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Abstract: In the course of the TerraSAR-X mission, various new applications based on X-Band
Synthetic Aperture Radar (SAR) data have been developed and made available as operational
products or services. In this article, we elaborate on proven characteristics of TerraSAR-X that
are responsible for development of operational applications. This article is written from the
perspective of a commercial data and service provider and the focus is on the following applications
with high commercial relevance, and varying operational maturity levels: Surface Movement
Monitoring (SMM), Ground Control Point (GCP) extraction and Automatic Target Recognition (ATR).
Based on these applications, the article highlights the successful transition of innovative research into
sustainable and operational use within various market segments. TerraSAR-X’s high orbit accuracy,
its precise radar beam tracing, the high-resolution modes, and high-quality radiometric performance
have proven to be the instrument’s advanced characteristics, through, which reliable ground control
points and surface movement measurements are obtained. Moreover, TerraSAR-X high-resolution
data has been widely exploited for the clarity of its target signatures in the fields of target intelligence
and identification. TerraSAR-X’s multi temporal interferometry applications are non-invasive
and are now fully standardised autonomous tools to measure surface deformation. In particular,
multi-baseline interferometric techniques, such as Persistent Scatter Interferometry (PSI) and Small
Baseline Subsets (SBAS) benefit from TerraSAR-X’s highly precise orbit information and phase stability.
Similarly, the instrument’s precise orbit information is responsible for sub-metre accuracy of Ground
Control Points (GCPs), which are essential inputs for orthorectification of remote sensing imagery, to
locate targets, and to precisely georeference a variety of datasets. While geolocation accuracy is an
essential ingredient in the intelligence field, high-resolution TerraSAR-X data, particularly in Staring
SpotLight mode has been widely used in surveillance, security and reconnaissance applications in
real-time and also by automatic or assisted target recognition software.

Keywords: interferometry; surface movement monitoring; ground control points; radargrammetry;
automated target recognition; convolutional neural networks (CNN), deep CNN; support vector
machine; SVM

1. Introduction

Designed for a five years operation, the German Synthetic Aperture Radar (SAR) satellite
TerraSAR-X has already achieved ten years of flawless operation in orbit providing high-resolution
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radar images in all weather conditions 24 h per day. Developed and constructed by Airbus Defence
and Space in Friedrichshafen, Germany for the German Aerospace Center (DLR), the satellite orbits
at a height of 514 km above Earth and provides radar imagery to a wide variety of scientific and
commercial users. To date, TerraSAR-X has not only doubled its service lifetime, but also boasts 99.9%
availability, at an outstanding performance. TerraSAR-X is in full health so that a current assessment
indicates that it can be operated for a few more years in space until a follow-on system is in place.

With a user driven end-to-end system design, TerraSAR-X has successfully carried out its scientific
and commercial data exploitation commitments through DLR’s large science phase outreach and
Airbus’s industrial partnership. TerraSAR-X has paved the way for its national focus on a sustainable
SAR technology strategy, in addition to disseminating know-how and exploring new paths for the
next generation of high performance SAR Systems based on advanced features (High Resolution Wide
Swath (HRWS), digital beamforming).

As a parallel mission, TerraSAR-X has been a source of data sharing continuity of earth observation
projects through the European Space Agency’s Copernicus programme, and other international space
organisations. In this respect, TerraSAR-X data has been extensively applied to five main thematic
areas of land, marine, atmosphere, emergency, and security.

Since the launch of its almost identical twin TanDEM-X (TerraSAR-X add-on for Digital Elevation
Measurement) in 2010, both satellites have been flying in a formation at a distance only a few hundred
metres apart. Together, they have acquired a large amount of data, which provides the basis for
the new global elevation model, WorldDEM. TerraSAR-X and TanDEM-X offer a high repeat rate,
irrespective of the area of interest (AOI) or weather conditions. This is crucial in the case of natural
or manmade disasters, where reactive mapping is needed to support situation awareness and rescue
planning. Following the launch of the PAZ (peace in Spanish), satellite in February 2018, into the
same orbit, the three satellites are now operating as a constellation to deliver even higher revisit times,
increased spatial coverage and thus improved services. Airbus Defence and Space is now working on
next generation Synthetic Aperture Radar satellites as the follow-on to the TerraSAR-X family triplets
from 2022.

