-called Global Navigation Satellite Systems
Reflectometry (GNSS-R) [5] is a sort of L-band passive multi-static radar (as many transmitters
as navigation satellites are in view) that provides a wide swath up to ≈1500 km [6–8]. GNSS-R
spatiotemporal sampling properties could open new process insights on mesoscale studies [6],
wind speed determination [9], soil moisture content (SMC) determination [10], and vegetation water
content (VWC) monitoring. There are several on-going research activities dedicated to improve the
spatiotemporal sampling properties of GNSS-R. The main parameters being evaluated are the number
of in-orbit receivers, the use of beam-forming strategies, and the directivity of the down-looking
antennas [6]. Several methods have been proposed to extract the geophysical information added to
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the GNSS signals in the scattering process over the Earth’s surface: (a) The Passive Reflectometry
and Interferometry System (PARIS) or interferometric GNSS-R (iGNSS-R) that can provide higher
precision in ocean altimetry measurements, but requires the use of high-gain antennas [6,8]; (b) the
conventional GNSS-R (cGNSS-R) that requires only relatively low-gain antennas for scatterometry
purposes [8]; and (c) the GPS interferometric reflectometry (GPS-IR) that can determine accurately
SMC with potential application to the global GNSS network [11].

At present, several small satellites have been launched into space carrying a GNSS-R payload
on-board, including the United Kingdom (U.K.)-Disaster Monitoring Constellation DMC-1 [2] in
2003, the U.K.-TechDemoSat TDS-1 [3] in 2014, and the Universitat Politècnica de Catalunya UPC’s
3Cat-2 in 2016 [4]. In 2012, the National Aeronautics and Space Administration (NASA) selected the
CyGNSS mission led by the University of Michigan as a low cost and high science Earth Venture Space
System [12]. CyGNSS, an eight-microsatellite constellation, was launched on December 15, 2016 into
a low Earth orbit (LEO) with an inclination angle ≈ 35◦ [13]. The main objective of this mission is
to estimate wind speed over tropical cyclones with an unprecedented spatiotemporal sampling of
the ocean [14]. Each single CyGNSS microsatellite has two left-hand circular polarization (LHCP)
down-looking antennas pointing to the Earth’s surface with an inclination angle of ≈28◦ on each side
of the satellite ground track. The antennas’ gain is≈ 14.7 dB (antenna boresight), and the main payload
is the so-called Delay Doppler Mapping Instrument (DDMI), which generates delay Doppler maps
(DDMs) [8] on-board using a coherent integration time Tc = 1 ms, and applying an incoherent average
over Ninc = 1000 samples.

The application of active (e.g., synthetic aperture radar (SAR)) and passive (e.g., microwave
radiometry and GNSS-R) remote sensing techniques over land-surfaces is based on the variability of
the dielectric properties due to changes in SMC and biomass. However, surface roughness significantly
affects SMC retrieval, especially in the case of GNSS-R [15–17] and SAR [18–20]. In this work,
the sensitivity of GNSS-R to SMC, and the effect of surface roughness are assessed as a function
of the elevation angle θe (θe = 90◦ at the normal direction to the Earth’s surface) [21]. This is a first
step towards SMC retrieval using GNSS-R multi-angular information [22] because the ratio of the
coherent-to-incoherent scattering components [23] depends on the surface roughness through θe.
The coherent scattering component is expected to be more sensitive to SMC because of its improved
spatial resolution (limited by approximately the first Fresnel zone) and its scattering properties. This
smaller footprint provides an improved estimation on the actual heterogeneity of the surface. As such,
the sensitivity of GNSS-R to SMC should increase with higher θe because the size of the first Fresnel
zone is lower at this geometry. On the other hand, the coherent scattering component is expected to
increase with lower θe [24] because the effective surface roughness is lower at this angular range, in
agreement with the Rayleigh criterion. This trade-off is assessed over different surface types using the
CyGNSS Level 1 Science Data Record [12,25].

The remainder of the paper is organized as follows. Section 2 provides an overview of approaches
for studies over land. Section 3 describes bistatic scattering properties relevant to GNSS-R. Section 4
describes the methodology. Section 5 presents global-scale results. Section 6 describes the impact of
θe as a function of SMC and effective surface roughness parameter with a focus over land. Section 7
includes final discussions, and the conclusions are highlighted in Section 8.

2. GNSS-R Approaches for Studies over Land Surfaces

The use of different GNSS-R methods (iGNSS-R, cGNSS-R, and GPS-IR) for land-surface
applications requires further research activities because the dielectric properties of this scattering
medium make it more complex than the ocean surface. The first study (to the authors’ knowledge)
on the potential use of GNSS-R for SMC estimation was published in 2000 [26]. Follow-on activities
were proposed simultaneously to investigate the capabilities of GNSS-R for SMC determination using
cGNSS-R [27–29] and GPS-IR [10,11,30,31]. The use of the polarimetric ratio (ratio of the reflected
signals’ power at two different polarizations) on cGNSS-R data collected from two airborne experiments
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was further studied for biomass monitoring up to an above ground biomass (AGB) of ≈300 ton/ha,
and for SMC determination because it can cancel out surface roughness effects [15,16]. A GNSS
dual-polarization payload [4] was successfully tested over boreal forests during two experiments
from a stratospheric balloon [32]. A comprehensive study over different land surface types was
performed to further assess the use of dual-polarization information obtained during two airborne
campaigns [33]. More recently, new important conclusions were also derived, such as: (a) the use of the
GPS-IR for accurate SMC estimation was validated over multiple GPS test sites including vegetated
surfaces [11,34]; (b) a sensitivity to SMC of ≈38 dB/(m3/m3) was measured over nearly bare-soil
target areas using data from U.K. TDS-1 [35,36]; (c) a Pearson correlation coefficient of r ≈ −0.6
between one-year averaged polarimetric ratio from a GNSS-R experiment on-board the Soil Moisture
Active Passive (SMAP) mission and SMC was measured over the complete Earth’s surface [16,37];
(d) θe should be considered for the application of the so-called Tau-Omega model in the GNSS-R
case [35]; (e) the vegetation introduces short-term (volume scattering) and long-term (interference
from large-size scatterers and canopy inhomogeneity) fluctuations on GNSS signals [38]; and (f) the
unbiased root-mean-square difference between daily averaged CyGNSS-derived SMC and SMAP SMC
is down to 0.045 cm3/cm3, after correcting for surface roughness effects [17].

