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Abstract: Over the past two decades, persistent occurrences of harmful algal blooms (HAB;
Karenia brevis) have been reported in Charlotte County, southwestern Florida. We developed
data-driven models that rely on spatiotemporal remote sensing and field data to identify factors
controlling HAB propagation, provide a same-day distribution (nowcasting), and forecast their
occurrences up to three days in advance. We constructed multivariate regression models using
historical HAB occurrences (213 events reported from January 2010 to October 2017) compiled by
the Florida Fish and Wildlife Conservation Commission and validated the models against a subset
(20%) of the historical events. The models were designed to capture the onset of the HABs instead of
those that developed days earlier and continued thereafter. A prototype of an early warning system
was developed through a threefold exercise. The first step involved the automatic downloading
and processing of daily Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua products
using SeaDAS ocean color processing software to extract temporal and spatial variations of remote
sensing-based variables over the study area. The second step involved the development of a
multivariate regression model for same-day mapping of HABs and similar subsequent models
for forecasting HAB occurrences one, two, and three days in advance. Eleven remote sensing
variables and two non-remote sensing variables were used as inputs for the generated models. In
the third and final step, model outputs (same-day and forecasted distribution of HABs) were posted
automatically on a web map. Our findings include: (1) the variables most indicative of the timing of
bloom propagation are bathymetry, euphotic depth, wind direction, sea surface temperature (SST),
ocean chlorophyll three-band algorithm for MODIS [chlorophyll-a OC3M] and distance from the river
mouth, and (2) the model predictions were 90% successful for same-day mapping and 65%, 72% and
71% for the one-, two- and three-day advance predictions, respectively. The adopted methodologies
are reliable at a local scale, dependent on readily available remote sensing data, and cost-effective and
thus could potentially be used to map and forecast algal bloom occurrences in data-scarce regions.
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1. Introduction

An increase in agricultural activities introduces nutrients into water bodies and may adversely
affect the biodiversity and habitats of aquatic ecosystems. One of the major sources of such nutrients are
nitrogen-based fertilizers [1] that are widely used to increase agricultural productivity. These nonpoint
sources of nitrogen through fertilization were found to be the predominant sources of overall
nitrogen quantities in the Gulf of Mexico [2], where the study area (Charlotte County) is located.
The introduction of nutrients increases the productivity of aquatic systems and enhances the growth
of harmful algal blooms (HABs) which, in turn, produce toxins causing detrimental health effects [3]
to humans and ecosystems [4]. Karenia brevis (K. brevis), formerly known as Gymnodinium breve and
Ptychodiscus brevis, is the most predominant HAB species in the Gulf of Mexico [5–7], and its adverse
socioeconomic impacts on the region have been investigated in previous studies [8]. These impacts
include but are not limited to adverse effects to human health, marine life, tourism, and recreational
activities [3,4,8].

Earlier efforts to map or forecast HAB occurrences examined the distribution of HABs in relation
to a wide range of causal parameters, such as wind-driven water exchanges [9], temperature [10],
relative abundance of protozoans that feed on algae (e.g., Mesodinium species) [11], cell distribution
through oceanic currents [12], and hydrodynamic variables (e.g., current pathways, rate and
volume of flow, upwelling and downwelling pulses) [13]. Such parameters were subsequently
used to conduct same-day mappings of bloom occurrences, to model onsets of blooms [14–16]
and to forecast seasonal algal bloom occurrences [12]. These investigations and mapping efforts
provided the basis for the development of early warning systems based on (i) solid-phase adsorption
toxin tracking [17], (ii) real-time field monitoring of chlorophyll and dissolved oxygen [18], and
(iii) Moderate Resolution Imaging Spectroradiometer (MODIS)-derived fluorescence data to detect
and monitor algal blooms [19–21]. The latter (fluorescence) was found to be sensitive to chlorophyll-a
concentrations [22–25]. The development and operation of the overwhelming majority of these
monitoring and forecasting systems require continuous current and archival field data (e.g., nutrient
concentration in surface water). Unfortunately, such datasets are not present for many of the coastal
areas where HAB monitoring and/or forecasting systems are needed. This study addresses this
potential problem. Although our methodology does require continuous records of present and
archival data, it instead utilizes readily available, global remote sensing datasets in the public domain.
Additionally, limited field data, where available, are utilized.