TerraSAR-X features a unique geometric accuracy and offers flexible area coverage and spatial
resolution ranging from 0.25 m to 40.0 m. This answers the needs of a wide range of application
domains, such as engineering companies who ensure safe operation of large construction projects,
oil and gas enterprises that monitor remote production sites, or intelligence and security agencies that
carry out targeted surveillance and detailed change detection of site activities.

The article aims to highlight the successful transition of innovative research into a sustainable
and operational use within a commercial framework. The qualities of the TerraSAR-X mission and
its setup as dual-use (scientific and commercial) mission perfectly demonstrates that basic research
and methodological evolution can lead to relevant information for various industry segments and
administrative bodies. In the following sections the methods employed for implementation of three
operational applications are outlined. The applications are selected, since they all share a high
commercial relevance, but they vary with respect to their operational maturity level. Thus, they reflect
the typical transition steps from a scientific into a commercial context.

These operational services include Surface Movement Monitoring, an operational and mature
application that is relevant, for example, for civil engineering projects and transport maintenance.
Secondly, we discuss precise Ground Control Points, which are useful within the automotive and
aeronautics sector. The application is well established, but shall be lifted to the next evolution level
by leveraging cutting-edge research findings. Finally, we present an Automatic Target Recognition
approach, which is at a medium operational maturity level. Research in machine learning is used to
optimise the application’s performance. The achievable performance of each application in accordance
with the satellite’s systematic and processing characteristics is described.
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2. Applications and Methods

2.1. Surface Movement Monitoring (SMM)

2.1.1. Overview

SAR-interferometric (InSAR) surface deformation monitoring has gained an increasing interest
and acceptance in the commercial market. Several operational aspects are addressed by this
technique complementing and even replacing successively terrestrial surveillance approaches.
Surface movements induced by manmade activities, such as infrastructure constructions, excavations
and underground engineering, or natural disasters (e.g., landslides) can be unexpected and
far-reaching, and may endanger infrastructure and even human lives. Satellites monitor wide-area
surface movements, as well as single structure displacements [1,2] at regular intervals. They can help
to understand the nature of ground instabilities and formulate an adequate response. They may also
provide input data into simulation models to better evaluate risks of future surface movements.

The start of the TerraSAR-X mission in 2007 was a significant milestone, which helped to establish
products and geo-information services based on Earth remote sensing sources on a global scale.
In particular, Multi Baseline Interferometric Techniques (such as Persistent Scatter Interferometry
(PSI) [3], and Small Baseline Subsets (SBAS) [4]) profit from a precisely defined satellite orbit tube
and precise absolute orbit information. The sensor’s high-resolution of up to 0.25 m × 1.0 m allows
for monitoring of infrastructure elements (e.g., single buildings) on a large scale. In urban regions, a
density of 100,000 valid measurement points per square kilometre is typically exceeded. This high
level of detail in combination with complementary geospatial information, e.g., municipal building
footprints, provides added value to a broad range of applications. The aggregation of a significant
number of individual measurements at respective points and the link to relevant object dimensions
(e.g., buildings) does not only reduce the number of single measurement points, but also improves data
handling and validity levels for specific problems, in particular for non-expert users. The value-added
geospatial information can be disseminated in a user friendly way, e.g., on a web platform. The way in
which information is provided is crucial for a widespread acceptance of the technique and consequently
the use by decision makers in industry and public authorities. High-resolution surface movement
products based on TerraSAR-X synergistically complement small scale information layers, such as the
German Surface Movement Service (Bodenbewegungsdienst Deutschland BBD [5]).