3. Coherent and Incoherent Scattering in GNSS-R

The scattered electromagnetic field over land and ocean surfaces is composed of both a coherent
and an incoherent contribution in different proportions depending on the dielectric and geometrical
properties of the scattering medium, and the directions of incoming and outgoing electromagnetic
waves. In the specular direction, the p-polarized bistatic scattering coefficient σ0

p [39] can be assumed
to be composed of an incoherent σ0

p,incoh and a coherent σ0
p,coh term as it follows [40]:

σ0
p = σ0

p,incoh + σ0
p,coh (1)

The estimation of σ0
p based on theoretical models requires several hypotheses, such as those

regarding the dielectric permittivity of the lower media (land, ocean, . . . ), and the distribution of
the surface elevation slopes Zs = σRMS/L [41]. The root mean square (RMS) of the surface height
variation σRMS and the surface correlation length L describe the statistical variation of the random
component of the surface height relative to a reference surface, which determines the degree of surface
roughness. The incoherent scattering term is dominant for moderate-to-strong surface roughness
conditions, while the scattering is completely coherent for a flat surface.

The power of the incident and the scattered waves is related through the reflectivity of the
scattering medium. The reflectivity is a physical property of the medium. It depends on its dielectric
properties and the surface roughness. The reflectivity can be indirectly linked to, e.g., the SMC, and it
is used as a fundamental observable in GNSS-R. GNSS-R is a sort of bistatic radar that allows for the
collection of scattered GNSS signals along the specular direction. GNSS satellites transmit relatively
low-power signals, and the scattering is strong only over an area around the nominal specular point
(θe,s = θe,i = θe). GNSS signals are emitted with right-hand circular polarization (RHCP), although
with a certain degree of ellipticity. After scattering over a surface, they become left-HCP (LHCP)
for elevation angles θe higher than the Brewster angle, while they are mainly RHCP for lower θe.
Additionally, the scattering over biomass introduces a significant degree of depolarization. RHCP and
LHCP reflected signals should be considered simultaneously in this case. The signal power collected
by a GNSS reflectometer for LHCP (e.g., CyGNSS) is expressed by the so-called delay Doppler maps
(DDMs), that can be derived under the bistatic radar equation as it follows [42]:

〈
|Yr(τ, f)|2

〉
=

PTλ
2

(4π)3

x GTGR|χ(τ, f)|2σ0
LHCP

R2
TR2

R
d2ρ (2)
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where PT is the transmitted power, GT and GR are the transmitter and receiver antenna gains, χ is the
Woodward ambiguity function (WAF), RT and RR are, respectively, the ranges from the transmitter
and the receiver to the specular point, σ0

LHCP is the bistatic scattering coefficient at LHCP, and ρ is the
positioning vector of the scattering point.

GNSS-R LHCP-reflectivity ΓLHCP includes both coherent ΓLHCP,coh and incoherent ΓLHCP,incoh
contributions in different proportions depending on satellites’ elevation angle, and the biomass,
topography, and surface roughness. The coherently reflected power is related with ΓLHCP,coh as in [43]:

〈
|Yr,coh(τ, f)|2

〉
=

PTλ
2GTGR|χ(τ, f)|2

(4π)2(RT + RR)
2 ΓLHCP,coh (3)

The surface roughness has a strong impact on the coherent reflectivity term ΓLHCP,coh that can be
theoretically modelled as in [40]:

ΓLHCP,coh = |RLHCP(θe)|2 exp(−(2kσRMSsinθe)
2) (4)

where RLHCP is the polarized Fresnel reflection coefficient and k is the signal wavenumber. The impact
of θe on ΓLHCP,coh is twofold; on one hand it affects the Fresnel reflection coefficient, and on the
other hand, it effects the exponential decaying factor. For a completely flat surface, σRMS is zero, and
ΓLHCP,coh is equal to the square of the amplitude of the Fresnel reflection coefficient. RLHCP is linked to
the dielectric constant of the soil, and thus with SMC. For a given roughness and a fixed geometry,
ΓLHCP,coh should increases with larger SMC. On the other hand, RLHCP is nearly constant for θe > 40◦

and it decreases significantly for lower angles. However, the exponential factor increases significantly
with lower θe. As such, ΓLHCP,coh could be expected to be higher for grazing angles, even over areas
with moderate roughness levels. Figure 1 shows the theoretical relationship (Equation (4)) between
ΓLHCP,coh and θe for different levels of SMC. The Wang’s model [44] is used to relate the SMC with
the dielectric constant of the soil, assuming a soil composition of 50% clay and 20% sand. It appears
ΓLHCP,coh increases for lower θe and it decreases for higher σRMS. On the other hand, the influence of θe

is higher as σRMS increases. It could be expected that the coherently reflected power as collected from
a spaceborne platform increases at grazing angles because it is roughly independent of the platform’s
height (RT >> RR).
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Figure 1. Theoretical prediction of coherent reflectivity ΓLHCP,coh as a function of the elevation
angle θe for different levels of soil moisture content (SMC) and surface roughness: (a) σRMS = 1 cm,
(b) σRMS = 2 cm, (c) σRMS = 3 cm, and (d) σRMS = 4 cm.