Earlier studies that utilized remote sensing datasets in identifying and mapping the distribution
of HABs focused on a limited number of ecological variables. Examples include utilization of
a single ecological variable (e.g., chlorophyll-a concentration) [19,26–30], two variables such as
chlorophyll-a concentration and sea surface temperature (SST) [31–37] or chlorophyll and primary
productivity [38], and three variables (chlorophyll, SST and wind) [39,40]. A review article by
Shen et al. [41] indicated that most of the remote sensing-based detection techniques of HABs were
restricted to three parameters or less and these limited number of parameters do not fully constrain
ecosystem model parameters [41,42]. Although more robust field-based HAB detection and early
warning systems are in place in some areas [13], those systems are absent in many other locations
where there is a need to monitor and predict HAB occurrences. Their absence could be related to the
extensive resources needed to construct and maintain monitoring networks, to support the continuous
sampling and analysis (geochemical, biological, and physical) of the investigated water bodies. In this
study, we develop methodologies that utilize a large number of remote sensing-based water quality
parameters together with optical properties that are extracted from readily available remote sensing
datasets to map HAB occurrences and predict their distribution.

The study area is in the Charlotte County, Florida; it incorporates the county’s coastal areas
(width: 15 to 30 km) and nearby estuaries (Figure 1). Like many other coastal areas within the
Gulf of Mexico, the study area has been subjected to persistent HAB outbreaks that pose serious
environmental challenges to the county’s tourism and fishery industries [8]. Unfortunately, the study
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area lacks continuous field-based monitoring of water quality as it is challenging to cover large
geographic areas with limited resources [43]. The primary goals of this study involved identifying the
factor(s) controlling HAB occurrences in the study area, developing same-day mapping and predictive
models for HAB occurrences by utilizing daily remote sensing data, disseminating our findings, and
automating the process.
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Figure 1. Figure showing the study area, which covers coastal waters (width: 15–30 km) surrounding
Charlotte County in Florida. The study area also covers the brackish water within the estuarine systems
where freshwater and seawater mix.

2. Materials and Methods

We accomplished the goals described above by developing multivariate linear regression statistical
models, distributing our findings via a web-based interface and utilizing a geographic information
system (GIS) framework for automation purposes. Data-driven models that rely on historical remote
sensing and corresponding field data were developed to identify factors controlling the algal blooms
and to forecast their occurrences. An inventory was compiled for the reported (dates and locations)
HABs in the coastal waters surrounding Charlotte County by the Florida Fish and Wildlife Conservation
Commission’s Fish and Wildlife Research Institute (FWRI: http://myfwc.com/research/redtide/
monitoring/database/), and a database was generated for remote sensing datasets that were acquired
during the reported HAB occurrences. The compiled satellite and field data covered the period between
January 2010 and October 2017 in which 213 HAB events were reported. The workflow involved
three major steps: (1) downloading and processing of daily MODIS data; (2) developing multivariate
regression models based on historical HAB occurrences; and (3) using the model for same-day mapping
and forecasting HAB, automating the process, and publishing the findings (Figure 2).

http://myfwc.com/research/redtide/monitoring/database/
http://myfwc.com/research/redtide/monitoring/database/
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Figure 2. Three-step workflow established for harmful algal blooms mapping and forecasting.

2.1. Step 1

The first step involved the identification of temporal ocean color products and spatial variables
that could control, or correlate with, the distribution of algal blooms in general and/or the HAB in
the study area (in our case K. brevis). The selection of these variables was largely based on reported
findings from similar settings elsewhere and, to a lesser extent, on our observations.

This step involved automatic downloading and processing of daily ocean color data products
acquired by the National Aeronautics and Space Administration (NASA) MODIS Aqua satellite.
NASA’s ocean color processing website (https://oceancolor.gsfc.nasa.gov/) provides an option for
periodical data download for specified regions via a free data subscription service. We specified
southwestern Florida as a region of interest, Aqua MODIS as a source of data and daily data as a
download option. The automatic data download was scheduled using the task scheduling programs
available within the Linux environment. The downloaded Level 0 data was processed to Level 1
and later to Level 2 using SeaDAS (NASA, Greenbelt, MD, USA, version 7.4) Ocean Color Science
Software (OCSSW). Level 1 data has the radiometric and geometric calibrations applied and the ocean
data products were extracted during the Level 2 processing. The applications of these calibrations
correct for differences in acquisition geometry for the scenes although minor variation in ocean color
products is unavoidable [44]. The OCSSW software was used to extract relevant temporal variables
as shown in Table 1. The table shows the input, output, processor and parameters specified in
the command line operator in Linux environment to enable unattended data extraction. A total of
13 ocean color products were extracted from the downloaded MODIS products. These products
include: euphotic depth, ocean chlorophyll three-band algorithm for MODIS (chlorophyll-a OC3M),
chlorophyll-a Generalized Inherent Optical Property (GIOP), chlorophyll-a Garver-Siegel-Maritorena

https://oceancolor.gsfc.nasa.gov/
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(GSM), fluorescence line height (FLH), a diffuse attenuation coefficient for downwelling irradiance
at 490 nm (Kd_490), particulate backscattering coefficient at 547 nm (bbp_547_giop), turbidity index,
sea surface temperature (SST), wind direction, wind speed, chromophoric dissolved organic matter
(CDOM) index [45] and Secchi disk depth (Zsd morel, based on Morel version) [46,47]. Additional
spatially relevant variables were considered, as well. Our preliminary inspection of these products
revealed large and rapid variations in chlorophyll-a content, SST, the attenuation coefficient, and
euphotic depth in proximity to the shoreline and to the freshwater outlets (river mouth; Figure 3), thus
suggesting that bathymetry and distance from the river mouth should be incorporated in the model’s
development. Uniformly spaced grid points were used to extract the values from products of different
resolutions and subsequent processing was done on the same grid to achieve computational efficiency.