The following case study demonstrates the capacity of TerraSAR-X showing a relevant operational
use case in an active mining area. The use of TerraSAR-X helps determine relatively dynamic
movements, but also identifies phenomena of a slower movement rate; quick and frequent situation
updates are achieved in an 11-day repeat cycle, cloudless long-term observation allow for the
assessment of slowly ongoing or historic situations. The end-user profits from a high density
of information.

2.1.2. TerraSAR-X Surface Movement Monitoring Case Study

Surface movement detection based on InSAR measurements is demonstrated in an opencast
mining region in western Germany near the city of Cologne with known tectonic faults, which is also
affected by groundwater abstraction. The method is based on interferometric SBAS processing of
34 TerraSAR-X repeat-pass scenes, acquired between February 2015 and March 2016 in StripMap (SM)
mode at a spatial resolution of 3 m and a repeat cycle of 11 days. The acquisitions were recorded from
a descending orbit (rel. orbit 63, strip009R) with HH (Horizontal transmit and Horizontal receive)
polarisation and an incidence angle of approximately 34◦. We used a semi-automated processing chain
for interferometric SAR analysis and post-processing with the objective of providing user relevant
deformation information (Figure 1).
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in Figure 2 shows the final interferometric network that was used and the differential interferograms 
for estimation of the deformation time series with measured displacements in line-of-sight (LOS). 
SBAS processing also includes atmospheric phase screen (APS) for estimation of the atmospheric 
effects (second inversion). A reliable estimation of these atmospheric components could be achieved 
by using default APS SARscape setting parameters. This means we used an atmospheric low pass 
size of 1200 m and atmospheric high pass size of 365 days for atmospheric correction. 
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1 05/03/2015 18 19/09/2015 
2 27/03/2015 19 30/09/2015 
3 07/04/2015 20 11/10/2015 
4 18/04/2015 21 22/10/2015 
5 29/04/2015 22 02/11/2015 
6 10/05/2015 23 13/11/2015 
7 21/05/2015 24 24/11/2015 
8 01/06/2015 25 05/12/2015 
9 12/06/2015 26 16/12/2015 
10 23/06/2015 27 27/12/2015 
11 04/07/2015 28 07/01/2016 
12 15/07/2015 29 18/01/2016 
13 26/07/2015 30 29/01/2016 
14 06/08/2015 31 09/02/2016 
15 17/08/2015 32 20/02/2016 
16 28/08/2015 33 02/03/2016 

 

Figure 2. Time-position plot of SBAS connection graph for the used scenes in the case study (left 
figure). TerraSAR-X scenes were acquired on the listed dates in the table on the right. 

Figure 1. Semi-automated interferometric time series processing and post-processing steps.

The interferometric SBAS processing of the TerraSAR-X data stack was carried out using the
SARscape software (Version 5.2) from sarmap S.A. [6]. For the creation of the interferometric-pairs
network, geometric baselines have been limited by a threshold of about 183 m to avoid geometric
decorrelation. The maximum temporal baseline has been limited to 176 days. The Time-Position Plot
in Figure 2 shows the final interferometric network that was used and the differential interferograms
for estimation of the deformation time series with measured displacements in line-of-sight (LOS).
SBAS processing also includes atmospheric phase screen (APS) for estimation of the atmospheric
effects (second inversion). A reliable estimation of these atmospheric components could be achieved
by using default APS SARscape setting parameters. This means we used an atmospheric low pass size
of 1200 m and atmospheric high pass size of 365 days for atmospheric correction.
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After an extensive quality control of SBAS results and under the assumption of no horizontal
displacements, the LOS results could be transformed into vertical displacements (see step ‘Movement
Projection’ in Figure 1).

