
sustainability

Article

Velocity Obstacle Based 3D Collision Avoidance
Scheme for Low-Cost Micro UAVs

Myungwhan Choi 1, Areeya Rubenecia 1, Taeshik Shon 2 and Hyo Hyun Choi 3,*
1 Department of Computer Science and Engineering, Sogang University, Seoul 04107, Korea;

mchoi@sogang.ac.kr (M.C.); rubenecia@sogang.ac.kr (A.R.)
2 Division of Information and Computer Engineering, Ajou University, Suwon 16499, Korea;

tsshon@ajou.ac.kr
3 Department of Computer Science, Inha Technical College, Incheon 22212, Korea
* Correspondence: hchoi@inhatc.ac.kr; Tel.: +82-10-4321-7524

Received: 30 April 2017; Accepted: 3 July 2017; Published: 6 July 2017

Abstract: An unmanned aerial vehicle (UAV) must be able to safely reach its destination even,
when it can only gather limited information about its environment. When an obstacle is detected,
the UAV must be able to choose a path that will avoid collision with the obstacle. For the collision
avoidance scheme, we apply the velocity obstacle approach since it is applicable even with the UAV’s
limited sensing capability. To be able to apply the velocity obstacle approach, we need to know the
parameter values of the obstacle such as its size, current velocity and current position. However,
due to the UAV’s limited sensing capability, such information about the obstacle is not available.
Thus, by evaluating sensor readings, we get the changes in the possible positions of the obstacle in
order to generate the velocity obstacle and make the UAV choose a collision-free trajectory towards
the destination. We performed simulation on different obstacle movements and the collision-free
trajectory of the UAV is shown in the simulation results.

Keywords: UAV; 3D collision avoidance; velocity obstacle; estimation; sensor

1. Introduction

Many studies have focused on the full automation of low-cost unmanned aerial vehicles (UAVs).
The interest on UAV has increased due to its high applicability in various areas such as law enforcement,
search and rescue, agriculture monitoring, and weather monitoring. One topic in such studies is the
collision avoidance system for fully automated UAVs.

This problem is applicable to the field of networking when UAVs are used for information delivery.
A communication network must be established using multiple UAVs with limited communication
range [1–3]. In similar applications, two UAVs that need to exchange information are separated beyond
the communication range. Thus, the UAVs are required to travel between each other’s communication
range [3]. In such environment, UAV may be instructed to deliver information as quickly as possible
to the appropriately chosen UAV, avoiding obstacles efficiently on the path to the target UAV.

The sensing and detection capability, and the collision avoidance approach are two of the main
issues for a collision avoidance system [4]. Various sensors are used by different studies on the collision
avoidance of UAVs. ADS-B sensors, a surveillance technology that enables the UAV to keep track of
information of other UAVs, are used in [5–7]. For collision avoidance, Fu et al. [5] used differential
geometric guidance and flatness techniques for collision avoidance; Park et al. [6] proposed the concept
of Vector sharing; and Lin and Saripalli [7] proposed the concept of reachable sets. In [8–12], vision
based approach is used for obstacle detection. A Doppler radar sensor is used in [13] for obstacle
detection and a reactive collision avoidance algorithm is developed. In [14], a fusion of ultrasonic
sensor and infrared sensor is used for increased accuracy of sensor measurements, which is then input

Sustainability 2017, 9, 1174; doi:10.3390/su9071174 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
http://dx.doi.org/10.3390/su9071174
http://www.mdpi.com/journal/sustainability

Sustainability 2017, 9, 1174 2 of 23

to a collision avoidance controller. Other types of sensors are small sized radar sensor [15], optic-flow
sensor [16], and Ultra-wideband sensor [17].

The main focus of this paper is to devise a collision avoidance scheme using only the distance
information of the obstacle. Our work is based on the simple modeling of low-cost micro UAV with
limited sensing capability. Accordingly, it does not model the dynamics of the system and does not
take into account the noisy environment in sensing the obstacle. The UAV must be able to safely
reach its destination provided it can only gather limited information about its environment. We apply
the velocity obstacle approach introduced in [18] to be able to determine the possible maneuvers
that the UAV can take to avoid collision. However, because of the sensing limitation, we need to
determine the unavailable parameter values of the obstacle. The concept of velocity obstacle is also
used in [19,20]. In [19], reciprocal collision avoidance is introduced. Reciprocal collision avoidance
considers the navigation of many agents and in which each agent applies the velocity obstacle approach.
In [20], the implementation of reciprocal collision avoidance on real quadrotor helicopters is presented.
Contrary to this paper, the sensing capability is not an issue in [18–20]. In this paper, we show how to
overcome the UAV’s limited sensing capability to be able to find a collision-free trajectory to the goal
with the use of the velocity obstacle approach.

This paper is organized as follows: In Section 2, related works on collision-free trajectory planning
of UAVs are discussed. In Section 3, the set-up model of the UAV is defined. Section 4 briefly explains
the concept of velocity obstacle. Section 5 shows our approach on using velocity obstacle with limited
obstacle information. Section 6 presents the summary of collision avoidance algorithm. The simulation
results and discussion are presented in Section 7. Finally, Section 8 concludes the paper.

2. Related Work

Various approaches have been proposed and implemented on the problem of collision-free
autonomous flight of UAVs. Certainly, different approaches have different system models and different
assumptions on the available information about the environment. Rapidly exploring random tree is
used in [21,22] to generate feasible trajectories of the UAV. A tree representing the feasible trajectories
of the UAV, with nodes as the waypoints, is made and the node sequence with the smallest cost is
chosen as the final path. In [21], a sampling based method is used with a closed-loop rapidly exploring
random tree while path planning based on 3D Dubins curve is used in [22].

A model predictive control is used in [23] for generating the UAV’s trajectory. They presented the
formulation of the MPC-based approach with consideration to the dynamic constraints. It is modeled
in a dual-mode strategy defined by the normal flight mode and the evasion mode. In a normal flight
mode, the model chooses a parameter that will provide stability to the UAV and also improves its
performance. Once an obstacle’s trajectory is predicted, it will switch to evasion mode with the goal
of avoiding the obstacle. It is assumed that the UAV has onboard sensors that provide information
of the obstacle. Bai et al. [24] used partially observable Markov decision process (POMDP) to model
the collision avoidance system. POMPD is solved by applying Monte Carlo Value Iteration (MCVI)
algorithm that computes the policy with maximal total reward. Total field sensing approach is applied
in [25]. It allows multiple vehicles to travel to each of its goal. This approach uses the magnetic field
theory. Basically, each vehicle has a magnet that generates its magnetic field and has magnetic sensors
that detect the total field from other vehicles. The gradient of the total field is estimated and the vehicle
moves away from the direction of the gradient to avoid collision. Frew and Sengupta’s approach [26]
is based on the concept of reachable sets. The backwards reachable sets (BRS) is defined as the set
of states of the system that will lead the UAV to the obstacle. The formation planner must generate
the feasible avoidance maneuver before the UAV enters the boundary of the BRS. Two-camera and
parallel-baseline stereo are used to determine the position of the obstacles.

A simple reactive collision avoidance is used in [13]. Doppler radars are used to sense the
environment. The radar return with higher magnitude means that it has more or larger obstacles.
The reactive algorithm will then choose the path with lowest return radar signal. Another reactive

Sustainability 2017, 9, 1174 3 of 23

obstacle collision avoidance algorithm is used in [27]. It is a map-based approach wherein a 3D
occupancy map represents the environment and is improved for every obstacle detection so that the
previous detections can be considered when deciding the next waypoint. When an obstacle is detected,
an escape point search algorithm is used to find a waypoint that is reachable from the UAV’s current
position and at the same time avoids the obstacle. The UAV will then move towards the goal after
the waypoint is reached. Combined stereo and laser-based sensing is used to sense the environment.
A map-based approach is also used in [28] using a grid-based map of probability of threats. From
the sensor readings, Bayes’ rule is applied to get the occupancy values of the cell. Preliminary path
planning is done based on the initial information on the location of the obstacles. When an unexpected
obstacle is detected, the probabilities are updated.

3. Environment Model

We consider a UAV and an obstacle that share an environment in a 3-D space. The UAV must
arrive at the goal destination while avoiding collision with the obstacle. Let there be two spherical
objects A and B as the UAV and the obstacle respectively as shown in Figure 1. Figure 1a shows the
view from the back of A and Figure 1b shows the view from the front. The UAV has five ultrasonic
sensors whose sensing space is spherical sector shaped with a default opening angle of 36 degrees
and a maximum detection range of 7 to 10 m each. The sensors are attached at the front of the UAV
and their orientation is shown in Figure 1. In this figure, A is positioned at (0, 0, 0) and B is at the
upper-right-front of A. The sensors are labeled in counter-clockwise direction. sps denotes the sensing
space of sensor S ∈ {1, 2, 3, 4, 5} and ds denotes the sensor reading of sensor S which is the nearest
distance of the obstacle from the UAV within the detection range of S.