Table 1. Overview of the inputs, outputs, processor and relevant parameters applied in SeaDAS
OCSSW to extract level 2 products.

Data Input Data Output Processor Relevant Parameters Task

Level 0 Level 1A modis_L1A.py Default Sensor calibration

Level 0 Level 1B modis_L1B.py Default File conversion

Level 1A GEO file modis_GEO.py Default File conversion

Level 1A and 1B Level 2 l2gen

Product Selector:
Radiances/Reflectances (Rrs);

Calibration option: Standard processing;
mode: forward processing;

resolution: 1 k resolution including
aggregated 250 and 500 land bands;

Gas option: 1-Ozone, 2-CO2, 4: NO2, 8-H2O;
Glint option: 1-standard glint correction

Reflectance
calculation

Level 2 l2mapgen

Products: Zeu_morel (euphotic depth),
Zsd_morel (Secchi disk depth), cdom_index,

chlor_a, chl_gsm, Kd_490 (diffuse
attenuation coefficient), SST, chl_giop, FLH,

wind speed, wind angle, bbp_547_giop
(particulate backscattering coefficient),

tindx_morel (turbidity index);
Flag use: flags to be masked;

mask: default mask to land, cloud and glint;
Atmospheric Correction: 1 (on)

Level 2 product
generation

The collected ocean color products were later checked for consistency and significance.
Discontinuous data were not considered. For example, the data for CDOM index was found to
be discontinuous and patchy over the investigated period (2010 to 2017) and was thus omitted from
the list of potential variables considered for model development.

An exploratory stepwise linear regression was conducted to identify the determinant and
significant variables, as well as the optimum combination of the variables. Spatial Statistics extension
in ArcGIS together with Minitab software were used for these analyses. The significance of the
variables was investigated using the p-value and R-square value. Variables that were found to be
highly correlated (redundant) and insignificant were omitted. The variables that contributed to the
multicollinearity (redundant variables) were identified using the extracted Variance Inflation Factor
(VIF) [48] values. A variable with a VIF value exceeding 7.5 was considered redundant with the second
highest VIF value. In cases where multiple variables were identified as being redundant, the significant
variables were retained and the insignificant ones were omitted. Using water clarity measurements
as an example, Secchi disk depth was found to be redundant with euphotic depth, and the former
was found to be less significant and was dropped. Following the omission of redundant variables,
the multivariate regression was run again to make sure the R-square value and model’s significance
did not decrease. The overall target of this iterative exercise was to obtain the highest R-square value
with a minimal number of significant variables. Only 13 of the initial 15 variables were considered for
model construction. The spatial and temporal variables included in the model are explained below.
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2.1.1. Euphotic Depth (m)

The euphotic depth represents the depth at which 1% of the light incident on the ocean’s surface
can reach [47,49,50]. This depth provides a measure of the depth where light penetrates, nutrients and
algae diminish, and productivity decreases [51]. Water bodies with low euphotic depths generally
have a high nutrient content, are more productive and eutrophic [52], and provide favorable conditions
for HAB development [53]. The euphotic depth was calculated using the technique documented in a
previous study [47].

2.1.2. Wind Direction (Degrees) and Wind Speed (m/s)

The wind direction and speed can affect the distribution of algal blooms in three major ways:
(1) prevailing wind directions create ocean currents and water exchanges that transport HAB cells [9,54]
and biotoxins [9]; (2) wind and bathymetry guide the location of nutrient upwelling facilitating the
concentration of the algae [13]; and (3) winds can transfer the aerosols [21] promoting the growth of
toxic phytoplankton [55]. The wind direction and wind speed were calculated using a reflectance
model based on the Cox-Munk wave-slope distribution [56].