The expression of ΓLHCP,incoh is quite complex and not compact. More detailed information on
incoherent scattering over rough surfaces can be found in Reference [40]. The effects of biomass should
be also considered for modeling the incoherent scattered field over vegetated areas. A comprehensive
method can be found in Reference [29]. Finally, the impact of rough topography in Yr can be
understood as a sort of impulse response in the delay and Doppler domains to be convolved with the
WAF [45]. Rough topography reduces the spreading of the DDMs, while surface roughness increases
the spreading with larger roughness because more specular reflection points contribute to the total
scattered field. As such, Equation (4) is valid in regions without rough topography.

4. Data and Methods

In this work, the impact of the elevation angle θe on CyGNSS experimental reflectivity
ΓLHCP,CyGNSS was empirically evaluated as a function of the effective surface roughness parameter h
and SMC. CyGNSS Level 1 Science Data Record Version 2.0 [25] is used to estimate ΓLHCP,CyGNSS and
SMAP Enhanced Level 3 product [46] is selected to provide h and SMC data. These observables are
described here for an enhanced understanding of the experimental results.

CyGNSS experimental reflectivity ΓLHCP,CyGNSS: The calibrated reflected and direct DDMs are
used to estimate the power waveform peaks Yr,Peak,LHCP and Yd,Peak,RHCP. They are computed using
a coherent integration time of Tc = 1 ms and 1000 samples to perform an incoherent averaging.
The estimation of the CyGNSS reflectivity was obtained by applying the following algorithm:

ΓLHCP,CyGNSS =
〈
|Yr,Peak,LHCP|2

〉
/
〈
|Yd,Peak,RHCP|2

〉
(5)

after compensating for the antennas’ gain patterns versus the gain at the corresponding boresight
direction [down-looking gain ≈ 14.5 dB, θe = 62◦ and up-looking gain ≈ 4.7 dB, θe = 90◦], and the
difference of both gains at boresight. The compensation of the antennas’ gain was performed as
a function of θe, with a precision of four decimals. The half-power beamwidth (−3 dB) of each
down-looking CyGNSS antenna was ≈30◦, and the −6 dB field-of-view was ≈ 45◦. On the other
hand, each antenna pointed to the Earth’s surface with an inclination angle of 28◦ (antenna boresight).
As such, GNSS signals reflected at lower θe ≈ [20,40]◦ could be accurately collected through the main
lobe of each antenna.

Effective surface roughness parameter h: It was empirically estimated based on the Moderate
Resolution Imaging Spectroradiometer (MODIS) Geosphere-Biosphere Program (IGBP) land cover
classes [47,48]. h is an estimation of the factor 4k2σ2

RMS in the surface reflectivity term in Equation (4).
As such, this parameterization provided an improved performance as compared to previous global
constant values-based algorithms [49], because it incorporated the diversity of the land surface.
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h values for different land cover types are included in the SMAP Tau-Omega parameter look-up table,
at a spatial scale of 9 km.

The use of physical roughness parameters, such as correlation length and RMS height, requires in
situ characterization, which is time-consuming and it is not feasible at a global scale. Thus, the SMAP
effective roughness parameter was selected for this study, although the ultimate accuracy of the MODIS
IGBP land cover types used for the roughness parameter estimation in the SMAP algorithm needs
to be further evaluated. This effective parameter accounts for the dependence of surface roughness
with SMC, while physical parameters do not. A heterogeneous distribution of the water when the
soil dries out more water at specific target areas creates variations in the actual roughness of the
soil that is not considered by the physical parameters. Further research should also account for the
effects of roughness dynamics. Over specific target areas it has been reported [50] that the actual soil
roughness is slightly higher as compared to the estimation provided by physical roughness parameters.
Future studies covering a large variety of areas could help to optimize the estimation of the effective
roughness parameter at a global scale.

Soil Moisture Content (SMC): SMC was estimated using the single channel algorithm at V-Pol,
when the optimal Earth’s surface conditions are identified. Then, the corrections for surface
roughness [47,48], effective soil temperature, and vegetation water content (VWC) were applied.

5. Global Scale Reflectivity over Land and Ocean

The focus of this work is on the study of ΓLHCP,CyGNSS over land surfaces. As a first step,
the evolution of ΓLHCP,CyGNSS is shown for three different ranges of θe over the complete coverage of
the Earth’s surface provided by CyGNSS (Figure 2). Reflectivity data ΓLHCP,CyGNSS were averaged over
one month (from 20 September to 20 October 2017) using a 0.1◦ × 0.1◦ latitude/longitude grid with a
moving window of 0.2◦. The spatial scale of the roughness parameter h and SMC is ≈9 km. The size
of the CyGNSS’s footprint under the coherent scattering regime at θe ≈ 55◦ was ≈1 km across-track,
and ≈7.6 km along-track. Thus, the gridding strategy enables the analysis using different sensors with
different spatial resolution. This strategy also allows to determine the evolution of ΓLHCP,CyGNSS over
a wider angular range and provides good sampling density at pixel level. This gridding was found to
provide an improved correlation between CyGNSS reflectivity and the SMAP microwave brightness
temperature [43]. Additionally, the application of this moving averaging filter minimized potential
residual errors in the down-looking antenna gain pattern correction due to attitude determination
and control system (ADCS) and in the estimation of the reflected Yr,Peak,LHCP and direct Yd,Peak,RHCP
power waveforms peaks.
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Figure 2. One-month (from 20 September to 20 October 2017) averaged CyGNSS bistatic reflectivity
ΓLHCP,CyGNSS values for elevation angles θe ≈ [70, 90]◦ [(a) land, (b) ocean], θe ≈ [45, 65]◦ [(c) land,
(d) ocean] and θe ≈ [20, 40]◦ [(e) land, (f) ocean]. CyGNSS coherent integration time Tc = 1 ms,
incoherently averaged samples Ninc = 1000. Earth’s surface coverage is in the latitude range ≈
[−40,40]◦ because of the orbital inclination≈ 35◦ of the CyGNSS satellites. Thus, only nearly equatorial
areas are studied.