Sustainability 2017, 9, x FOR PEER REVIEW 3 of 24

obstacle collision avoidance algorithm is used in [27]. It is a map-based approach wherein a 3D
occupancy map represents the environment and is improved for every obstacle detection so that the
previous detections can be considered when deciding the next waypoint. When an obstacle is
detected, an escape point search algorithm is used to find a waypoint that is reachable from the UAV’s
current position and at the same time avoids the obstacle. The UAV will then move towards the goal
after the waypoint is reached. Combined stereo and laser-based sensing is used to sense the
environment. A map-based approach is also used in [28] using a grid-based map of probability of
threats. From the sensor readings, Bayes’ rule is applied to get the occupancy values of the cell.
Preliminary path planning is done based on the initial information on the location of the obstacles.
When an unexpected obstacle is detected, the probabilities are updated.

3. Environment Model

We consider a UAV and an obstacle that share an environment in a 3-D space. The UAV must
arrive at the goal destination while avoiding collision with the obstacle. Let there be two spherical
objects ܣ and ܤ as the UAV and the obstacle respectively as shown in Figure 1. Figure 1a shows the
view from the back of ܣ and Figure 1b shows the view from the front. The UAV has five ultrasonic
sensors whose sensing space is spherical sector shaped with a default opening angle of 36 degrees
and a maximum detection range of 7 to 10 m each. The sensors are attached at the front of the UAV
and their orientation is shown in Figure 1. In this figure, ܣ is positioned at (0, 0, 0) and ܤ is at the
upper-right-front of ܣ . The sensors are labeled in counter-clockwise direction. ݌ݏ௦ denotes the
sensing space of sensor ܵ ∈ 	 {1, 2, 3, 4, 5} and ݀௦ denotes the sensor reading of sensor ܵ	which is the
nearest distance of the obstacle from the UAV within the detection range of ܵ.

(a) (b)

Figure 1. UAV attached with five sensors with spherical sector sensing space.

The UAV has a fixed radius ݎ஺ , its current center position ݌஺ , and current velocity ݒ஺ . The
obstacle also has a fixed radius ݎ஻, its current center position ݌஻, and current velocity ݒ஻. ݎ஻, ݌஻, and ݒ஻ are unknown to the UAV due to the limitation of its sensors. ݀௦ is the only available information
to the UAV.

Aside from the limitation that it can only provide the nearest distance value of the obstacle,
another limitation in this setup is the limited sensor range in the x-z plane and y-z plane. In the x-y
plane, we have a total of 180 degree of sensing range and each sensor covers different sensing space
region. Thus, we can determine the vicinity of the location of the obstacle only in the x-y plane. For
example, if the obstacle is detected by sensor 1, then we know that the obstacle is somewhere in the
right-front part of the UAV in x-y plane when the UAV is facing along the y-axis. However, we cannot
know whether its position is higher or lower than the UAV because the positioning of the sensors
provides limited view of the UAV’s environment in the x-z plane and y-z plane.

Figure 1. UAV attached with five sensors with spherical sector sensing space.

The UAV has a fixed radius rA, its current center position pA, and current velocity vA. The
obstacle also has a fixed radius rB, its current center position pB, and current velocity vB. rB, pB, and
vB are unknown to the UAV due to the limitation of its sensors. ds is the only available information to
the UAV.

Aside from the limitation that it can only provide the nearest distance value of the obstacle,
another limitation in this setup is the limited sensor range in the x-z plane and y-z plane. In the x-y
plane, we have a total of 180 degree of sensing range and each sensor covers different sensing space
region. Thus, we can determine the vicinity of the location of the obstacle only in the x-y plane. For
example, if the obstacle is detected by sensor 1, then we know that the obstacle is somewhere in the
right-front part of the UAV in x-y plane when the UAV is facing along the y-axis. However, we cannot
know whether its position is higher or lower than the UAV because the positioning of the sensors
provides limited view of the UAV’s environment in the x-z plane and y-z plane.

Sustainability 2017, 9, 1174 4 of 23

4. Velocity Obstacle

We apply the method of using velocity obstacle [18] in choosing the velocity that the UAV would
take. Using velocity obstacle, we can determine the possible velocities the UAV can take that will
avoid collision with the obstacle. This approach is simple and the velocity obstacle can be calculated
given the basic information of the obstacle and the UAV. We will briefly discuss the concept of velocity
obstacle and how it is applied to this paper.

The velocity obstacle VOA|B is the set of all velocities of A that will result in a collision to B at
some future time assuming that B maintains a constant velocity vB. A geometric interpretation of
VOA|B is shown in Figure 2. Let A⊕ B be the Minkowski sum of A and B, let −A denote A reflected
in its reference point and let λ(p, v) be the ray starting at position p with direction v:

A⊕ B = {a + b | a ∈ A, b ε B} (1)

− A = {−a |a ε A} (2)

λ(p, v) = {p + tv | t ≥ 0} (3)

We now define VOA|B as:

VOA|B =
{

vA

∣∣∣ λ(pA, vA − vB)
⋂

B ⊕−A 6= ∅
}

(4)

which means that choosing vA inside VOA|B will result to collision between A and B at some future
time. While selecting vA outside VOA|B would avoid collision with B.

Sustainability 2017, 9, 1174 4 of 23

know whether its position is higher or lower than the UAV because the positioning of the sensors
provides limited view of the UAV’s environment in the x-z plane and y-z plane.

4. Velocity Obstacle

We apply the method of using velocity obstacle [18] in choosing the velocity that the UAV would
take. Using velocity obstacle, we can determine the possible velocities the UAV can take that will
avoid collision with the obstacle. This approach is simple and the velocity obstacle can be calculated
given the basic information of the obstacle and the UAV. We will briefly discuss the concept of
velocity obstacle and how it is applied to this paper.

The velocity obstacle ܸ ஺ܱ|஻ is the set of all velocities of ܣ that will result in a collision to ܤ at
some future time assuming that ܤ maintains a constant velocity ݒ஻. A geometric interpretation of ܸ ஺ܱ|஻	 is shown in Figure 2. Let ܣ	 ⊕ 	B be the Minkowski sum of ܣ and ܤ , let −ܣ denote ܣ
reflected in its reference point and let λ(݌, 	ܣ :ݒ with direction ݌ be the ray starting at position (ݒ ⊕ ܤ = { ܽ + ܾ | ܽ ∈ ,ܣ ܾ ߳ ܤ } ܣ−(1) = { −ܽ |ܽ ߳ ,݌)ߣ(2) {ܣ (ݒ = ݌} + ݒݐ | ݐ ≥ 0} (3)

We now define ܸ ஺ܱ|஻ as: ܸ ஺ܱ|஻ 	= 	 ஺ݒ	} | ,஺݌)ߣ ஺ݒ − (஻ݒ ⋂ ܤ ⊕ ܣ− ≠ ∅} (4)

which means that choosing ݒ஺ inside ܸ ஺ܱ|஻ will result to collision between ܣ and ܤ at some future
time. While selecting ݒ஺ outside ܸ ஺ܱ|஻would avoid collision with ܤ.

Figure 2. Illustration of velocity obstacle in 2D.

This concept is discussed in 2D but can be easily extended to 3D by considering spheres instead
of circles and adding the lines tangent to the upper and lower part of the obstacle as shown in Figure
3.

Figure 2. Illustration of velocity obstacle in 2D.

This concept is discussed in 2D but can be easily extended to 3D by considering spheres instead
of circles and adding the lines tangent to the upper and lower part of the obstacle as shown in Figure 3.

Sustainability 2017, 9, 1174 5 of 23
Sustainability 2017, 9, 1174 5 of 23

Figure 3. Illustration of velocity obstacle in 3D.

5. Generating Velocity Obstacle Based on the Estimated Parameter Values of the Obstacle

As explained in the previous section, applying the velocity obstacle approach requires the
parameter values ݎ஻, ݌஻, and ݒ஻. However, due to the limitation of the sensors, we only have limited
information about the obstacle; that is, we only have ݀௦. Thus, from our only available information ݀௦, we get the possible values of ݎ஻, ݌஻, and ݒ஻. Afterwards, the possible ܸ ஺ܱ|஻	 can be created based
on the computed possible values of ݎ஻, ݌஻, and ݒ஻. In the following subsections, we discuss how we
derive these values.

On the whole, the behavior of our system is as follows: For each time step interval ݐ௜, ݀௦ is
provided. Then the possible values of ݎ஻, ݌஻, ݒ஻, and ܸ ஺ܱ|஻	 are computed sequentially based on ݀௦
at every ݐ௜. Lastly, ݒ஺ for this ݐ௜ is chosen based on the generated possible ܸ ஺ܱ|஻s.

In addition, we have two possible cases when the obstacle is detected as defined below:

Case 1 Obstacle’s center is inside sensor’s detection range

 When the obstacle’s center is inside the sensor’s detection range, then the minimum ݀௦
denoted as ݀௠௜௡	is measured along the line connecting the center of ܣ and the center of ܤ as shown in Figure 4. Thus, the following equation holds in this scenario: ݀݅݌)ݐݏ஺, (஻݌ = ݀௠௜௡ + ஻ݎ (5)

where ݀݅ݔ)ݐݏ, .ݕ and ݔ denotes the distance between points (ݕ

 Then, we can use ݀௠௜௡ to get the possible values of ݎ஻, ݌஻, and ݒ஻ since we can assume that
obstacle is positioned inside the sensor’s detection range.