Figure 3a provides the area extent and a detailed view of vertical movement velocity in the area.
The dimension of the large-scale subsidence areas is closely connected to the known location of tectonic
faults (black hatching lines in Figure 3). Locally, further subsidence areas are detectable, e.g., on waste
disposal sites. Figure 4 shows the time series of estimated vertical displacements for three selected
measurement positions in Figure 3b. On the west side of the tectonic fault, we can observe a high
subsidence velocity of about −17 mm/year (P1), while further east the velocities are clearly smaller
(P2—approx. −3 mm/year). Furthermore, the time series of P1 and P2 show a significant linear
behaviour in time depending on groundwater withdrawal activities of opencast mining. By contrast
on the waste disposal site, the time series of P3 shows a higher velocity, but also a deceleration. This is
due to the varying causes of movement.

For a more detailed analysis of objects of interest in a movement area, high-resolution TerraSAR-X
data is particularly recommended, in order to fully exploit the high sampling of the surface showing
local and small scale specific differences in the movement behaviour. Therefore, high-resolution
TerraSAR-X acquisitions are used for enhanced and precise localisation of active tectonic faults
(see Figure 3b).

In general, urban structures provide a sufficiently high number of valid measurement pixels.
In rural areas with dense vegetation on agricultural land, grasslands, forests and plantations, however,
no surface valid movement results can be derived, due to vegetation growth and movement and the
resultant radar backscatter changes over time. Infrastructure objects are stable radar backscatter targets,
thereby allowing the allocation of a large number of measurement pixels to create feature layers, as
shown by railways in Figure 3c, roads (Figure 3d) and buildings (Figure 3e). In the region of interest,
approximately 75% of railway networks, and about 40% of road networks have been covered by
surface movement results retrieved from TerraSAR-X StripMap data. Therefore, a railway operator has
the possibility for high-resolution, large-scale deformation monitoring of his rail network to identify
critical sections. Municipalities and district authorities can be supported in their management and
fulfilment of duties to detect and maintain traffic lines affected by deformation. Experience shows that
insurance companies, for example, are highly interested in building-level movement information in the
context of loss adjustment in areas affected by mining-induced surface deformation. For each building,
a time series of surface movement measurement pixels is available including, for example, movement
velocity and acceleration/deceleration. An extensive analysis allows the extraction of damage-relevant
information, such as the maximum tilt of a house, the date when the tilt threshold is surpassed and the
potential risk of instability and break. In Figure 3f, houses and railway segments with maximum tilts
greater than 0.3 mm/meter are identified. These houses are potentially at risk of damage.
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Figure 3. Selection of operational TerraSAR-X surface movement products for an opencast mining
region with known tectonic faults (black hatching lines of ISGK100 © Geologischer Dienst North
Rhine-Westphalia 2018): (a) Vertical movement velocities in the AOI of 13 × 13 km2; (b) Subset area
(white rectangle in (a) with Surface Movement Monitoring (SMM) measurement pixels in Horrem
(Kerpen, Germany); (c) SMM railway allocation product; (d) SMM road allocation product; (e) SMM
building allocation product; (f) SMM enhanced product with marking of buildings and railway sections
with maximum tilts > 0.3 mm/m in a detailed area. Background: World Imagery (Source: Esri, Digital
Globe, GeoEye, Earthstar Geographics) and OSM data (© OpenStreetMap).
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Figure 4. Time series of vertical displacements (plotted points) and linear regression line (solid line) on
selected measurements positions in Figure 3b. (a) refers to the points P1 and P2, shown in Figure 3b.
Though spatially adjacent the temporal displacement of both points significantly differs. (b) refers to
point P3 and represents the subsiding tendency of a waste disposal site.

2.2. Ground Control Points (GCP)

2.2.1. TerraSAR-X GCP Background

Reliable Ground Control Points (GCPs), i.e., points of known geographical coordinates, are an
essential input for the precise orthorectification of remote sensing imagery, the exact location of targets
or the accurate georeferencing of a variety of geo-datasets. Although GCPs collected by terrestrial
means typically offer a high accuracy, the TerraSAR-X based space-borne approach is of significant
interest in such areas where access can be hazardous or may not be authorised. Thanks to TerraSAR-X’s
precise orbit determination accuracy (within the range of centimetres), the precise radar beam tracing,
its high spatial resolution and the resulting high positional accuracy of the imagery, the satellite proves
to be highly suitable for obtaining 3D ground information. Based on stereo imagery or multiple
image datasets acquired at defined geometrical conditions, GCPs can be obtained at a high accuracy
in East (E), North (N) coordinates and in Height (H). The subsequent use of the retrieved points is to
establish a control point database for commercial use, particularly in poorly mapped areas, where such
information is not available or insufficiently accurate.