The averaged ΓLHCP,CyGNSS is displayed over land (Figure 2a,c,e) and ocean (Figure 2b,d,f) for
different elevation angles in ranges of θe ≈ [70,90]◦ (Figure 2a,b), θe ≈ [45,65]◦ (Figure 2c,d), and θe

≈ [20,40]◦ (Figure 2e,f). Over land-surfaces (Figure 2a,c,e), there was a strong coherent scattering
σ0

LHCP,coh and the width of the waveforms was much narrower than over the ocean. In this situation,
the power fluctuations of Yr,Peak,LHCP could be closely related to σ0

LHCP,coh at some areas. Additionally,
the spatiotemporal variability of the permittivity over land surfaces was high. This explains the
significant variability of ΓLHCP,CyGNSS (Figure 2a,c,e). Overall (Table 1), it appears ΓLHCP,CyGNSS

increased from θe ≈ [70,90]◦ to θe ≈ [20,40]◦: Γ70◦<θe<90◦

Land ≈ −15.8 dB, Γ20◦<θe<40◦

Land ≈ −12.1 dB, Γ70◦<θe<90◦

Ocean
≈ −19.4 dB, and Γ20◦<θe<40◦

Ocean ≈ −14.1 dB. These experimental results can be explained because of the
strong impact of θe on ΓLHCP,coh. The coherent scattering was very high for grazing angle, because the
effective surface roughness was low [51]. As such, the reflectivity was much higher at θe ≈ [20,40]◦

than at θe ≈ [70,90]◦. On the other hand, ΓLHCP,CyGNSS decreased from θe ≈ [70,90]◦ to θe ≈ [45,65]◦

because the incoherent scattering is dominant over the coherent one in this angular range: Γ45◦<θe<65◦

Land ≈
−17.7 dB and Γ45◦<θe<65◦

Ocean ≈ −20.3 dB. The incoherent or diffuse scattering was lower with decreasing
θe because this term is generated by the effective surface roughness, which in turn decreased for
lower θe. This point explains the evolution of ΓLHCP,CyGNSS along this angular range. Additionally
it is worth noting that the Brewster angle could potentially appear in the range θe ≈ [20,40]◦. In this
situation, the power of the RHCP-reflected GNSS signals would dominate that of LHCP-reflected
ones. ΓLHCP,CyGNSS was higher at θe ≈ [20,40]◦ than at θe ≈ [70,90]◦ (Figure 2), although ΓLHCP,CyGNSS

would decrease for lower θe < 20◦ especially over vegetated surfaces.

Table 1. Summary of the impact of the elevation angle θe on ΓLHCP,CyGNSS over land and ocean.

[dB] Γ20◦<θe<40◦ Γ45◦<θe<65◦ Γ70◦<θe<90◦

Land −12.1 −17.7 −15.8
Ocean −14.1 −20.3 −19.4
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GNSS signals were attenuated and depolarized by the vegetation cover. This attenuation can
be modeled as Lcanopy = eτ

canopy/ sinθe , where τcanopy is the vegetation optical depth (VOD) of the
vegetation layer. The attenuation is due to scattering and absorption when GNSS signals propagates
through the vegetation, and thus it increases for lower θe. The vertical stalks scatter more the vertically
polarized waves than the horizontal ones. This geometrical effect contributes to the depolarization of
the GNSS signals. Here, two land-cover types are selected to show different scenarios:

a) Croplands (target area at Lat = [−37,30]◦, Lon = [−65,−60]◦): This target area was sparsely
vegetated and the surface roughness levels were relatively homogeneous due to agricultural
activities. The mean ΓLHCP,CyGNSS increased by ≈4.2 dB from θe ≈ [70,90]◦ to θe ≈ [20,40]◦ as
an indication of a higher signal coherence for lower θe (Figure 3a). This ΓLHCP,CyGNSS gradient
could be only attributed to angular changes on the surface scattering mechanisms because the
signal attenuation through the vegetation could be assumed to be negligible in this target area.

b) Amazonian rainforests (target area at Lat = [−8,1]◦, Lon = [−75, −65]◦): This target area was
characterized by wet biomass with high AGB ≈ 350 tons/ha that strongly attenuated GNSS
signals, so that the remaining reflected power could be interpreted as a noise power floor in
Yr,Peak,LHCP (areas in “white” in Figure 3b correspond to SNR lower than 3 dB). However, the
increment due to the coherent scattering σ0

LHCP,coh over soil and inland water bodies compensated
this attenuation, and as a consequence, the mean ΓLHCP,CyGNSS increased by ≈3.4 dB for
decreasing θe, allowing for the detection of the hydrosphere, even at grazing angles (Figure 3b).
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Figure 3. Close-up of one-month (from 20 September to 20 October 2017) averaged CyGNSS bistatic
reflectivity ΓLHCP,CyGNSS for a grazing angle geometry with 20◦ < θe < 40◦, over differentiated target
areas over land: (a) croplands, and (b) Amazonian rainforests. At this geometry, the major axes of the
Fresnel zone is ≈1.6 km.

6. Results on the Surface Roughness and the Soil Moisture Effect

This section is structured in two different parts. First, the evolution of ΓLHCP,CyGNSS with θe

is studied as a function of h for different levels of SMC over the land-surface coverage enabled by
CyGNSS. As such, this analysis allows for the evaluation of the impact of θe at a global scale. It provides
useful information for the selection of the preferred operational angular range depending on the specific
application from, e.g., a small satellite. In the second part, the correlation of ΓLHCP,CyGNSS and SMC is
assessed as a function of θe over sparsely vegetated areas with differentiated h levels, so as to minimize
vegetation effects. This sensitivity study focuses on the impact of h. As such, the conclusions derived
from this part could help to define SMC estimation methods using multi-angular information from
GNSS-R. This is an interesting approach that previously has been applied from, e.g., the Soil Moisture
Ocean Salinity (SMOS) mission [22].