Figure 4. Example of Case 1 where the obstacle’s center is in sensor’s detection range.

Figure 3. Illustration of velocity obstacle in 3D.

5. Generating Velocity Obstacle Based on the Estimated Parameter Values of the Obstacle

As explained in the previous section, applying the velocity obstacle approach requires the
parameter values rB, pB, and vB. However, due to the limitation of the sensors, we only have limited
information about the obstacle; that is, we only have ds. Thus, from our only available information
ds, we get the possible values of rB, pB, and vB. Afterwards, the possible VOA|B can be created based
on the computed possible values of rB, pB, and vB. In the following subsections, we discuss how we
derive these values.

On the whole, the behavior of our system is as follows: For each time step interval ti, ds is
provided. Then the possible values of rB, pB, vB, and VOA|B are computed sequentially based on ds at
every ti. Lastly, vA for this ti is chosen based on the generated possible VOA|Bs.

In addition, we have two possible cases when the obstacle is detected as defined below:

Case 1 Obstacle’s center is inside sensor’s detection range

• When the obstacle’s center is inside the sensor’s detection range, then the minimum ds

denoted as dmin is measured along the line connecting the center of A and the center of B
as shown in Figure 5. Thus, the following equation holds in this scenario:

dist(pA, pB) = dmin + rB (5)

where dist(x, y) denotes the distance between points x and y.
• Then, we can use dmin to get the possible values of rB, pB, and vB since we can assume

that obstacle is positioned inside the sensor’s detection range.

Case 2 Obstacle’s center is not inside sensor’s detection range

• When the obstacle’s center is not inside the sensor’s detection range and it is at the upper
or lower part of the sensing space, as seen in Figure 4, dmin is not measured along the
line connecting the center of the UAV and the center of obstacle but it is at the closest
point from the center of the UAV to the surface of the obstacle that intersected with the
sensing space.

• In this case, Equation (5) does not hold and we cannot generate correct possible values of
rB, pB, and vB.

Sustainability 2017, 9, 1174 6 of 23

Sustainability 2017, 9, 1174 6 of 23

Case 2 Obstacle’s center is not inside sensor’s detection range

 When the obstacle’s center is not inside the sensor’s detection range and it is at the upper
or lower part of the sensing space, as seen in Figure 5, ݀௠௜௡	is not measured along the line
connecting the center of the UAV and the center of obstacle but it is at the closest point
from the center of the UAV to the surface of the obstacle that intersected with the sensing
space.

 In this case, Equation (5) does not hold and we cannot generate correct possible values of ݎ஻, ݌஻, and ݒ஻.

Figure 5. Example of Case 2 where the obstacle’s center is outside sensor’s detection range.

Due to the limitation in the sensing capability, we cannot recognize whether the obstacle’s actual
center position belongs to Case 1 or Case 2 by knowing only ݀௦ . This is taken into account in
determining the obstacle’s possible sizes, positions, and velocities. For the obstacle’s size, its
maximum possible radius is predetermined since this cannot be determined when it belongs to Case
2. For the obstacle’s position, we get its extreme possible center positions for the cases when the
obstacle’s center is inside and outside the detection space. Then, we get the differences of the
computed possible positions between two consecutive time steps to get its possible velocities. We
further discuss this in the following subsections.

5.1. Computing Obstacle’s Possible Radius

We are interested in getting the obstacle’s smallest and biggest possible radii. Ideally, we want
to determine the lower bound ݈ݎ஻ and upper bound ݎݑ஻ of the radius based on ݀௠௜௡. However, as
mentioned previously, we cannot use ݀௠௜௡ to determine required information on the obstacle when
the obstacle belongs to Case 2. Unfortunately, given only ݀௦, we cannot know which case the obstacle
belongs to because of the limited sensing view in the x-z and y-z plane. Figure 6 shows an example
of this problem. This shows that because of the limited sensing view in x-z and y-z plane, when an
obstacle belongs to Case 2, it is possible that the obstacle is detected by only one sensor even though
the obstacle is big. Considering this case, ݎݑ஻ should be infinitely big for our ݎݑ஻ to be always
accurate. However, it is possible in other scenarios that the obstacle is actually small enough that it is
always detected by one sensor. Thus, we cannot let ݎݑ஻ be infinitely big because this also makes the
velocity obstacle very big and in effect will limit the possible paths the UAV can take, even though
the obstacle is actually small. To address this limitation in our sensing capability, we are forced to
assign a fixed value to the ݎݑ஻ in order for the UAV to still be able to find possible paths that are
outside the velocity obstacle. Hence, ݎݑ஻ = ஻,௠௔௫ݎ where ݎ஻,௠௔௫	 is a predetermined obstacle’s
maximum possible radius.

Thus, we only compute ݈ݎ஻ and we compute it every time step to be able to continually improve
it. That means, if the new ݈ݎ஻ is bigger than the existing ݈ݎ஻, then we replace the existing ݈ݎ஻ with
the new ݈ݎ஻. For ݎݑ஻, it has fixed user-defined value for all of the time steps. Our approach is not

Figure 4. Example of Case 2 where the obstacle’s center is outside sensor’s detection range.

Sustainability 2017, 9, x FOR PEER REVIEW 5 of 24

Figure 3. Illustration of velocity obstacle in 3D.

5. Generating Velocity Obstacle Based on the Estimated Parameter Values of the Obstacle

As explained in the previous section, applying the velocity obstacle approach requires the
parameter values ݎ஻, ݌஻, and ݒ஻. However, due to the limitation of the sensors, we only have limited
information about the obstacle; that is, we only have ݀௦. Thus, from our only available information ݀௦, we get the possible values of ݎ஻, ݌஻, and ݒ஻. Afterwards, the possible ܸ ஺ܱ|஻	 can be created based
on the computed possible values of ݎ஻, ݌஻, and ݒ஻. In the following subsections, we discuss how we
derive these values.

On the whole, the behavior of our system is as follows: For each time step interval ݐ௜, ݀௦ is
provided. Then the possible values of ݎ஻, ݌஻, ݒ஻, and ܸ ஺ܱ|஻	 are computed sequentially based on ݀௦
at every ݐ௜. Lastly, ݒ஺ for this ݐ௜ is chosen based on the generated possible ܸ ஺ܱ|஻s.

In addition, we have two possible cases when the obstacle is detected as defined below:

Case 1 Obstacle’s center is inside sensor’s detection range

• When the obstacle’s center is inside the sensor’s detection range, then the minimum ݀௦
denoted as ݀௠௜௡	is measured along the line connecting the center of ܣ and the center of ܤ
as shown in Figure 4. Thus, the following equation holds in this scenario: ݀݅݌)ݐݏ஺, (஻݌ = ݀௠௜௡ + ஻ݎ (5)

where ݀݅ݔ)ݐݏ, .ݕ and ݔ denotes the distance between points (ݕ

• Then, we can use ݀௠௜௡ to get the possible values of ݎ஻, ݌஻, and ݒ஻ since we can assume that
obstacle is positioned inside the sensor’s detection range.

Figure 4. Example of Case 1 where the obstacle’s center is in sensor’s detection range. Figure 5. Example of Case 1 where the obstacle’s center is in sensor’s detection range.

Due to the limitation in the sensing capability, we cannot recognize whether the obstacle’s
actual center position belongs to Case 1 or Case 2 by knowing only ds. This is taken into account in
determining the obstacle’s possible sizes, positions, and velocities. For the obstacle’s size, its maximum
possible radius is predetermined since this cannot be determined when it belongs to Case 2. For
the obstacle’s position, we get its extreme possible center positions for the cases when the obstacle’s
center is inside and outside the detection space. Then, we get the differences of the computed possible
positions between two consecutive time steps to get its possible velocities. We further discuss this in
the following subsections.

5.1. Computing Obstacle’s Possible Radius

We are interested in getting the obstacle’s smallest and biggest possible radii. Ideally, we want
to determine the lower bound lrB and upper bound urB of the radius based on dmin. However,
as mentioned previously, we cannot use dmin to determine required information on the obstacle when
the obstacle belongs to Case 2. Unfortunately, given only ds, we cannot know which case the obstacle
belongs to because of the limited sensing view in the x-z and y-z plane. Figure 6 shows an example
of this problem. This shows that because of the limited sensing view in x-z and y-z plane, when an
obstacle belongs to Case 2, it is possible that the obstacle is detected by only one sensor even though
the obstacle is big. Considering this case, urB should be infinitely big for our urB to be always accurate.
However, it is possible in other scenarios that the obstacle is actually small enough that it is always
detected by one sensor. Thus, we cannot let urB be infinitely big because this also makes the velocity
obstacle very big and in effect will limit the possible paths the UAV can take, even though the obstacle
is actually small. To address this limitation in our sensing capability, we are forced to assign a fixed
value to the urB in order for the UAV to still be able to find possible paths that are outside the velocity
obstacle. Hence, urB = rB,max where rB,max is a predetermined obstacle’s maximum possible radius.