2.1.3. Chlorophyll-a (mg/m3)

The concentration of chlorophyll-a provides direct measurements of the growth of the algae
in aquatic environments [57]. Three different types of algorithms were used to compute the
chlorophyll-a content: chlorophyll-a OC3M (ocean chlorophyll three-band algorithm for MODIS [58]),
chlorophyll-a GSM (Garver-Siegel-Maritorena [59]) and chlorophyll-a GIOP (Generalized Inherent
Optical Property [60]). These algorithms use different sets of reflectance bands to estimate
phytoplankton biomass [61] and these have been validated with field observations in different parts of
the world [62–65]. An increased chlorophyll-a concentration has been taken as a strong indicator of
HAB distribution [66,67], and chlorophyll-a OC3M data has been used for detecting HAB along the
west coast of Florida [20]. Three types of chlorophyll-a measurements were considered in this study as
they were found to be correlated with algal cell count during the exploratory multivariate regression.
These products were not redundant to each other suggesting that the algorithms were either picking up
unique spectral signatures exhibited by chlorophyll-a in the optically complex estuarine environment,
or it may be the results of uncertainties in the algorithms [68].

2.1.4. Diffuse Attenuation Coefficient

The Diffuse Attenuation Coefficient for downwelling irradiance at 490 nm (Kd_490; m-1) measures
the attenuation of the light (blue to green) for turbid water [69,70]. A study in the Bohai Sea [71]
showed that the attenuation coefficient can be used as a proxy for the growth of phytoplankton in
turbid coastal waters given that the blue to green light attenuation positively correlates with scattering
particles (e.g., HABs). A high correlation between chlorophyll-a concentration and diffuse attenuation
coefficient was observed under harmful red tide conditions in the Persian Gulf using MODIS data [72].
In another study done in the coastal waters of India, HABs were detected using satellite derived
chlorophyll-a and diffuse attenuation coefficient images and were also validated through in situ
measurement [37]. The diffuse attenuation coefficient was calculated using the technique described in
a previous study [70].

2.1.5. Turbidity Index

The turbidity index provides a measure for the clarity of the water through the scattering of light
caused by suspended particles [73,74]. Spatial and temporal variations of turbidity in water bodies
has been successfully used to identify phytoplankton blooms [75,76]. Although a turbidity index is
not a direct indicator of HAB occurrences, it has been successfully used to estimate the severity of a
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HAB once it was independently detected [77]. The turbidity index was calculated using procedures
described in a previous study [78].

2.1.6. Particulate Backscattering Coefficient at 547 nm

This is the backscattering coefficient of particles at 547 nm. The backscattering coefficient as
determined by satellite sensors and in situ measurements has been used in the past to identify
the distribution of HABs. A research study [79] employed satellite-based and underwater glider
measurements of the backscattering coefficient at 547 nm to detect K. brevis blooms in the Gulf of
Mexico and verified their findings by in situ observations. A backscattering coefficient at 551 nm
extracted from a Visible Infrared Imaging Radiometer Suite (VIIRS) sensor, which is analogous to
the MODIS backscattering coefficient at 547 nm, was used in conjunction with fluorescence data to
detect the K. brevis bloom at the West Florida shelf [80]. In the same area, in situ measurements of
the backscattering coefficient at 551 nm and chlorophyll-a data were successfully used to detect a
K. brevis bloom [81]. The backscatter coefficient of particles at 547 nm was calculated using an algorithm
available in the literature [82,83].

2.1.7. Sea Surface Temperature (◦C)

SST influences phytoplankton productivity in multiple ways: (i) individual biological species
including algal blooms thrive under different and specific temperature regimes, and (ii) the availability
and solubility of many biochemical materials needed for their growth and development is temperature
dependent [54,84]. Many studies have shown a correlation between SST and algal bloom distributions
in the Mediterranean Basin [85], Kuwait Bay [86,87] and on a global scale [88]. The productivity of
K. brevis increases in the fall and early spring at the west Florida shelf primarily because of the ideal
temperature conditions during these times [19]. Increased SST was found to be conducive to HAB
development in the coastal waters of Oman [89] and in Gulf of Mexico [90].

2.1.8. Fluorescence Line Height (FLH)

Fluorescence line height (FLH) provides the relative measure of radiance leaving the sea surface
in the chlorophyll fluorescence emission band [91]. It has been successfully used in the detection of
chlorophyll-a in several studies [22,23,25] including the one in southwestern Florida [19]. A review
of previous studies shows a positive correlation between the MODIS-derived fluorescence and
chlorophyll-a concentration in ocean waters with algal blooms [91,92]. More recently, an in situ
FLH measurement was done in conjunction with the backscattering coefficient to map the distribution
of K. brevis in the Gulf of Mexico [79]. Similarly, FLH derived from VIIRS was used to detect K. brevis
blooms at the West Florida Shelf [80].

Although other pigments (chlorophyll-b, chlorophyll-c, phycoerythrin and carotenoids) are
common in HAB, chlorophyll-a estimate is the first choice in oceanography because of the practical
reasons [93,94]. It has been difficult to attain the detection limit of phycoerythrin using MODIS, instead
there has been more efforts on the absorption bands at 495 nm and 545 nm [95]. MODIS provides
fluorescence band (676 nm) to derive FLH primarily for HAB detection [41,96]. FLH has been
successfully used to detect K. brevis bloom in the Gulf of Mexico [19,29]. The concentration of K. brevis
was found to have direct correlation with FLH in the Charlotte harbor in Florida [19].