TerraSAR-X and TanDEM-X are capable of high-resolution and multi-beam image acquisition.
Along with the image data, detailed and very precise orbit data allow for highly accurate 3D
information extraction based on stereo or multi-angle image data sets. The image geolocation
positioning error is proved to be less than 10 cm in azimuth and range [7,8].

For automated radargrammetric ground control point extraction, a minimum of two images
acquired with the same orbit direction or, ideally, from ascending and descending orbits are acquired
over the area of interest. The disparity angle α (compare Figure 5) between the acquisition geometry of
the 2 images is of great importance for the establishment of a stable geometric model. Measurements
of corresponding points in two or more images are used to determine the ground coordinates
(Easting, Northing, and Height). The general mathematical background of this intersection procedure
is given in [9]. Detailed analysis of image stereo constellations for high performance can be found
in [10,11].
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2.2.2. TerraSAR-X GCP Case Study

The test site in the South-West of Denver, USA, mainly covers urban/suburban and rural areas.
According to the image data acquisition scenario, shown in Figure 6, TerraSAR-X Staring SpotLight
(ST) images are acquired as stereo image pairs in HH polarisation. For each acquisition period, three
images taken from ascending and descending orbits were used. The image parameters are summarised
in Table 1.

Table 1. TerraSAR-X data over south west Denver, USA acquired with Staring SpotLight (ST) mode
(rg—range, az—azimuth).

ID Acquisition Mode Date Orbit Direction Incidence Angle (◦) Resolution rg/az (m)

1 ST 09.05.2014 Descending 42.5 0.88/0.38
2 ST 15.05.2014 Descending 53.5 0.74/0.32
3 ST 08.06.2014 Ascending 35.8 1.03/0.44

In Figure 6, an overview of the Denver test site and the measured points is shown. Points are
selected in urban and suburban areas to achieve a mix of diverse surface features, different elements,
such as point scatterers (lamp posts and utility poles), road crossings and roundabouts.
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Figure 7 depicts the backscatter response of a point target localised in the TerraSAR-X ST image.
Due to the high spatial resolution and radiometric performance of TerraSAR-X ST, the point target is
clearly pronounced.
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For the validation of the TerraSAR-X retrieved Ground Control Points, highly accurate reference
coordinates of similar features obtained from Differential Global Positioning System (DGPS)
observations, i.e., ITRF 2008 with the Epoch of 2012.0, are employed [12]. The advantage of the DGPS
measurements is the very high positional accuracy of the measurements and the global availability
with a consistent quality. This reference data was measured with survey grade GPS equipment and
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processed to an absolute and global accuracy better than 10 cm with CE95 and LE95 confidence
levels [12].

The RMSE values of the point residuals in Easting (∆E), Northing (∆N) and height (∆H), as well
as for horizontal and spatial displacements are shown in Table 2.The original TerraSAR-X ST pixel
spacing is approximately 20 cm [13].

Table 2. Absolute and relative 3D geolocation accuracies for retrieved GCPs from TerraSAR-X ST data
(n = 12) [13].

∆E (m) ∆N (m) ∆H (m) ∆ Horizontal (m) ∆ Spatial (m)

Mean −0.28 −0.39 −0.07 0.68 0.83
RMSE 0.48 0.54 0.44 0.73 0.85

Difference in planimetric East (∆E) and North (∆N), as well as Height of measured GCP compared to DGPS
measurements (∆H).