Sustainability 2017, 9, 1174 7 of 23

Thus, we only compute lrB and we compute it every time step to be able to continually improve it.
That means, if the new lrB is bigger than the existing lrB, then we replace the existing lrB with the new
lrB. For urB, it has fixed user-defined value for all of the time steps. Our approach is not applicable for
multiple obstacles since it assumes that the obstacle that will be detected in the future time steps is the
same obstacle that is detected in the current time step.

Sustainability 2017, 9, 1174 7 of 23

applicable for multiple obstacles since it assumes that the obstacle that will be detected in the future
time steps is the same obstacle that is detected in the current time step.

Figure 6. A large obstacle detected by only one sensor.

Computing ݈ݎ஻

To compute ݈ݎ஻, the obstacle should be detected by at least two sensors. In the case that it is
detected by only one sensor, this can mean that the obstacle can be very small and therefore we set it
to a default ݈ݎ஻ value of 0.01 m.

Given at least two sensor readings, let ݀௠௜௡ be the minimum of ݀௦s and ݀௠௔௫ be the maximum
of ݀௦s. We define the set of points, ܲ௠௜௡, as the points in the sensing space of the sensor whose
reading is ݀௠௜௡. In other words, every element of set ܲ௠௜௡ has a distance of ݀௠௜௡ from the UAV’s
center. Now denote ܲ௠௔௫ as the set of points in the sensing space of the sensor whose reading is ݀௠௔௫, and every point in ܲ௠௔௫ has a distance of ݀௠௔௫ from the UAV’s center. Points in ܲ௠௜௡ and ܲ௠௔௫ are the possible points in the sensor’s detection range that are on the obstacle’s surface and
nearest to the UAV’s center.

For example, as shown in Figure 7, we have ݀௠௜௡ = ݀ଵ and ݀௠௔௫ = ݀ଶ. The points in set ܲ௠௜௡
are the black points in ݌ݏଵ while ܲ௠௔௫ are the black points in ݌ݏଶ. From these points, we can get the
smallest radius possible if the obstacle is tangent to the boundary of ݌ݏଶ (boundary in the x-y plane
thus z = 0 since it is spherical sector shaped) as shown in our example in Figure 8.

Figure 7. Points in ௠ܲ௜௡ and ௠ܲ௔௫ are represented by the black points in ݌ݏଵ and ݌ݏଶ, respectively.

Figure 6. A large obstacle detected by only one sensor.

Computing lrB

To compute lrB, the obstacle should be detected by at least two sensors. In the case that it is
detected by only one sensor, this can mean that the obstacle can be very small and therefore we set it to
a default lrB value of 0.01 m.

Given at least two sensor readings, let dmin be the minimum of dss and dmax be the maximum of
dss. We define the set of points, P¬

min
, as the points in the sensing space of the sensor whose reading

is dmin. In other words, every element of set P¬
min

has a distance of dmin from the UAV’s center. Now
denote P¬

max
as the set of points in the sensing space of the sensor whose reading is dmax, and every

point in P¬
max

has a distance of dmax from the UAV’s center. Points in P¬
min

and P¬
max

are the possible
points in the sensor’s detection range that are on the obstacle’s surface and nearest to the UAV’s center.

For example, as shown in Figure 7, we have dmin = d1 and dmax = d2. The points in set P¬
min

are the black points in sp1 while P¬
max

are the black points in sp2. From these points, we can get the
smallest radius possible if the obstacle is tangent to the boundary of sp2 (boundary in the x-y plane
thus z = 0 since it is spherical sector shaped) as shown in our example in Figure 8.

Sustainability 2017, 9, x FOR PEER REVIEW 7 of 24

Figure 6. A large obstacle detected by only one sensor.

Computing ݈ݎ஻

To compute ݈ݎ஻, the obstacle should be detected by at least two sensors. In the case that it is
detected by only one sensor, this can mean that the obstacle can be very small and therefore we set it
to a default ݈ݎ஻ value of 0.01 m.

Given at least two sensor readings, let ݀௠௜௡ be the minimum of ݀௦s and ݀௠௔௫ be the maximum
of ݀௦s. We define the set of points, ܲ௠௜௡, as the points in the sensing space of the sensor whose
reading is ݀௠௜௡. In other words, every element of set ܲ௠௜௡ has a distance of ݀௠௜௡ from the UAV’s
center. Now denote ܲ௠௔௫ as the set of points in the sensing space of the sensor whose reading is ݀௠௔௫, and every point in ܲ௠௔௫ has a distance of ݀௠௔௫ from the UAV’s center. Points in ܲ௠௜௡ and ܲ௠௔௫ are the possible points in the sensor’s detection range that are on the obstacle’s surface and
nearest to the UAV’s center.

For example, as shown in Figure 7, we have ݀௠௜௡ = ݀ଵ and ݀௠௔௫ = ݀ଶ. The points in set ܲ௠௜௡
are the black points in ݌ݏଵ while ܲ௠௔௫ are the black points in ݌ݏଶ. From these points, we can get the
smallest radius possible if the obstacle is tangent to the boundary of ݌ݏଶ (boundary in the x-y plane
thus z = 0 since it is spherical sector shaped) as shown in our example in Figure 8.

Figure 7. Points in ௠ܲ௜௡ and ௠ܲ௔௫ are represented by the black points in ݌ݏଵ and ݌ݏଶ, respectively.

Figure 7. Points in Pmin and Pmax are represented by the black points in sp1 and sp2, respectively.

Sustainability 2017, 9, 1174 8 of 23
Sustainability 2017, 9, 1174 8 of 23

Figure 8. Obstacle’s smallest possible radius is when it is tangent to boundary (in the x-y plane) of ݌ݏଶ	at ݀௠௔௫ from ܣ.

We can get the smallest possible radius of the obstacle using the ݀௠௜௡ and ݀௠௔௫, as shown in
Figure 9. By applying Pythagorean Theorem, we get the length of the radius ݎ by: (݀௠௜௡ + ݎ)ଶ = ଶݎ + ݀௠௔௫ଶ (6)݀௠௜௡ଶ + ௠௜௡݀ݎ2 ଶݎ = ଶݎ + + ݀௠௔௫ଶ (7)

ݎ = ݀௠௔௫ଶ − ݀௠௜௡ଶ2݀௠௜௡ (8)

஻ݎ݈ = ݀௠௔௫ଶ − ݀௠௜௡ଶ2݀௠௜௡ (9)

Figure 9. Getting the smallest possible radius of the obstacle tangent to the boundary of ݌ݏଶ	at ݀௠௔௫
from ܣ.

Figure 8. Obstacle’s smallest possible radius is when it is tangent to boundary (in the x-y plane) of sp2

at dmax from A.

We can get the smallest possible radius of the obstacle using the dmin and dmax, as shown in
Figure 9. By applying Pythagorean Theorem, we get the length of the radius r by:

(dmin + r)2 = r2 + dmax
2 (6)

dmin
2 + 2rdmin+r2 = r2 + dmax

2 (7)

r =
dmax

2 − dmin
2

2dmin
(8)

lrB =
dmax

2 − dmin
2

2dmin
(9)

Sustainability 2017, 9, 1174 8 of 23

Figure 8. Obstacle’s smallest possible radius is when it is tangent to boundary (in the x-y plane) of ݌ݏଶ	at ݀௠௔௫ from ܣ.

We can get the smallest possible radius of the obstacle using the ݀௠௜௡ and ݀௠௔௫, as shown in
Figure 9. By applying Pythagorean Theorem, we get the length of the radius ݎ by: (݀௠௜௡ + ݎ)ଶ = ଶݎ + ݀௠௔௫ଶ (6)݀௠௜௡ଶ + ௠௜௡݀ݎ2 ଶݎ = ଶݎ + + ݀௠௔௫ଶ (7)

ݎ = ݀௠௔௫ଶ − ݀௠௜௡ଶ2݀௠௜௡ (8)

஻ݎ݈ = ݀௠௔௫ଶ − ݀௠௜௡ଶ2݀௠௜௡ (9)

Figure 9. Getting the smallest possible radius of the obstacle tangent to the boundary of ݌ݏଶ	at ݀௠௔௫
from ܣ.

Figure 9. Getting the smallest possible radius of the obstacle tangent to the boundary of sp2 at dmax

from A.

Sustainability 2017, 9, 1174 9 of 23

5.2. Determining Obstacle’s Possible Positions

We get the possible pBs because the actual pB cannot be determined given only ds. Aside from pB
as a requirement for VOA|B, pB is also needed in our approach to be able to compute the possible vBs.
Possible vB is obtained by getting the difference between possible pBs obtained at current time step
and previous time step. Possible pB is computed based on dmin and estimated rB.

In our model, we only know that the obstacle’s center is located in the region of the sensor with
dmin but we do not know its actual position. Thus, given dmin and rB, let us visualize the possible
positions of the obstacle’s center. For example, we have rB and dmin where dmin is given by sensor 1.
As illustrated in Figure 10, looking on the top view (x-y plane), we have the black points to represent
Pmin and the actual center position of the obstacle can be any of the drawn spheres with distances of
rB from the points in Pmin. Note that the possible center positions of the obstacle are not limited to
the drawn spheres. We only show limited number of spheres for a clearer illustration. From all these
possible center positions, we get the extreme points that lie along the boundary of the sensor’s sensing
space denoted as Prb,1 and Prb,2.