6.1. Global Analysis

The angular evolution of ΓLHCP,CyGNSS was studied averaging at steps of θe = 10◦ from θe = 20◦

to θe = 90◦ using different ranges of h (Figure 4a) and SMC (Figure 4b). The averaging was performed
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using data from the eight satellites of the CyGNSS constellation (the maximum of eight different DDMs
were used in the averaging). The rate of change of ΓLHCP,CyGNSS was larger as h increased. At the same
time, the larger the roughness, the lower ΓLHCP,CyGNSS was at all the selected SMC levels (Figure 5).
Figure 5 also shows two differentiated ΓLHCP,CyGNSS angular ranges: ΓLHCP,CyGNSS decreased from θe

≈ 85◦ to θe ≈ 55◦, and it increased from θe ≈ 55◦ to θe ≈ 25◦. ΓLHCP,CyGNSS included contributions
from both coherent and incoherent scattering regimes in both angular ranges. The main difference
between both scattering regimes was on the combination of the electromagnetic field vectors. σ0

LHCP,coh
came from the coherent combination of the signals scattered on the individual facets within the first
Fresnel zone. σ0

LHCP,incoh was the result of the random combination of electromagnetic waves coming
from other scatterers within the glistening zone that added together at the receiving antenna. If
the combination was totally coherent, ΓLHCP,coh accounted for all the reflected power. In the case of
diffuse scattering, the random signs of the electric field cross-products cancelled out σ0

LHCP,coh, and
the reflected power was given by σ0

LHCP,incoh. The changes on the angular evolution of ΓLHCP,CyGNSS

depended on the dominant scattering mechanism. In the interpretation of Figure 5 it should be
considered that the averaging of the reflectivity was performed over the complete land-surface coverage
enabled by CyGNSS, including bare soil, deserts, rough topography areas, and highly vegetated areas
such as rainforests. As such, these results provide the average response of ΓLHCP,CyGNSS as a function
of θe.
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Figure 5. One-month (from 20 September to 20 October 2017) averaged CyGNSS bistatic reflectivity
ΓLHCP,CyGNSS as a function of the elevation angle θe for different values of effective surface roughness
parameter h: (a) [0.10,0.11], (b) [0.11,0.12], (c) [0.12,0.13], (d) [0.13,0.14], (e) [0.14,0.15], and (f)
[0.15,0.16]. For each plot (a–f), different levels of SMC were used in this analysis at steps of 0.1 m3/m3,
from 0 m3/m3 to 0.5 m3/m3. The averaging was performed over the complete land-surface coverage
enabled by CyGNSS.

ΓLHCP,CyGNSS decreased in the first range (from θe ≈ 85◦ to θe ≈ 55◦) because the incoherent
scattering was dominant over the coherent one. The coherent integration time Tc is an important
parameter that influences the ratio of the coherent-to-incoherent scattering components, and in this
experiment it was set to Tc = 1 ms. A longer Tc would limit the incoherent scattering term, so
as to increase the coherent-to-incoherent ratio because it would better filter out the noise and the
volume scattering term [32]. Previous research activities also found a transition from an incoherent to
coherent scattering regime over the ocean surface [42,51], where ΓLHCP,incoh is dominant for high θe [52].
Theoretical simulations were performed in Reference [52] to study the evolution of the incoherent
reflected power as a function of θe. It was found Yr,Peak,LHCP decreased ≈ 20% when θe reduced from
θe = 90◦ to θe = 50◦.

ΓLHCP,CyGNSS increased in the second range (from θe ≈ 55◦ to θe ≈ 25◦), which could be justified
because the reflectivity became mostly coherent ΓLHCP,coh in regions without rough topography.
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σ0
LHCP,coh was high over smooth or slightly-to-moderate rough surfaces, because it increased with a

decrease in surface roughness. As such, ΓLHCP,CyGNSS increased with a decrease in θe in the angular
range θe < 55◦ because the signal coherence increased with a decrease in θe [51], and thus σ0

LHCP,coh
became dominant for θe < 55◦. The scattering phenomenon became more complicated in regions with
a rough topography. As such, this result should be understood as the average response over the Earth’s
surface. For higher θe, even in a Nadir-looking configuration, there was still a non-negligible coherent
component so as to be tracked [32,53,54].

The dynamic range of ΓLHCP,CyGNSS was higher for lower roughness levels, which seemed to
indicate GNSS-R loses sensitivity to SMC over rougher surfaces in a general scenario. This reduction of
the dynamic range appeared to be dependent on θe along the second angular range, where σ0

LHCP,coh
was dominant. This increment was larger for decreasing SMC levels, which meant that the effect of
a higher signal coherence was more relevant over areas with low SMC. Additionally, the effect of a
larger signal attenuation through the canopy layer Lcanopy over highly vegetated areas was larger for a
lower θe, which could contribute to this loss of sensitivity. Overall, ΓLHCP,CyGNSS increased as SMC
increased for a given θe and h (Figure 5).