2.1.9. Bathymetry (m)

Shelf properties, including bottom topography, influence the distribution of HAB in many
ways [97]. For example, water stratification, which is controlled in part by bottom topography,
inhibits productivity [98], whereas the vertical mixing and added nutrient supply in shallow waters
can enhance the primary productivity in coastal ecosystems [98]. Our study site, and the continental
shelf systems and coastal areas in general, are considered to be vulnerable to HAB occurrences due to
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the accumulation of biomass [99]. Bathymetric data acquired from United States Geological Survey
(https://coastal.er.usgs.gov/flash/bathy-entireFLSH.html) were used as one of the spatial variables.

2.1.10. Distance from the River Mouth (m)

Riverine organics are major sources of nutrients for the West Florida Shelf of the Gulf of
Mexico [100]. The riverine discharge provides high nutrient loads [101] that largely control the
phytoplankton population and eutrophication around the river discharge locations and adjoining
estuarine systems [102,103]. The distance from the mouth of the river was computed using the
Euclidean Distance function in ArcGIS (Environmental Systems Research Institute, Redlands, CA, USA,
version 10.5).
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Figure 3. Mean values for the significant variables including chlorophyll-a (OC3M), SST, diffuse
attenuation coefficient, and euphotic depth calculated from MODIS products acquired throughout
the period 2010 to 2017 over the study area. The distance from river mouth and bathymetry data are
also shown.

2.2. Step 2

The logarithm of K. brevis cell counts (base 10) in samples as analyzed by FWRI was used as the
response variable because the growth of the algae takes place exponentially. Measurements were
largely performed in response to reported K. brevis blooms around Charlotte County, Lee County to
the south, and Sarasota County to the north. The cell count responses were lumped into three groups:
(i) no bloom (cell count ≤ 300 per/L), (ii) low concentration (cell count > 300 and <10,000 per L) and

https://coastal.er.usgs.gov/flash/bathy-entireFLSH.html
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(iii) high concentration (cell count ≥ 10,000 per L). We adopted the threshold values used by the
Harmful Algal Bloom Observation System (https://habsos.noaa.gov/) in categorizing cell count to
facilitate comparisons with NOAA’s observations. During the investigated period (2010 to 2017),
128 blooms were reported with cell counts higher than 300 per L. Each of the input variables was
normalized to the −1 to +1 range because the inputs displayed large variations in range and magnitude.
Such variations, if not accounted for, could affect model outputs. For each inventoried location, we
extracted the values of the normalized input variables.

Four linear regression models were constructed: (i) same-day; (ii) one day in advance; (iii) two
days in advance; and (iv) three days in advance. For each of the models, data were divided into
training (80%) and testing (20%) datasets. The training data were used to develop the regression, and
the accuracy assessment was done on the testing datasets. For the same-day model, the regression
was conducted on 80% of the reported HABs occurrences (102 unique-day bloom events) against the
variables on bloom days (days when blooms were reported). For the one day in advance model, the
regression was conducted for the response versus the variables acquired one day in advance of the
bloom day. Similarly, for the two-day and three-day in advance models, the response was regressed
against the variables acquired two and three days in advance, respectively. Each of the four models
had its individual datasets (response and variables) for regression and validation. Predictive models
(ii, iii, and iv) were designed to capture the onset of the HABs in contrast to those that developed days
earlier and continued in the following days. To this end, a bloom reported on dayn was excluded from
the one-day advance dataset if another was reported in the same location in dayn−1. Similarly, a bloom
reported on dayn was excluded from the two-day dataset if another was reported in the same location
in dayn−1 or dayn−2 and from the three-day dataset if a bloom was reported on dayn−1, dayn−2 or
daysn−3. The multivariate regression model was developed for each group of the data. For any new
satellite data for any specific day, a respective regression was used to predict the HAB on the same-day
and one, two and three days in advance of the potential HAB occurrence.

2.3. Step 3

The generated regression equations were utilized for same-day mapping and one-, two- and
three-day advance predictions of HAB. The regression models were developed for three bloom lag
periods and applied to the collective set of variables. The results (same-day mapping and one-, two-
and three-day advance prediction of HAB) are published on our website (http://www.esrs.wmich.
edu/webmap/bloom/) using the ArcGIS server and ArcGIS API for JavaScript. The MODIS data for
every day is acquired at ~4 pm, is made available for download on NASA’s website at ~5 pm, and is
processed for HAB occurrences and published on our website at ~10 pm. This process was coded in
Python 2.7 to allow the program to run automatically at the same time every day.