Sustainability 2017, 9, 1174 9 of 23

5.2. Determining Obstacle’s Possible Positions

We get the possible ݌஻s because the actual ݌஻ cannot be determined given only ݀௦. Aside from ݌஻	as a requirement for ܸ ஺ܱ|஻, ݌஻ is also needed in our approach to be able to compute the possible ݒ஻s. Possible ݒ஻ is obtained by getting the difference between possible ݌஻ݏ obtained at current time
step and previous time step. Possible ݌஻ is computed based on ݀௠௜௡	and estimated 	ݎ஻.

In our model, we only know that the obstacle’s center is located in the region of the sensor with ݀௠௜௡ but we do not know its actual position. Thus, given ݀௠௜௡ and 	ݎ஻, let us visualize the possible
positions of the obstacle’s center. For example, we have 	ݎ஻ and ݀௠௜௡ where ݀௠௜௡ is given by sensor
1. As illustrated in Figure 10, looking on the top view (x-y plane), we have the black points to
represent ௠ܲ௜௡ and the actual center position of the obstacle can be any of the drawn spheres with
distances of 	ݎ஻ from the points in ௠ܲ௜௡. Note that the possible center positions of the obstacle are
not limited to the drawn spheres. We only show limited number of spheres for a clearer illustration.
From all these possible center positions, we get the extreme points that lie along the boundary of the
sensor’s sensing space denoted as ௥ܲ௕,ଵ and ௥ܲ௕,ଶ.

Figure 10. Possible center positions of the obstacle in ݌ݏଵ on the x-y plane.

Next, let us look on the side view of the sensing space, which is x-z plane since we consider
sensor 1, as illustrated in Figure 11. On this view, we again have the black points to represent ௠ܲ௜௡
and the possible center positions of the obstacle are represented by the spheres with distance of 	ݎ஻
from the points in ௠ܲ௜௡. Here, the possible center positions of the obstacle can be outside the sensor’s
sensing space. We get the extreme points from the possible center points as the highest and lowest
possible points in z-axis denoted as ௥ܲ௕,ଷ and ௥ܲ௕,ସ.

Figure 11. Possible center positions of the obstacle in ݌ݏଵ on the x-z plane.

Figure 10. Possible center positions of the obstacle in sp1 on the x-y plane.

Next, let us look on the side view of the sensing space, which is x-z plane since we consider sensor
1, as illustrated in Figure 11. On this view, we again have the black points to represent Pmin and the
possible center positions of the obstacle are represented by the spheres with distance of rB from the
points in Pmin. Here, the possible center positions of the obstacle can be outside the sensor’s sensing
space. We get the extreme points from the possible center points as the highest and lowest possible
points in z-axis denoted as Prb,3 and Prb,4.

Sustainability 2017, 9, 1174 9 of 23

5.2. Determining Obstacle’s Possible Positions

We get the possible ݌஻s because the actual ݌஻ cannot be determined given only ݀௦. Aside from ݌஻	as a requirement for ܸ ஺ܱ|஻, ݌஻ is also needed in our approach to be able to compute the possible ݒ஻s. Possible ݒ஻ is obtained by getting the difference between possible ݌஻ݏ obtained at current time
step and previous time step. Possible ݌஻ is computed based on ݀௠௜௡	and estimated 	ݎ஻.

In our model, we only know that the obstacle’s center is located in the region of the sensor with ݀௠௜௡ but we do not know its actual position. Thus, given ݀௠௜௡ and 	ݎ஻, let us visualize the possible
positions of the obstacle’s center. For example, we have 	ݎ஻ and ݀௠௜௡ where ݀௠௜௡ is given by sensor
1. As illustrated in Figure 10, looking on the top view (x-y plane), we have the black points to
represent ௠ܲ௜௡ and the actual center position of the obstacle can be any of the drawn spheres with
distances of 	ݎ஻ from the points in ௠ܲ௜௡. Note that the possible center positions of the obstacle are
not limited to the drawn spheres. We only show limited number of spheres for a clearer illustration.
From all these possible center positions, we get the extreme points that lie along the boundary of the
sensor’s sensing space denoted as ௥ܲ௕,ଵ and ௥ܲ௕,ଶ.

Figure 10. Possible center positions of the obstacle in ݌ݏଵ on the x-y plane.

Next, let us look on the side view of the sensing space, which is x-z plane since we consider
sensor 1, as illustrated in Figure 11. On this view, we again have the black points to represent ௠ܲ௜௡
and the possible center positions of the obstacle are represented by the spheres with distance of 	ݎ஻
from the points in ௠ܲ௜௡. Here, the possible center positions of the obstacle can be outside the sensor’s
sensing space. We get the extreme points from the possible center points as the highest and lowest
possible points in z-axis denoted as ௥ܲ௕,ଷ and ௥ܲ௕,ସ.

Figure 11. Possible center positions of the obstacle in ݌ݏଵ on the x-z plane. Figure 11. Possible center positions of the obstacle in sp1 on the x-z plane.

Sustainability 2017, 9, 1174 10 of 23

We define these considered points as the extreme points since all of the possible center positions
of the obstacle are within the region determined by the extreme points. In effect, by considering these
extreme points, we can get the maximum possible vB. We are interested in getting the maximum
possible vB so that it is greater than or equal to the actual vB.

We will now discuss how to compute for the extreme points. First, we show how to compute
the extreme points on the border of the sensor’s sensing space in the x-y plane as shown in Figure 12.
Since the sensor is spherical sector shaped, the z-coordinate is zero at these borders.

For example, the spherical sector represents the sensing detection space of sensor 1, viewed in x-y
plane, with an opening angle of θ. We first get P1 and P2 as points on the border of the sensor with
distance of dmin from the UAV’s center. Then, we get the point Plrb,1 by adding a distance of lrB from
P1, and similarly point Purb,1 is obtained by adding a distance of urB from P1. In the same way, we can
get Plrb,2 and Purb,2 by extending lrB and urB, respectively, from P2.

By considering these points, if the obstacle’s center is inside the sensor’s detection range (Case 1),
then the actual x and y coordinates of the obstacle’s center is always enclosed in the area surrounded
by the points Plrb,1, Purb,1, Plrb,2, and Purb,2 since actual rB is within our estimate of the radius.

Thus, we get the following points:

Plrb,1 = ((dmin + lrB) cos ((S− 1)θ), (dmin + lrB) sin ((S− 1)θ), 0) (10)

Purb,1 = ((dmin + urB) cos ((S− 1)θ), (dmin + urB) sin ((S− 1)θ), 0) (11)

Plrb,2 = ((dmin + lrB) cos Sθ, (dmin + lrB) sin Sθ, 0) (12)

Purb,2 = ((dmin + urB) cos Sθ, (dmin + urB) sin Sθ, 0) (13)

where S is the sensor with dmin and θ is the opening angle of S.

Sustainability 2017, 9, 1174 10 of 23

We define these considered points as the extreme points since all of the possible center positions
of the obstacle are within the region determined by the extreme points. In effect, by considering these
extreme points, we can get the maximum possible 	ݒ஻. We are interested in getting the maximum
possible ݒ஻	so that it is greater than or equal to the actual 	ݒ஻.

We will now discuss how to compute for the extreme points. First, we show how to compute the
extreme points on the border of the sensor’s sensing space in the x-y plane as shown in Figure 12.
Since the sensor is spherical sector shaped, the z-coordinate is zero at these borders.

For example, the spherical sector represents the sensing detection space of sensor 1, viewed in
x-y plane, with an opening angle of ߠ. We first get ଵܲ and ଶܲ as points on the border of the sensor
with distance of ݀௠௜௡ from the UAV’s center. Then, we get the point ௟ܲ௥௕,ଵ by adding a distance of ݈ݎ஻ from ଵܲ, and similarly point ௨ܲ௥௕,ଵ is obtained by adding a distance of ݎݑ஻	from ଵܲ. In the same
way, we can get ௟ܲ௥௕,ଶ and ௨ܲ௥௕,ଶ by extending ݈ݎ஻ and ݎݑ஻, respectively, from ଶܲ.

By considering these points, if the obstacle’s center is inside the sensor’s detection range (Case
1), then the actual x and y coordinates of the obstacle’s center is always enclosed in the area
surrounded by the points ௟ܲ௥௕,ଵ, ௨ܲ௥௕,ଵ, ௟ܲ௥௕,ଶ, and ௨ܲ௥௕,ଶ since actual ݎ஻ is within our estimate of the
radius.