6.2. Regional Case Studies

Specific target areas with little vegetation over Argentina, India, and Sudan (Figures 6–8) were
selected for this section because they allowed for the evaluation of the impact of SMC and h in the
angular evolution of ΓLHCP,CyGNSS, excluding the effects of rough topography and high vegetation.
The coordinates of these target areas are the following ones: Argentinian Pampas (Lat = [−37,−30]◦,
Lon = [−65,−60]◦), India (Lat = [22,29]◦, Lon = [70,77]◦) and Sudan (Lat = [4,10]◦, Lon = [25,33]◦).
The land cover-types were croplands (Pampas and India) and savannahs (Sudan), where the signal
penetration depth was high, so as to minimize the vegetation effects. The Pearson correlation coefficient
r of ΓLHCP,CyGNSS and SMC was calculated for each target area at steps of θe = 10◦ from θe = 20◦ to θe

= 90◦ (Table 2). The maximum Pearson coefficients rPampas ≈ 0.78, rIndia ≈ 0.72, and rSudan ≈ 0.74 were
found, respectively, at θe ≈ [60,70]◦ and hPampas ≈ 0.1, θe ≈ [50,60]◦ and hIndia ≈ 0.11, and θe ≈ [30,40]◦

and hSudan ≈ 0.15. These coefficients were gradually achieved at lower θe for increasing mean values
of h over these target areas. As such, the angular ranges associated with an improved correlation
coefficient depend on h. A lower θe was required to increase the signal coherence with an increase
in h, in agreement with the Rayleigh criterion that establishes a surface (without vegetation and
without rough topography) could be considered smooth if the phase difference between two reflected
electromagnetic waves was lower than π/2 rad:

σRMS <
λ

8 sin θe
(6)

where λ was the signal wavelength that at the L-band was ≈20 cm.

Table 2. Pearson correlation coefficients of CyGNSS reflectivity ΓLHCP,CyGNSS and SMAP-derived
soil moisture content (SMC) for different elevation angles θe, over specific target areas: Argentinian
Pampas, India, and Sudan.

θe Pampas India Sudan

[80,90]◦ 0.73 0.62 0.68
[70,80]◦ 0.77 0.68 0.69
[60,70]◦ 0.78 0.71 0.68
[50,60]◦ 0.76 0.72 0.65
[40,50]◦ 0.71 0.72 0.68
[30,40]◦ 0.60 0.70 0.74
[20,30]◦ 0.36 0.62 0.67
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The angular dependence seemed to be lower over the Sudan target area (savannahs), which
was characterized by a significantly higher effective surface roughness parameter. In this situation,
σ0

LHCP,incoh was high even for low θe and thus the power fluctuations of Yr,Peak,LHCP were more linked
to the size of the first iso-delay ellipse (much larger than that of the first Fresnel zone), which minimized
the impact of θe. Nonetheless, there was a non-negligible increment of the correlation for θe ≈ [30,40]◦.
The impact of θe was clearer over Argentinian Pampas and India (croplands). This experimental
evidence was a symptom that over smoother surfaces (e.g., croplands), the correlation of ΓLHCP,CyGNSS

and SMC was improved when the coherent scattering regime started to be the dominant one because:
(a) A higher spatial resolution (smaller first Fresnel zone), as compared to that at lower θe, minimized
the effects of land cover heterogeneity (Table 3). (b) σ0

LHCP,coh was mainly related to surface scattering.
The use of a higher Tc would improve the sensitivity of GNSS-R to SMC [16] because it would filter
out the power fluctuations linked to the incoherent scattering term.

Table 3. Size of the semi-major and semi-minor axis of the first Fresnel zone for the CyGNSS scenario,
as a function of the elevation angle θe.

θe Semi-Minor Axes [m] Semi-Major Axes [m]

90◦ 311 311
80◦ 313 317
70◦ 321 341
60◦ 334 385
50◦ 355 463
40◦ 388 603
30◦ 440 880
20◦ 532 1555

The sensitivity to SMC was based on the difference between the dielectric properties of water
and soil. Here, the sensitivity of ΓLHCP,CyGNSS to SMC was analyzed over these selected target areas
(Figure 6a–f). In so doing, the selected θe ranges corresponded to those with the maximum Pearson
correlation coefficient between ΓLHCP,CyGNSS and SMC (Table 2). Figure 6a,c,e shows the scatter plots
of ΓLHCP,CyGNSS and SMC as a function of different h levels. Land cover-types over Pampas and
India were croplands with moderate mean roughness: hPampas ≈ 0.1 (Figure 6b) and hIndia ≈ 0.11
(Figure 6d). The mean roughness over Sudan was higher: hSudan ≈ 0.15 (Figure 6f). The slopes of
the linear regressions were ≈26 dB/(m3/m3), ≈37 dB/(m3/m3), and ≈50 dB/(m3/m3) respectively
over the target areas, while the RMSE was ≈2.5 dB, ≈3 dB and ≈3.3 dB. In Sudan there was a smaller
SMC variability and a significant dynamic range (Figure 6e). This explained the higher slope of the
fit. On the other hand, the higher roughness h explained the higher RMSE and SD (Table 4). Overall,
a good sensitivity of ΓLHCP,CyGNSS to SMC was found over the three selected target areas. Figure 6b,d,f
is useful to further understand the impact of h on the sensitivity to SMC [Pampas (Figure 6a), India
(Figure 6c), and Sudan (Figure 6e)]. ΓLHCP,CyGNSS decreased with an increase in h for nearly constant
levels of SMC, and at the same time this rate of change depended on the mean SMC level. For lower
SMC levels, ΓLHCP,CyGNSS decreased significantly for a high h parameter, while ΓLHCP,CyGNSS appeared
to be roughly independent of h for higher levels of SMC.



Remote Sens. 2018, 10, 1749 13 of 20

Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 21 

 

The sensitivity to SMC was based on the difference between the dielectric properties of water 
and soil. Here, the sensitivity of LHCP,CyGNSSΓ  to SMC was analyzed over these selected target areas 

(Figure 6a–f). In so doing, the selected eθ  ranges corresponded to those with the maximum Pearson 
correlation coefficient between LHCP,CyGNSSΓ  and SMC (Table 2). Figure 6a,c,e shows the scatter plots 

of LHCP,CyGNSSΓ  and SMC as a function of different h  levels. Land cover-types over Pampas and India 

were croplands with moderate mean roughness: Pampash ≈ 0.1 (Figure 6b) and Indiah ≈ 0.11 (Figure 6d). 