3. Results

The prediction was done in two phases: (a) nowcasting and (b) one, two and three days in advance
forecasting. The model outputs are provided in Tables 2 and 3. Table 2 lists the selected variables
with their relative significance (in percentage) for the same-day and the one-, two- and three-day
predictions. Table 3 provides the multivariate regression coefficients for each of the selected variables
for the same-day and the one-, two- and three-day predictions. The sign (±) in front of the coefficient
for each variable indicates the nature (positive/negative) of the relationship between the variable in
question and the response. The assessment of the performance of the four models is presented in
Figure 4. The accuracy of the same day was the highest (90.5%), and the accuracies of the one-day,
two-day, and three-day prediction models were assessed at 65.6%, 72.1%, and 71.9%, respectively.
The prediction accuracies were calculated based on the three categories of the cell count that were
pre-established instead of using binary value (presence and absence of the bloom) as an indicator of
the success. In order to obtain stringent prediction criteria, we integrated locational accuracy as a part
of verification process as we were using cell count data with spatial information provided by FWRI.

https://habsos.noaa.gov/
http://www.esrs.wmich.edu/webmap/bloom/
http://www.esrs.wmich.edu/webmap/bloom/


Remote Sens. 2018, 10, 1656 10 of 19

Table 2. Selected variables with their relative significance (in percentage) for same-day nowcasting,
and one-, two- and three-day predictions.

Same-Day Nowcasting
Forecasting

One Day in Advance Two Days in Advance Three Days in Advance

1 Bathymetry (35.9%) Bathymetry (16.1%) Euphotic Depth (25%) Euphotic Depth (16.6%)

2 Euphotic depth (22.1%) SST (15.5%) Chlorophyll-a (OC3M)
(14.2%)

Distance to river mouth
(16.1%)

3 Wind direction (7.1%) Wind direction (13.4%) Distance to river mouth
(14%)

Chlorophyll-a (OC3M)
(15.1%)

4 Chlorophyll-a (OC3M)
(6.7%)

Chlorophyll-a (OC3M)
(10.3%)

Diffuse attenuation
coefficient (Kd_490) (8.9%) Wind direction (10%)

5 Wind speed (5.8%)
Diffuse attenuation
coefficient (Kd_490)

(9.9%)
SST (7.7%) SST (9.3%)

6 Distance to river mouth
(5.5%)

Distance to river mouth
(9.1%) Wind direction (6.4%) Chlorophyll-a (GSM)

(7.9%)

7 Chlorophyll-a (GIOP)
(3.4%) Wind speed (7.6%) Fluorescence line height

(5.4%) Turbidity Index (7%)

8 Fluorescence line height
(3.2%) Turbidity index (7.1%) Turbidity Index (5.4%)

Particulate backscattering
coefficient (bbp_547_giop)

(4.6%)

9 Diffuse attenuation
coefficient (Kd_490) (3.1%)

Particulate
backscattering coefficient

(bbp_547_giop) (5.2%)
Bathymetry (4.8%) Fluorescence line height

(4.5%)

10 Chlorophyll-a (GSM)
(2.4%)

Chlorophyll-a (GSM)
(3.2)

Chlorophyll-a (GSM)
(3.3%) Wind speed (3%)

11 Turbidity index (2.4%) Euphotic depth (1.9%) Chlorophyll-a (GIOP)
(2.4%) Bathymetry (2.8%)

12
Particulate backscattering
coefficient (bbp_547_giop)

(1.4%)

Chlorophyll-a (GIOP)
(0.5%) Wind speed (1.5%) Chlorophyll-a (GIOP)

(1.9%)

13 SST (0.8%) Fluorescence line height
(0.2%)

Particulate backscattering
coefficient (bbp_547_giop)

(0.7%)

Diffuse attenuation
coefficient (Kd_490) (1.3%)

Table 3. Multivariate regression coefficients for each variable in predicting HABs for same-day
mapping, and one-, two- and three-day advanced predictions.

Variables
Coefficients

Same-Day One Day in
Advance

Two Days in
Advance

Three Days in
Advance

Bathymetry (m) −0.2662 0.0609 0.0874 0.1326
Euphotic Depth (m) 0.0296 0.0022 0.0231 0.0189
Wind Direction (degrees) 216.5790 270.1179 162.3239 287.9521
Chlorophyll-a (OC3M) (mg/m3) 0.5120 0.5418 0.9005 1.0869
Wind Speed (m/s) −250.5957 214.0178 53.2687 119.2459
Distance to Mouth of River (m) −0.1593 0.0001 0.0001 0.0001
Chlorophyll-a GIOP (mg/m3) 0.2617 0.0044 0.1549 −0.1380
Normalized Fluorescence Line Height
(mWcm−2 um−1 sr−1) −395.2367 0.0001 −551.1232 −514.3536