Thus, we get the following points:

௟ܲ௥௕,ଵ=	((݀௠௜௡ + (஻ݎ݈ cos ((ܵ − 	,(ߠ(1 (݀௠௜௡ + (஻ݎ݈ sin ((ܵ − (10) (0	,(ߠ(1

௨ܲ௥௕,ଵ=	((݀௠௜௡ + (஻ݎݑ cos ((ܵ − 	,(ߠ(1 (݀௠௜௡ + (஻ݎݑ sin ((ܵ − (11) (0	,(ߠ(1

௟ܲ௥௕,ଶ=	((݀௠௜௡ + (஻ݎ݈ cos 	,ߠܵ (݀௠௜௡ + (஻ݎ݈ sin (12) (0	,ߠܵ

௨ܲ௥௕,ଶ=	((݀௠௜௡ + (஻ݎݑ cos 	,ߠܵ (݀௠௜௡ + (஻ݎݑ sin (13) (0	,ߠܵ

where ܵ is the sensor with ݀௠௜௡ and ߠ is the opening angle of ܵ.

Figure 12. Extreme points on sensor 1’s sensing space on the x-y plane.

We get the next points to consider the case wherein the obstacle’s center is outside the sensor’s
detection range in the y-z or x-z plane (depending on the orientation of the sensor).

For illustration, in Figure 13, sensing space of sensor 1 is viewed in the x-z plane. We denote ଷܲ
and ସܲ as points on the border of the sensing space with distance of ݀௠௜௡	from the sensor’s vertex.
As shown in Figure 13, the highest possible position of the obstacle (௟ܲ௥௕,ଷ	with radius ݈ݎ஻ and ௨ܲ௥௕,ଷ	with radius ݎݑ஻) is when the obstacle’s center is above the sensing space and the obstacle is
tangent to the point ଷܲ and its lowest possible position (௟ܲ௥௕,ସ	with radius ݈ݎ஻ and ௨ܲ௥௕,ସ	with radius ݎݑ஻) is when it is below the sensing space and tangent to the point ସܲ.

Figure 12. Extreme points on sensor 1’s sensing space on the x-y plane.

We get the next points to consider the case wherein the obstacle’s center is outside the sensor’s
detection range in the y-z or x-z plane (depending on the orientation of the sensor).

For illustration, in Figure 13, sensing space of sensor 1 is viewed in the x-z plane. We denote P3

and P4 as points on the border of the sensing space with distance of dmin from the sensor’s vertex. As
shown in Figure 13, the highest possible position of the obstacle (Plrb,3 with radius lrB and Purb,3 with
radius urB) is when the obstacle’s center is above the sensing space and the obstacle is tangent to the
point P3 and its lowest possible position (Plrb,4 with radius lrB and Purb,4 with radius urB) is when it is
below the sensing space and tangent to the point P4.

We get Plrb,3 as the endpoint of a line with length lrB from P3 and the line is perpendicular to the
border of the sensing space. In the same way, Purb,3 is obtained by creating a line from P3 with length
urB. Accordingly, Plrb,4 and Purb,4 can be obtained by creating lines extending lrB and urB, respectively,
from P4.

Sustainability 2017, 9, 1174 11 of 23

Thus, we get the following points:

Plrb,3 = (
(

dmin cos θ
2 − lrB sin θ

2

)
cos ϕ,

(
dmin cos θ

2 − lrB sin θ
2

)
sin ϕ,

(
dmin sin θ

2 + lrB cos θ
2

)
) (14)

Purb,3 = (
(

dmin cos θ
2 − urB sin θ

2

)
cos ϕ,

(
dmin cos θ

2 − urB sin θ
2

)
sin ϕ,

(
dmin sin θ

2 + urB cos θ
2

)
) (15)

Plrb,4 = (
(

dmin cos θ
2 − lrB sin θ

2

)
cos ϕ,

(
dmin cos θ

2 − lrB sin θ
2

)
sin ϕ, −

(
dmin sin θ

2 + lrB cos θ
2

)
) (16)

Purb,4 = (
(

dmin cos θ
2 − urB sin θ

2

)
cos ϕ,

(
dmin cos θ

2 − urB sin θ
2

)
sin ϕ, −

(
dmin sin θ

2 + urB cos θ
2

)
) (17)

where ϕ = θ
(

S− 1
2

)
, S is the sensor that gives dmin, and θ is the opening angle of S.

Sustainability 2017, 9, 1174 11 of 23

We get ௟ܲ௥௕,ଷ as the endpoint of a line with length ݈ݎ஻ from ଷܲ and the line is perpendicular to
the border of the sensing space. In the same way, ௨ܲ௥௕,ଷ is obtained by creating a line from ଷܲ with
length ݎݑ஻. Accordingly, ௟ܲ௥௕,ସ and ௨ܲ௥௕,ସ can be obtained by creating lines extending ݈ݎ஻ and ݎݑ஻,
respectively, from ସܲ.

Thus, we get the following points: Plrb,3	=	(ቀ݀௠௜௡ cos	 ఏଶ − ஻ݎ݈ sin 	ఏଶቁ cos߮,	 ቀ݀௠௜௡ cos ఏଶ − ஻ݎ݈ sin ఏଶቁ sin ߮, ቀ݀௠௜௡ sin	 ఏଶ + ஻ݎ݈ cos	 ఏଶቁ) (14)

Purb,3	=	(ቀ݀௠௜௡ cos	 ఏଶ − ஻ݎݑ sin	 ఏଶቁ cos߮,	 ቀ݀௠௜௡ cos ఏଶ − ஻ݎݑ sin ఏଶቁ sin ߮, ቀ݀௠௜௡ sin	 ఏଶ + ஻ݎݑ cos 	ఏଶቁ) (15)

Plrb,4	=	(ቀ݀௠௜௡ cos	 ఏଶ − ஻ݎ݈ sin 	ఏଶቁ cos߮,	 ቀ݀௠௜௡ cos ఏଶ − ஻ݎ݈ sin ఏଶቁ sin ߮,	 − ቀ݀௠௜௡ sin	 ఏଶ + ஻ݎ݈ cos 	ఏଶቁ) (16)

Purb,4	=	(ቀ݀௠௜௡ cos	 ఏଶ − ஻ݎݑ sin	 ఏଶቁ cos߮,	 ቀ݀௠௜௡ cos ఏଶ − ஻ݎݑ sin ఏଶቁ sin ߮,	 − ቀ݀௠௜௡ sin	 ఏଶ + ஻ݎݑ cos 	ఏଶቁ) (17)

where ߮ = ܵ)	ߠ	 −	ଵଶ), ܵ is the sensor that gives ݀௠௜௡, and ߠ is the opening angle of ܵ.

Figure 13. Extreme points on sensor 1’s sensing space on the x-z plane.

Since the obstacle’s actual size is within ݈ݎ஻ and ݎݑ஻, and we consider the possible ݌஻	in which
they are the extreme possible positions using the values of ݈ݎ஻ and ݎݑ஻ , we can assure that the
obstacle’s actual position is enclosed in the surface area formed by the considered points.

We get these points on both the current and previous time step’s sensor readings to be able to
determine the change in the location of the points from the previous to current time step which
reflects its velocity.

5.3. Determining Obstacle’s Possible Velocities

From the generated possible ݌஻s and time step interval ݐ௜ , we generate the possible ݒ஻	s by
subtracting previous time step’s generated ݌஻s from current time step’s generated ݌஻s. Since our
approach generates values every time an obstacle is detected, it captures the changes in the possible ݒ஻	ݏ	between two consecutive time steps thus it copes with an obstacle with changing velocity.

The set of extreme points obtained using ݈ݎ஻ and sensor readings in the current time step is
denoted by ௟ܲ௥௕௧௖ = {	 ௟ܲ௥௕,ଵ௧௖ , ௟ܲ௥௕,ଶ௧௖ , ௟ܲ௥௕,ଷ௧௖ , ௟ܲ௥௕,ସ௧௖ } and the set of extreme points obtained using ݈ݎ஻ and
previous time step’s sensor readings is denoted by ௟ܲ௥௕௧௖ିଵ = {	 ௟ܲ௥௕,ଵ௧௖ିଵ, ௟ܲ௥௕,ଶ௧௖ିଵ, ௟ܲ௥௕,ଷ௧௖ିଵ, ௟ܲ௥௕,ସ௧௖ିଵ}. Similarly, the
set of extreme points obtained from ݎݑ஻ and current time step’s sensor reading is denoted by ௨ܲ௥௕௧௖ =

Figure 13. Extreme points on sensor 1’s sensing space on the x-z plane.

Since the obstacle’s actual size is within lrB and urB, and we consider the possible pB in which
they are the extreme possible positions using the values of lrB and urB, we can assure that the obstacle’s
actual position is enclosed in the surface area formed by the considered points.

We get these points on both the current and previous time step’s sensor readings to be able to
determine the change in the location of the points from the previous to current time step which reflects
its velocity.

5.3. Determining Obstacle’s Possible Velocities

From the generated possible pBs and time step interval ti, we generate the possible vBs by
subtracting previous time step’s generated pBs from current time step’s generated pBs. Since our
approach generates values every time an obstacle is detected, it captures the changes in the possible
vB s between two consecutive time steps thus it copes with an obstacle with changing velocity.