The mean roughness over Sudan was higher: Sudanh ≈ 0.15 (Figure 6f). The slopes of the linear 
regressions were ≈26 dB/(m3/m3), ≈37 dB/(m3/m3), and ≈50 dB/(m3/m3) respectively over the target 
areas, while the RMSE was ≈2.5 dB, ≈3 dB and ≈3.3 dB. In Sudan there was a smaller SMC variability 
and a significant dynamic range (Figure 6e). This explained the higher slope of the fit. On the other 
hand, the higher roughness h  explained the higher RMSE and SD (Table 4). Overall, a good 
sensitivity of LHCP,CyGNSSΓ  to SMC was found over the three selected target areas. Figure 6b,d,f is 

useful to further understand the impact of h  on the sensitivity to SMC [Pampas (Figure 6a), India 
(Figure 6c), and Sudan (Figure 6e)]. LHCP,CyGNSSΓ  decreased with an increase in h  for nearly constant 

levels of SMC, and at the same time this rate of change depended on the mean SMC level. For lower 
SMC levels, LHCP,CyGNSSΓ decreased significantly for a high h  parameter, while LHCP,CyGNSSΓ  appeared 

to be roughly independent of h  for higher levels of SMC. 

  
(a) (b) 

  
(c) (d) 

Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 21 

 

  
(e) (f) 

Figure 6. Scatter plots over specific target areas [(a,b) Argentinian Pampas, (c,d) India, and (e,f) 

Sudan] of (a,c,e) the CyGNSS reflectivity LHCP,CyGNSSΓ  vs soil moisture content (SMC) as a function 

of surface roughness parameter h  and (b,d,f) the CyGNSS reflectivity LHCP,CyGNSSΓ  vs surface 

roughness parameter h  as a function of SMC. The selected elevation angles eθ  ranges 

corresponded to the maximum Pearson correlation coefficient between LHCP,CyGNSSΓ  and SMC (Table 

2). The robust fit regression lines are shown in green. 

  
(a) (b) 

  
(c) (d) 

Figure 6. Scatter plots over specific target areas [(a,b) Argentinian Pampas, (c,d) India, and (e,f)
Sudan] of (a,c,e) the CyGNSS reflectivity ΓLHCP,CyGNSS vs soil moisture content (SMC) as a function of
surface roughness parameter h and (b,d,f) the CyGNSS reflectivity ΓLHCP,CyGNSS vs. surface roughness
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maximum Pearson correlation coefficient between ΓLHCP,CyGNSS and SMC (Table 2). The robust fit
regression lines are shown in green.
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Argentinian Pampas, (c,d) India, and (e,f) Sudan] for (a,c,e) θe = [20,30]◦, and (b,d,f) θe = [50,60]◦.

Table 4. Statistics (mean, standard deviation SD, kurtosis, and skewness) of the CyGNSS reflectivity
ΓLHCP,CyGNSS distributions over the selected target areas (Argentinian Pampas, India, and Sudan).

Pampas India Sudan

Mean [dB]; θe = [50,60]◦ −10.6 −12.2 −14.5
Mean [dB]; θe = [20,30]◦ −5.2 −8.4 −9.2

SD [dB]; θe = [50,60]◦ 3.9 2.5 6.4
SD [dB]; θe = [20,30]◦ 2.5 2.5 4
Kurtosis; θe = [50,60]◦ 5.8 3.5 1.96
Kurtosis; θe = [20,30]◦ 4.1 2.8 2.5

Skewness; θe = [50,60]◦ −1.5 −0.6 0
Skewness; θe = [20,30]◦ −0.5 0 −0.1
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The histograms of ΓLHCP,CyGNSS over these target areas are displayed to complement the
observations on the correlation coefficients (Figure 7). The corresponding statistics are also included
in Table 4. Significant changes on the histograms were found from θe ≈ [20,30]◦ (Figure 7a,c,e)
to θe ≈ [50,60]◦ (Figure 7b,d,f). The lowest mean ΓLHCP,CyGNSS and the highest standard deviation
(SD) of the three target areas appeared over Sudan (Table 4). In this sense, it seems reasonable that
the maximum correlation in Sudan was achieved over a significantly lower θe as compared to the
Argentinian Pampas and India. A lower angular range was required to achieve a high enough signal
coherence. A bimodal distribution (Figure 7f) was found over Sudan at θe ≈ [50,60]◦, which was an
additional factor that justified the lower angular variability over this particular target area (Table 2).
The impact of a lower θe was quite evident in Figure 7e where the ΓLHCP,CyGNSS distribution turned
into a unimodal one with a kurtosis ≈2.5, which tended to be like a Gaussian one. This indicated
the presence of a coherent component in the total scattered electromagnetic field [15], and thus it is
reasonable that the maximum correlation also appeared at this angular range. Over the Argentinian
Pampas, the mean ΓLHCP,CyGNSS was higher than over India, and thus the maximum correlation
appeared over a slightly higher θe. For very low θe ≈ [20,30]◦, the Pearson coefficients tended to
decreases in all the selected target areas (Table 2), and this could be attributed to the lower ΓLHCP,CyGNSS

dynamic range over this angular range.
ΓLHCP,CyGNSS, SMC, and h were geolocated over the specific target areas (Figure 8a–i) to further

understand the effects of h on SMC estimation using GNSS-R. The averaged ΓLHCP,CyGNSS over
Argentinian Pampas is shown in Figure 8a. The spatial pattern was clearly correlated with that of
the SMAP-derived SMC (Figure 8b), which appeared to be the most important parameter. However,
the impact of h was also relevant, especially on the upper-right side of Figure 8a–c. In this area,
there was a sudden drop of h that enabled an increment of ΓLHCP,CyGNSS for nearly constant values of
SMC. The spatial variability of ΓLHCP,CyGNSS was higher than radiometer data because of the higher
resolution of GNSS-R, which was associated with the size of first Fresnel zone.