Diffuse Attenuation Coefficient (m−1) 2.6613 5.2936 6.2945 1.0121
Chlorophyll-a GSM (mg/m3) 0.1845 0.1417 0.2116 0.5693
Turbidity Index 73.0929 143.0333 135.8686 202.1670
Particulate Backscattering Coefficient (m−1) 4287.9827 −12,551.1376 −1854.9512 −3779.3400
SST (◦C) −0.0188 −0.2164 −0.1514 −0.2002
Intercept 2.6629 1.1849 −0.1563 −0.5590
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one-, two- and three-day advanced predictions). The points on the diagonal line represent the bloom
events that were observed and also predicted. The points on the vertical axis represents the algal bloom
events that were observed but not predicted by the model. The points on the horizontal axis are the
algal bloom events that were predicted but not observed. The accuracy of each prediction models are
given in parenthesis.

4. Discussion

The information provided in Tables 2 and 3 can be used to interpret the nature of the relationship
between HAB occurrences and the individual variables. The information can also be used to determine
the directionality (negative or positive) of the relationship and evaluate the comparative significance.
For same-day mapping (or nowcasting), the bathymetry, euphotic depth, wind direction, chlorophyll-a
(OC3M, and wind speed were found to have a 78% contribution to the response variable as presented
in Table 2. For the one-day forecasting, bathymetry, SST, wind direction, chlorophyll-a (OC3M),
and diffuse attenuation coefficient (KD_490) were found to have a 65% contribution to the response
variable. For the two-day forecasting, euphotic depth, chlorophyll-a (OC3M), distance to river mouth,
diffuse attenuation coefficient (KD_490) and SST were found to have 69% contribution to the response
variables. The euphotic depth, distance to river mouth, chlorophyll-a (OC3M), wind direction and SST
had a 67% contribution to the response variable for the three-day forecasting.

A 1:1 correspondence in the ranking and significance of variables in the four models should
not be expected given that the variables could have varying lag time effects on HAB development.
For example, a study [104] found a positive correlation between algal bloom events and nitrate and
ammonium concentrations as early as five days prior to the bloom. Similarly, a study [105] found
a positive correlation between HAB occurrences and temperature and aerosols particle distribution,
which are the air-borne sources of phosphate, iron and trace elements in the East China Sea. Higher
concentrations of phosphorous and iron above the threshold did not correlate with the HAB events
because these are limiting nutrients for HAB growth. The increase in concentration of nitrogen,
however, correlated with the HAB concentration. The lag time between the spike in the nitrogen
concentration in the aerosols and HAB event was two days. Similarly, in the coastal waters of Charlotte
County, one can attribute the significance and high ranking of some variables (distance to river mouth,
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and chlorophyll-a) in our two- and three-day predictive models to the presence of a two day lag time
for nutrients in rivers to reach the coastal waters and induce HABs.

Inspection of Tables 2 and 3 reveals differences in the rankings and significance of the variables
between the four solutions. However, there are multiple variables that appear to be significant
(significance ≥ 5%) for three or more of the four solutions. These include chlorophyll-a, Euphotic
depth, SST, wind direction, Chlorophyll-a OC3M, distance to river mouth and turbidity index.
Other variables appear to be consistently less important (significance < 5%) in 3 or more of the
model outputs. These include bathymetry, wind speed, chlorophyll-a GIOP, fluorescence line height,
diffuse attenuation coefficient (Kd_490), chlorophyll-a GSM and particulate backscattering coefficient
(bbp_547_giop).

Additional spatial and temporal relations are inferred from Tables 1 and 2. Shallow bathymetry
seems to be a significant factor for same-day predictions. The association of HABs with shallow
bathymetry was inferred from the −ve sign of the coefficient for the bathymetry variable for the
same-day prediction. Similarly, the association of HABs with increasing euphotic depth and turbidity
is inferred from the +ve sign for the coefficient for these two variables (euphotic depth and turbidity
index) in each of the four models. The chlorophyll-a (OC3M) content and wind direction show a
positive correlation with bloom occurrences for all lag times, but the significance and rank varies for
the investigated models. SST seems to be less significant on the day of the bloom compared to the
one-day, two-days and three-days advanced predictions. Blooms occur at cooler SST as indicated by
the −ve coefficients. For same-day predictions, the shorter the distance from the river mouth, the
more likely HABs will develop as evidenced by the −ve coefficient value (Table 3). We suspect that the
above-mentioned observations (rankings and significance of variables and the spatial and temporal
relations) are largely of local nature, and thus comparisons with findings from published works are not
straightforward. Moreover, such comparisons are also hampered by the paucity of similar applications
that involve a large number of variables.