The set of extreme points obtained using lrB and sensor readings in the current time step is
denoted by Ptc

lrb =
{

Ptc
lrb,1, Ptc

lrb,2, Ptc
lrb,3, Ptc

lrb,4

}
and the set of extreme points obtained using lrB and

previous time step’s sensor readings is denoted by Ptc−1
lrb =

{
Ptc−1

lrb,1 , Ptc−1
lrb,2 , Ptc−1

lrb,3 , Ptc−1
lrb,4

}
. Similarly,

the set of extreme points obtained from urB and current time step’s sensor reading is denoted by
Ptc

urb =
{

Ptc
urb,1, Ptc

urb,2, Ptc
urb,3, Ptc

urb,4

}
and the set of extreme points obtained using urB and previous

time step’s sensor readings is denoted by Ptc−1
urb =

{
Ptc−1

urb,1, Ptc−1
urb,2, Ptc−1

urb,3, Ptc−1
urb,4

}
.

Sustainability 2017, 9, 1174 12 of 23

We have the generated possible velocities:

vB,lrB, j,k =
Ptc

lrB,j − Ptc−1
lrB,k

ti
for j, k ε {1, 2, 3, 4} (18)

vB,urB,l,m =
Ptc

urB,l − Ptc−1
urB,m

ti
for l, m ε {1, 2, 3, 4} (19)

Thus, |vB,lrB, j,k| = 16 and |vB,urB, l,m| = 16.
Again, since our generated possible pBs are the extreme possible center positions of the obstacle,

the generated possible velocities will then as a result give the biggest magnitude possible in
all directions.

5.4. Generating Possible Velocity Obstacles

Our generated VOA|B is constructed from the values of our generated rB, pB, and vB. The
following VOA|B is generated for each ti:

VOlrb

(
Ptc

lrb,i, vB,lrB,j,k, lrB

)
for i, j, k ε {1, 2, 3, 4} (20)

VOurb

(
Ptc

urb,l , vB,urB,m,n, urB

)
for l, m, n ε {1, 2, 3, 4} (21)

Thus |VOlrb| = 64, |VOurb| = 64, and all generated
∣∣∣VOA|B

∣∣∣ =128.
In Figure 14, the blue lines represent the actual VOA|B, the green lines represent our constructed

possible VOA|Bs and the union of the generated possible VOA|Bs is represented by the red lines.
The UAV should choose a velocity outside all of the generated VOA|Bs. Since the actual VOA|B is

within the union of our generated VOA|Bs, the UAV will choose a velocity that will avoid collision. We
can guarantee that the actual VOA|B is within our generated VOA|Bs since the obstacle’s actual values
are within our generated values.

Sustainability 2017, 9, 1174 12 of 23 {	 ௨ܲ௥௕,ଵ௧௖ , ௨ܲ௥௕,ଶ௧௖ , ௨ܲ௥௕,ଷ௧௖ , ௨ܲ௥௕,ସ௧௖ } and the set of extreme points obtained using ݎݑ஻ and previous time
step’s sensor readings is denoted by ௨ܲ௥௕௧௖ିଵ = {	 ௨ܲ௥௕,ଵ௧௖ିଵ , ௨ܲ௥௕,ଶ௧௖ିଵ , ௨ܲ௥௕,ଷ௧௖ିଵ , ௨ܲ௥௕,ସ௧௖ିଵ }.

We have the generated possible velocities: ݒ஻,௟௥஻,௝,௞ = 	 ௉೗ೝಳ,ೕ೟೎ ି ௉೗ೝಳ,ೖ೟೎షభ௧೔ for ݆, ݇ ߳ {1,2,3,4} (18)

஻,௨௥஻,௟,௠ݒ = 	 ௉ೠೝಳ,೗೟೎ ି ௉ೠೝಳ,೘೟೎షభ௧೔ for ݈, ݉ ߳ {1,2,3,4} (19)

Thus, |ݒ஻,௟௥஻,௝,௞| = 16 and |ݒ஻,௨௥஻,௟,௠| = 16.
Again, since our generated possible ݌஻s are the extreme possible center positions of the obstacle,

the generated possible velocities will then as a result give the biggest magnitude possible in all
directions.

5.4. Generating Possible Velocity Obstacles

Our generated ܸ ஺ܱ|஻ is constructed from the values of our generated ݎ஻ ,஻݌ , and ݒ஻ . The
following ܸ ஺ܱ|஻	is generated for each ݐ௜: ܸ ௟ܱ௥௕(௟ܲ௥௕,௜௧௖ , ,஻,௟௥஻,௝,௞ݒ ,݅ ஻) forݎ݈ ݆, ݇ ߳ {1,2,3,4} (20)ܸܱ௨௥௕(௨ܲ௥௕,௟௧௖ , ,஻,௨௥஻,௠,௡ݒ ,݈ ஻) forݎݑ ݉, ݊ ߳ {1,2,3,4} (21)

Thus |ܸ ௟ܱ௥௕| = 64, |ܸܱ௨௥௕| = 64, and all generated หܸ ஺ܱ|஻ห =	128.
In Figure 14, the blue lines represent the actual ܸ ஺ܱ|஻, the green lines represent our constructed

possible ܸ ஺ܱ|஻s and the union of the generated possible ܸ ஺ܱ|஻s is represented by the red lines.
The UAV should choose a velocity outside all of the generated ܸ ஺ܱ|஻s. Since the actual ܸ ஺ܱ|஻ is

within the union of our generated ܸ ஺ܱ|஻s, the UAV will choose a velocity that will avoid collision.
We can guarantee that the actual ܸ ஺ܱ|஻ is within our generated ܸ ஺ܱ|஻s since the obstacle’s actual
values are within our generated values.

(a)

Figure 14. Cont.

Sustainability 2017, 9, 1174 13 of 23
Sustainability 2017, 9, 1174 13 of 23

(b)

Figure 14. Generated VOA|B in 2D view: (a) In x-y plane; and (b) in x-z plane.

The following conditions on the UAV’s velocity and goal’s position in relation to the ܸ ஺ܱ|஻ to
guarantee collision avoidance exist:

 The UAV is guaranteed to avoid collision in the next time step given that the UAV’s maximum
allowable velocity can reach the velocities outside the generated ܸ ஺ܱ|஻s. Otherwise, it will stay
in its position and may collide with the obstacle in the next time step.

 When the UAV must only choose a velocity towards the goal, it is possible that the UAV cannot
reach the goal when the goal is inside the generated ܸ ஺ܱ|஻	and the obstacle is not moving. On
the other hand, when the obstacle is moving away from the UAV, the UAV can wait until there
is a possible velocity towards the goal that is outside the generated ܸ ஺ܱ|஻. Another way wherein
the UAV can reach the goal is if it is allowed to travel on a velocity that is moving away from
the goal.

6. Collision Avoidance Algorithm

In our algorithm, when no obstacle is detected, the UAV will move at maximum velocity
towards the goal. Otherwise, we determine the obstacle’s possible parameter values based on ݀௦.
First, we compute the ݈ݎ஻ and then we update its value if the new value is greater than the current
value. Then, we get the possible ݌஻s if there is a reading from the previous time step. Next, possible ݒ஻s are computed from generated ݌஻s then ܸ ஺ܱ|஻s are created using the generated possible values of ݒ஻ ஻ݎ , , and ܲ௧௖ . Finally, the UAV chooses a velocity outside that is outside all of the generated ܸ ஺ܱ|஻s. We repeat this for every time step until the UAV has reached its destination. The pseudocode
for this is provided in Algorithm 1.

To find the path to the goal, we use the following heuristics for deciding the velocity that the
UAV will take. For both of the heuristics, the UAV must choose a velocity outside all of the generated ܸ ஺ܱ|஻′ݏ.

1. To Goal Search (TG): Choose path only towards the goal. The UAV will start to choose path
using its maximum speed. However, if the maximum speed is inside the generated ܸ ஺ܱ|஻, it can
choose slower velocity as long as it is towards the goal.

Figure 14. Generated VOA|B in 2D view: (a) In x-y plane; and (b) in x-z plane.

The following conditions on the UAV’s velocity and goal’s position in relation to the VOA|B to
guarantee collision avoidance exist:

• The UAV is guaranteed to avoid collision in the next time step given that the UAV’s maximum
allowable velocity can reach the velocities outside the generated VOA|Bs. Otherwise, it will stay
in its position and may collide with the obstacle in the next time step.

• When the UAV must only choose a velocity towards the goal, it is possible that the UAV cannot
reach the goal when the goal is inside the generated VOA|B and the obstacle is not moving. On
the other hand, when the obstacle is moving away from the UAV, the UAV can wait until there is a
possible velocity towards the goal that is outside the generated VOA|B. Another way wherein the
UAV can reach the goal is if it is allowed to travel on a velocity that is moving away from the goal.

6. Collision Avoidance Algorithm

In our algorithm, when no obstacle is detected, the UAV will move at maximum velocity towards
the goal. Otherwise, we determine the obstacle’s possible parameter values based on ds. First,
we compute the lrB and then we update its value if the new value is greater than the current value.
Then, we get the possible pBs if there is a reading from the previous time step. Next, possible vBs are
computed from generated pBs then VOA|Bs are created using the generated possible values of vB, rB,
and Ptc. Finally, the UAV chooses a velocity outside that is outside all of the generated VOA|Bs. We
repeat this for every time step until the UAV has reached its destination. The pseudocode for this is
provided in Algorithm 1.