2.3. Automatic Target Recognition (ATR)

2.3.1. Method

For surveillance, security and reconnaissance applications, high-resolution TerraSAR-X data has
been exploited with respect to the detection of relevant ground targets in real-time by automatic
and assisted target recognition software. Target detection and recognition is one of Airbus’s main
technology development products, which are utilised in a variety of applications on both green and
blue borders, e.g., for target tracking and recognition, change detection and recognition, anti-piracy or
immigration-control, and ship detection of search and rescue operations.

The TerraSAR-X satellite acquires high-quality, high-resolution commercial radar data well suited
for purposes of earth observation, target detection and recognition. TerraSAR-X operates in three
main acquisition modes: ScanSAR (16 m resolution), StripMap (3 m resolution) and SpotLight modes
(0.25 to 0.5 m). In this section, machine learning methods applied to specific target signatures for
detection and recognition applications with high-resolution TerraSAR-X images are investigated.

With the increase in processing capabilities through fast multiple parallel graphical units
(GPUs) [14], the availability of large-scale annotated datasets, the accessibility of high-resolution
SAR imagery and the intense demand from civil applications, the push to develop automated target
recognition with transfer learning has grown. Machine learning techniques are often engaged in
autonomous detection of the targets based on appropriate training data sets. Convolutional Neural
Networks (CNN) include a specific architecture of deep learning and are particularly effective in object
and feature classification [15,16]. The CNNs algorithm convolves the input data with a successive
number of pre-learned kernels to derive and encode target features prepared for classification.
Deep Convolution Neural Network is the stepping block within ATR that iteratively and adaptively
customises a variety of relevant features to classify and identify targets. Deep learning does not require
any manual pre-built feature extractor, but rather excerpts features automatically. Therefore, an increase
in the number of high-quality training datasets enhances feature recognition. In order to minimise
experimental risks, the training data set parameters must be adjusted for their quality, quantity
and target feature diversity. A hybrid system comprising Deep CNN (DCNN) and Support Vector
Machines (SVM) algorithms has been designed at Airbus specifically for TerraSAR-X. This hybrid
design has shown to decrease generalisation error producing complex non-linear constraints that give
the highest possible differentiation between trained target classes and the surrounding environment,
as well as reducing total throughput for ATR applications [17]. The hybrid system efficiently combines
convolutional networks effective learning of invariant features, with support vector machines fast
and powerful decision making to reduce the number of parameters and thus increases the runtime
performance of the network Figure 8 shows the steps employed in the ATR processor.
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Figure 8. Automatic Target Recognition (ATR) real-time processing steps emulated on a stand-alone
computer using Synthetic Aperture Radar (SAR)-specific feature extractor and frequency domain
high-speed Support Vector Machine classifier.

Input data are stacks of high-resolution TerraSAR-X level1B images in SpotLight mode. Images are
acquired at different incidence angles to account for flexibility in recognition. TerraSAR-X images are
processed to Enhanced Ellipsoid Corrected geometric projection format.

Each target of interest’s position is manually identified and labelled as a training image
patch. Following image preparation, the prepared image patches are fed into the DCNN processor.
Therein distinctive features, such as target brightness, texture, edges, shadows and corners are
automatically obtained. Each patch covers the labelled target and its surrounding pixels where
target backscattering characteristic are described by the scatter cluster rather than the scatter point
extraction. These features are combined layer by layer to achieve complex non-linear class features
that fully encode target characteristics and are superior to any manual operation. The pre-trained
layers are obtained by training the stacked convolutional auto-encoder on labelled SAR scene images.

As depicted in Figure 9, the classification architecture consists of several (here, five) convolutional
layers, followed by max pooling with rectified linear units (ReLU) activation functions and fully
connected layers. In this example, convolutional layers have adopted a pyramid structure, which
means as the convolution layers increase, the outputs of each layer are down sampled by maxpooling.
The fully-connected layer preserves the 512-neurons. The output of the last fully connected
layer is fed to the Softmax probability activation function, before going into the SVM classifier.
The Frequency-Domain Support Vector Machine is an Airbus proprietary disruptive technology,
which enables high-speed machine learning applications [18].
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Figure 9. Adaptation and processing steps of Deep Convolutional Neural Network for SAR ATR.