Despite the local and empirical nature of regression models, we favored this method over the
analytical and semi-analytical solutions given the lack of continuous field-based datasets that are
required for the application of these analytical approaches. The multivariate regression method was
also favored over other statistical approaches (e.g., artificial neural networks, principal component
analysis) that do not provide insights into the nature and the contributions of the factors controlling
HAB occurrences. Although other techniques may provide better one time prediction than multivariate
regression, this is the only technique supported in ArcGIS server environment that allows publication
of results in the present form via web-based GIS. This is the reason why an operational algal bloom
early warning system are nonexistent that utilize other prediction techniques (e.g., machine learning,
hydrogeological modeling, principal component analysis) and are based on satellite-derived variables
on a daily basis.

There are several limitations with the applied methodology. There can be differences between the
time a bloom was reported and the time it was captured by the satellite imagery. The vertical and lateral
movement of the algae can also occur in the water column due to changes in temperature, stratification
and other factors. In field controlled and natural environments, a previous study [106] showed
a decrease in fluorescence before reaching the maximum value under natural photosynthetically
available radiation, while another study [107] reported diurnal variations in algae populations in the
surface and in the mid-column. Similar diurnal variations were reported for K. brevis in the West
Florida Shelf [108]. Our approach does not consider this, but it assumes that the algae lie on the surface
and are stationary. With the current temporal and spatial resolution of MODIS, diurnal physiological
and ecological variations are not captured in the analysis. This could also be the reason why the
significance of independent variables is fluctuating in different lag days (Table 2) in our model leading
to low prediction accuracy one day prior to the bloom compared to other days as shown in Figure 4.
Because of these practical limitations, physiological responses of the algae cannot be understood using
the satellite data alone.
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The developed models apply constant lag times of one, two or three days for all of the variables.
Ideal models should instead apply lag times that produce an optimum target response. These lag
times will undoubtedly differ from one variable to another, and such an application will enhance the
predictability of the model. Unfortunately, this enhancement is difficult to achieve as that it requires
a continuous acquisition of satellite imagery over an extended period, and such daily acquisitions
are halted on cloudy days. Due to the weather dependency of the temporal variables, it is difficult
to develop models that include multiple variables with varying time lags. Additionally, with the
coarse spatial resolution of MODIS derived variables (e.g., SST: 1000 m; turbidity index: 500), the
predictability of HAB detection is limited. The option to downscale satellite derived data is also
impractical due to the lack of real time measurements at a finer scale. In this context, we are utilizing
proxies (e.g., euphotic depth and turbidity indices) that can account for the nutrient content in the
aquatic system despite its resolution. The predictability of the developed models could be improved
with the inclusion of daily measurements of nitrate and phosphate in the water that can be used in
the model. The current problem of discontinuous and coarse resolution of the MODIS data could be
addressed locally if it was replaced by Unmanned Aerial Vehicles (UAVs) datasets. If we were to use
UAV-generated datasets, the investigated area will have to be narrowed down to the immediate coastal
waters to reduce the operational costs and to simplify the logistics involved in permitting flights.
UAVs acquire high-resolution images devoid of atmospheric influences. These new data acquisition
systems could increase the accuracy, predictability and replicability of our model in Charlotte County
and elsewhere in the world. These methods would enable the construction of robust models that
account for varying lag times and produce high-resolution (spatial and temporal) prediction. Although,
the current MODIS spectral resolution is not perfect for HAB detection, it allows daily prediction
until other option such as UAV is pursued in this area. The adopted empirical methodology could
be applicable to many other coastal areas worldwide, yet it is to be expected that different sets of
regression relationships should be developed for the individual areas to represent the local conditions
that affect HAB occurrences.

5. Conclusions

The study focused on developing an early warning system for K. brevis-related HABs off
the coast of South Florida. We used historical field HAB data from 2010 to 2017 to develop a
multivariate regression and determine the significance of the variables for different prediction scenarios.
The prediction system involved the same-day nowcasting method and forecasting for one, two
and three days in advance of the onset of the bloom. The same-day nowcasting provided 90%
accuracy, whereas the one, two and three days in advance forecasting provided 65%, 72% and 71%
accuracies, respectively. The investigation took advantage of ocean color data to develop methodologies
and procedures that may enhance decision-making processes, improve citizens’ quality of life, and
strengthen the local economy. Even though this project focuses on the K. brevis related HAB in Charlotte
County and its surrounding neighbors, the model can be replicated for other species and can be applied
in other areas. The prediction system can be utilized to plan uses of coastal waters for recreational
purposes and other environmental services. Monitoring the extent and intensity of HABs could be
used to improve the environmental and socioeconomic status of this area and develop long-term
environmental programs and policies. This monitoring and early warning system for HABs could
provide benefits, in Charlotte County to the public, policy makers, and the scientific community and
could assist local agencies in developing solutions and plans to mitigate HABs.
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