The target area over India was selected because this was a relatively dry region with some SMC
peaks, so as to complement the information obtained from the wet Argentinian Pampas. ΓLHCP,CyGNSS

increased due to a positive gradient on SMC. This effect was lower than over the Argentinian Pampas
because of the reduced roughness range h < 0.13 as compared to that over the Argentinian Pampas
h< 0.16. This result agrees with the conclusions derived from Figure 6b,d,f, where the effect of surface
roughness was shown to be more significant for h > 0.13.

Finally, the averaged ΓLHCP,CyGNSS over Sudan showed two clearly differentiated spatial patterns
that corresponded to SMC levels from moderate (0.2 < SMC < 0.3) to very high (0.4 < SMC < 0.5).
The down-left side highlights the effects of h on ΓLHCP,CyGNSS over an area with moderate SMC. Here,
the surface roughness was also high h > 0.13, and thus ΓLHCP,CyGNSS holds quite low ≈ −20 dB despite
the increment on SMC from ≈0.2 m3/m3 to ≈0.4 m3/m3.
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Figure 8. Close-up study over Argentinian Pampas (a–c), India (d–f), and Sudan (g–i). CyGNSS
reflectivity ΓLHCP,CyGNSS (a,d,g), soil moisture content (SMC) (b,e,h), and surface roughness parameter
h (c,f,i) are displayed here.

7. Final Discussions

ΓLHCP,CyGNSS and the sensitivity of ΓLHCP,CyGNSS to SMC appeared to have a dependence with
θe through h since the effective surface roughness was an important parameter that determined
the amount of reflected power. The use of the polarimetric ratio (ratio of the reflected signals’
power at two different polarizations) could provide a significant correction of h in SMC estimation,
and potentially this technique could also be used in future missions, especially if daily/hourly SMC
monitoring is required. On the other hand, further research is required in single-polarization missions.
Multi-temporal techniques are based on change detection, under the assumption that surface roughness
does not change over consecutive overpasses and thus the variability on the radar coefficient is due to
SMC. However, this is partially realistic because [55]: (a) isolating SMC changes from other factors such
as VWC would be difficult, and (b) the actual surface roughness has a dependence with SMC. Some
different retrieval algorithms of SMC and surface roughness h are based on multi-angular information.
This approach could be useful in the case of CyGNSS eight-microsatellite constellation mission. Results
from this study show that GNSS-R had an optimum sensitivity to SMC at different θe, depending on
the roughness levels. As such, this relationship could be used to select the most appropriate angular
range in SMC determination. On the other hand, this property can be exploited to mitigate roughness
effects at an improved temporal resolution as compared to multi-temporal techniques. Additionally,
the experimental results show that the coherently scattered electromagnetic field was higher than
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theoretical predictions. This is an important finding, which paves the way for SMC retrieval from
nanosatellites because the coherent component was roughly independent of the platform’s height.
Thus, relatively small antennas can be sufficient to obtain accurate measurements.

8. Conclusions

The impact of θe on CyGNSS GNSS-R bistatic reflectivity ΓLHCP,CyGNSS was assessed over the
Earth’s surface with a focus on land as a function of soil moisture content (SMC) and effective surface
roughness parameter h. Global scale results show that ΓLHCP,CyGNSS decreased with decreasing θe

down to ≈55◦ because of the effect of the incoherent scattering term σ0
LHCP,incoh. On the other hand,

it increased for lower θe. This could be explained because of a higher signal coherence that increased the
coherent scattering term σ0

LHCP,coh in regions without a rough topography. This functional relationship
depended on SMC and h. Also at a global scale, it appeared that the dynamic range of ΓLHCP,CyGNSS

at a fixed θe was higher as h decreased. The sensitivity of ΓLHCP,CyGNSS to SMC was then studied
as a function of these two parameters for different sparsely vegetated target areas. The optimum
Pearson correlation coefficients were found to be rPampas ≈ 0.78 at θe ≈ [60,70]◦, rIndia ≈ 0.72 at θe

≈ [50,60]◦, and rSudan ≈ 0.74 at θe ≈ [30,40]◦, for different mean levels of roughness hPampas ≈ 0.1,
hIndia ≈ 0.11, and hSudan ≈ 0.15. At these angular ranges, the slopes of the linear regressions over
these target areas were ≈26 dB/(m3/m3), ≈37 dB/(m3/m3), and ≈50 dB/(m3/m3), respectively. The
empirically-derived impact of θe on the relationship of ΓLHCP,CyGNSS with SMC and h could provide
useful information in the development of first order corrections of surface roughness. As a final
remark, a better sensitivity of GNSS-R to SMC appeared over croplands when the coherent scattering
term σ0

LHCP,coh became dominant over the incoherent one σ0
LHCP,incoh. Therefore, SMC retrieval using

GNSS-R could benefit on the higher spatial resolution of the coherent scattering regime, limited by the
first Fresnel zone.

CyGNSS is a good example of how a constellation of small satellites could provide complementary
information to a classical satellite such as SMAP, with a higher spatiotemporal sampling in the
latitudinal band ≈ [–40,40]◦. The revolution of small satellites, such as CubeSats, allowing for the
provision of scientifically valuable data has just started. Future research on deployable antennas would
provide a chance to elucidate whether such low-cost, small-size satellites could provide an accuracy
on the same order than a classical satellite. On the other hand, passive microwave Earth observation
techniques (e.g., microwave radiometry, GNSS-R) fit quite well on a single CubeSat [56], enabling the
use of low power-consumption instruments that pave the way to improve the operational duty-cycle.
As a matter of fact, the spatial resolution of GNSS-R is ≈1 km under the coherent scattering regime.
This can clearly improve the resolution of microwave radiometry (SMAP) ≈40 km.
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