The application of automatic target recognition is performed in two steps: Detection and
identification. Detection is the pure localisation of the target. Identification is achieved in two
ways; a target can be identified as a member of a class (e.g., class of airplanes) or a specific type within
that class (e.g., military aircraft or civilian passenger aircraft).

The performance capabilities of an ATR application depend on appropriate feature detection,
characterised by its spatial and radiometric resolutions, and the noise level. The training phase
enables “learning by examples” and data-driven generalisation, but performance correlates to
availability and quality of training imagery. A variety of pre-training tasks can be utilised to enhance
image-signal-to-clutter ratio, for example noise reduction with spatially variant apodization [19],
polarisation whitening filters [20], or radiometrically/spatially enhanced image products [21]. The SAR
image acquisition geometry and environmental conditions are other important factors for the ATR
process. Here, ATR performance depends not only on sensor acquisition geometry, but also on
the target geometry, its shadow, layover, foreshortening or occlusion by neighbouring objects.
These limitations may be partially overcome by exploitation of target libraries created from simulated
SAR data for a specific target size, shape, orientation, and revetment. The accuracy of labelled
training targets and classes and the validity of ground-truth data in all-weather conditions are less
compromised with simulated SAR libraries. In addition to the above, considerations are made for
user requirements, where ATR applications are required to perform within minimum processing time
(near-real-time), under limited or reduced data dimensions dealing with computational complexity,
achieving a reasonably high (>90%) average precision.
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2.3.2. Automatic Target Recognition Case Study

The presented ATR experiment is executed on TerraSAR-X High Resolution SpotLight images
(with a resolution of 0.5 m) processed respectively with Spatially Enhanced (SE) and Radiometrically
Enhanced (RE) variants and TerraSAR-X Staring SpotLight images (with a ground resolution of
approximately 0.25 m × 1.0 m) with the Spatially Enhanced (SE) processing variant. In total, 93 images,
for three sites, and 26 images per area of interest in different modes containing positively labelled
targets of interest and negatively excluding targets are used for training and testing. The areas
of interest are selected to contain a large number of targets suitable for detection and recognition.
Targets of interest are four models of aircrafts with lengths ranging from 12 m to 46 m. Targets include a
variety of ground parking orientations, due to interim use of the aircraft. Table 3 provides the aircrafts’
primary dimensions.

Table 3. Aircraft dimensions for four targets considered in the ATR experiment.

Aircraft Model Length (m) Height (m) Wing Span (m)

Bear (Tupolev Tu-95) 46.2 12.1 50.1
Backfire (Tupolev Tu-22) 42.4 11.0 34.3 or 23.3

Midas/Candid (Ilyushin IL-76M) 46.6 14.7 50.6
Colt (Antonov An-2) 12.4 4.1 14.2 lower, 18.2 upper wing

The areas of interest selected are Ryazan, Ukrainka and Engels airbases in Russia. Training data
sets are acquired at different incidence angles and at different orbit orientations to accommodate for
different acquisition geometries. The time series of the images accounts for the possibility of seasonal
variation throughout the year (i.e., snow and rain). Figures 10 and 11 provide distribution of variety of
images per site per acquisition for each site.
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The image pre-processing step of the experiment started with conversion of TerraSAR-X images
from 16 to 8 bit by histogram truncation and rescaling. The experiment was performed on image
patches of 2048 × 2048 pixels. All training and test data patches were resampled to 0.4 m pixel spacing.
The positively labelled target chip size in the training depended on the object class size. Data chips
were utilised to train the DCNN processor. The frequency domain SVM [22] was trained on the output
of the DCNN. In this experiment, the quantitative evaluation of the ATR processor gave very promising
results. It showed especially very low false alarm rates on the additional TerraSAR-X test images.
Figure 12 provides the performance of the processor for each target on tested data. The quantitative
average precision of ATR processor on TerraSAR-X images is given in Table 4. It can be deduced that,
since the pose or ground parking geometry of the targets in this experiment did not vary significantly,
the tested target signature remained similar, and was mainly affected by signal to noise variation, due
to the sensor system and the local weather conditions. Examples of SAR image signature, and the
corresponding computer graphics models of each labelled aircraft, are shown in Figure 13.
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Table 4. Average precision (AP) results of Automatic Target Recognition based on DCNN and frequency
domain SVM classifier.

Aircraft Model AP

Bear (Tupolev Tu-95) 97%
Backfire (Tupolev Tu-22) 96%

Midas/Candid (Ilyushin IL-76M) 88%
Colt (Antonov An-2) 100%
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In preparation for the ATR experiment, every aspect of SAR imagery was considered. Products
derived from ATR applications ultimately will be utilised to support SAR image analysts where
timeliness and precision are of highest importance.

The fusion of pre-processing steps, employment of deep convolution neural network and
feature enhancement methodologies in the frequency domain to extract complex and non-linear
target attributes minimised efforts to generate optimised target features and reduced the required
processing time.

The analysis showed that the classifier’s performance is limited significantly by the sensor’s
acquisition geometry, target shape, size, orientation, revetment, and environmental variations.
The target’s geometric signature sensitivity indicates the need for feature annotation libraries at
a range of incidence angles with small intervals and limited squint variation. Target ground aspects
and orientation angles greater than 10 degrees reduce the probability of correct recognition. Therefore,
provision for additional training data with different parking positions must be made. In addition,
significant differences between signatures of the same target were observed from different imaging
modes of TerraSAR-X. The ATR classifier cannot be reused and applied to High Resolution SpotLight
and Staring SpotLight images without re-training the system. This confirmed the importance of SAR
image resolution and noise level in ATR processing applications.

During this experiment, it was found that the hybrid DCNN design had a much superior
generalisation performance, due to abstract feature learning and reacted better at target scale variation.
It also performed in an acceptable run-time.
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Future experiments are planned to analyse simulated SAR signatures of targets within the same
target class category. Simulated SAR data will be utilised to determine specific target attributes that
differentiate them from each other. In addition, all scenarios will be tested with different ground
parking poses and at different signal-to-clutter levels.

3. Conclusions

Since the launch of TerraSAR-X in 2007 a steady flow of high-resolution SAR data in X-band
frequency has been processed and disseminated. The raw SAR data is processed by the TerraSAR-X
multi-mode SAR processor at DLR to achieve an optimised geometric and radiometric resolution.
In addition to the TerraSAR-X basic products, Airbus Defence and Space provides TerraSAR-X value
added geo-information products to a variety of applications. In this paper, three key operational
applications were presented. Characterised by high radiometric focusing quality and phase stability,
TerraSAR-X surface movement products based on StripMap or High Resolution SpotLight mode
imagery have demonstrated an average InSAR phase velocity measurement at a resolution along the
line of sight of the sensor, which is equivalent to 1 mm/year.

Similarly, with the advantage of multiple radiometric looks in azimuth and an orbital stability
better than 10 cm, the application of ground control points from Staring SpotLight images, provides
absolute geolocation accuracy RMSE of < 0.85 m.

In the field of automated target detection and recognition, armed with a large number of training
images and objects and advances in deep machine learning techniques, new challenges are tackled, and
a fresh wave of products are currently being developed. Thanks to both radiometric stability, absolute
geometric focusing and driven by high-resolution training signatures, the operational machine learning
application has achieved an average precision of 88% to 97% for selected targets.

The advances in development of operational applications fuel the design requirements for the
next generation of synthetic aperture radar satellites as follow-on missions to the current constellation.
Based on current achievements, the new era of high-resolution wide swath sensors has started.
The importance of high-resolution imagery with greater orbital accuracy and highly focused and stable
radiometric quality are vital needs of the follow-on missions.
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