To find the path to the goal, we use the following heuristics for deciding the velocity that the UAV
will take. For both of the heuristics, the UAV must choose a velocity outside all of the generated VO′A|Bs.

1. To Goal Search (TG): Choose path only towards the goal. The UAV will start to choose path
using its maximum speed. However, if the maximum speed is inside the generated VOA|B, it can
choose slower velocity as long as it is towards the goal.

2. Maximum Velocity Search (MV): Choose path even if it does not direct towards the goal as long as
it is using maximum velocity. In our simulations, we allowed angle deviation up to 180 degrees

Sustainability 2017, 9, 1174 14 of 23

from the angle of the line connecting the UAV and the goal. Thus, it is possible for the UAV to
move backwards when no avoidance maneuver is reachable in its front.

Algorithm 1: Collision Avoidance

assign value to urB

while UAV does not reach goal
if obstacle is detected

compute lrB

if there is previous sensor reading
for each possible rB ∈ {lrB , urB }

get Ptc based on rB

get Ptc−1 based on rB

get possible vBs using values from Ptc and Ptc−1

for each computed possible vB

Get VOA|B using vB, rB, Ptc

end for
end for
based on heuristic, choose velocity that is outside of all generated VOA|Bs

else UAV stays at position
else UAV moves at maximum velocity towards goal

end while

Our algorithm has a constant time complexity, since there are a fixed number of values to be
computed for every run. The computation time is about 2 m on a system using Intel Core i7-4790 with
3.60 GHz clock speed. To consider more realistic system that has lower processing power, we developed
another version that takes into account the processing delay ∆. When the system has low processing
power, then ∆ is significant and must be addressed in the algorithm. In ideal case, when ∆ = 0, if the
obstacle is detected in ti, the decision can be applied immediately at ti. Otherwise, when ∆ > 0,
the decision for ti can be applied only at ti + ∆ and this causes a problem since the UAV continuously
changes position until ti + ∆ but the decision is made assuming that the UAV’s position is not changed.

To address this, we assign a margin to ∆ that is less than the time step interval. Then, when the
decision processing started at ti, the UAV continually moves until ti + ∆ and the decision on the next
velocity is applied to UAV’s position at ti + ∆. Accordingly, when choosing a velocity for the next
time step, we consider the reachable velocities from the UAV’s position at ti + ∆. The approach to the
computation of the obstacle’s information is still the same since we still choose a velocity that will
avoid the obstacle at ti+1.

Under some special situations, collision avoidance cannot be guaranteed. We describe the
situations in detail as follows:

• When the obstacle’s current position is not detectable by any of the sensors and the obstacle’s
velocity in the next time step will make it collide with the UAV as shown in Figure 15. In Figure 15,
the black arrow represents the obstacle’s velocity and blue arrow represents the UAV’s velocity.
In this scenario, the UAV has no chance to plan its avoidance maneuver since it did not detect the
obstacle before the collision.

• The UAV stays at its position in the next time step after an obstacle is first detected. On this
instance that the UAV is not moving, there will be collision when the time step interval is not
enough for the UAV to plan its next velocity. This means that the obstacle has already collided
with the UAV even before the UAV has decided on its next velocity.

Sustainability 2017, 9, 1174 15 of 23
Sustainability 2017, 9, 1174 15 of 23

Figure 15. Example scenario that will cause collision on the next time step between the UAV and the
obstacle.

7. Simulation

The proposed algorithm was tested in simulations. The simulations were performed on different
scenarios. Scenarios 1–3 show common moving directions of the obstacle. The obstacle moves
forward-leftward in Scenario 1, backward-leftward in Scenario 2, and leftward in Scenario 3.
Scenarios 4 and 5 show the worst case scenario wherein the obstacle is between the UAV and the goal
and the obstacle is moving towards the UAV. TG and MV heuristics were used in the simulation. For
each scenario, we also show results of the algorithm that takes into account ∆ where ∆= 0.5 s using
MV search. The results when ∆= 0.5 s using TG search are not shown since the UAV is not allowed
to change its moving direction to the goal in TG search thus the trajectory is not affected by ∆.

The following parameters were constant in the simulation:

 Sensor’s distance range = 7 m. UAV can detect obstacle within 7 m.
 Time step ݐ௜ increments at every 1 s. We generate ܸ ஺ܱ|஻ and choose UAV’s velocity every ݐ௜.
 Default ݎݑ஻ = 5 m
 Default ݈ݎ஻ = 0.01 m
 UAV’s initial position= (0, 0, 0) unless otherwise stated
 UAV’s radius = 1 m
 Goal’s position = (0, 13, 5) unless otherwise stated

7.1. Scenario 1

For this scenario, the obstacle’s radius is 2 m, initial position at ݐ଴ = (6, 4, 2). The obstacle is
moving with constant velocity (ݒ௫ = −1 m/s, ݒ௬ = 1 m/s, ݒ௭ = 0 m/s). Figures 16 and 17 show the path
taken by UAV in this scenario using TG search and MV search, respectively.

In TG search, the UAV detected the obstacle at ݐ଴ and decided to stay at position until ݐସ. It did
not detect the obstacle at ݐହ so it moved towards the obstacle. However, it detected the obstacle again
at ݐ଺, thus it stopped until ݐଽ. It started to move again at ݐଵ଴ and detected the obstacle again at ݐଵଵ
so it stopped again. At ݐଵଶ, no obstacle is detected so it started to move and it finally reached at goal
at ݐଵଷ.

In MV search, the UAV also stays at position at ݐ଴ because it detected the obstacle. Then it
moved backward-upward-rightward at ݐଵ. It moved backward-upward-leftward at ݐଶ to avoid the
obstacle. It moved towards the goal at ݐଷ and ݐସ because the obstacle is not detected in these time
steps. It detected the obstacle at ݐହ and moved backwards at ݐ଺. Then it moved again towards the
goal at ݐ଻.	The UAV repeatedly moved in this pattern until it reached the goal at ݐଵସ.

Figure 15. Example scenario that will cause collision on the next time step between the UAV and
the obstacle.

7. Simulation

The proposed algorithm was tested in simulations. The simulations were performed on different
scenarios. Scenarios 1–3 show common moving directions of the obstacle. The obstacle moves
forward-leftward in Scenario 1, backward-leftward in Scenario 2, and leftward in Scenario 3. Scenarios
4 and 5 show the worst case scenario wherein the obstacle is between the UAV and the goal and the
obstacle is moving towards the UAV. TG and MV heuristics were used in the simulation. For each
scenario, we also show results of the algorithm that takes into account ∆ where ∆ = 0.5 s using MV
search. The results when ∆ = 0.5 s using TG search are not shown since the UAV is not allowed to
change its moving direction to the goal in TG search thus the trajectory is not affected by ∆.

The following parameters were constant in the simulation:

• Sensor’s distance range = 7 m. UAV can detect obstacle within 7 m.
• Time step ti increments at every 1 s. We generate VOA|B and choose UAV’s velocity every ti.

• Default urB = 5 m
• Default lrB = 0.01 m
• UAV’s initial position = (0, 0, 0) unless otherwise stated
• UAV’s radius = 1 m
• Goal’s position = (0, 13, 5) unless otherwise stated

7.1. Scenario 1

For this scenario, the obstacle’s radius is 2 m, initial position at t0 = (6, 4, 2). The obstacle is
moving with constant velocity (vx = −1 m/s, vy = 1 m/s, vz = 0 m/s). Figures 16 and 17 show the path
taken by UAV in this scenario using TG search and MV search, respectively.

In TG search, the UAV detected the obstacle at t0 and decided to stay at position until t4. It did
not detect the obstacle at t5 so it moved towards the obstacle. However, it detected the obstacle again
at t6, thus it stopped until t9. It started to move again at t10 and detected the obstacle again at t11 so it
stopped again. At t12, no obstacle is detected so it started to move and it finally reached at goal at t13.

In MV search, the UAV also stays at position at t0 because it detected the obstacle. Then it moved
backward-upward-rightward at t1. It moved backward-upward-leftward at t2 to avoid the obstacle. It
moved towards the goal at t3 and t4 because the obstacle is not detected in these time steps. It detected
the obstacle at t5 and moved backwards at t6. Then it moved again towards the goal at t7. The UAV
repeatedly moved in this pattern until it reached the goal at t14.

Sustainability 2017, 9, 1174 16 of 23

When ∆ = 0.5 s, the UAV continually moves from t2 until t2 + ∆ and the avoidance maneuver for
t3 is done at t2 + ∆. It moved towards the goal at t3 and stopped at t4 because the obstacle is detected
and then it moved towards right at t5 to avoid the obstacle. The obstacle is not detected at t6 so it
moved towards the goal. Then, it moved in forward and backward pattern and reached the goal at t13.

Sustainability 2017, 9, 1174 16 of 23

When ∆	= 0.5	s, the UAV continually moves from ݐଶ until ݐଶ +	∆ and the avoidance maneuver
for ݐଷ is done at ݐଶ +	∆. It moved towards the goal at ݐଷ and stopped at ݐସ because the obstacle is
detected and then it moved towards right at ݐହ to avoid the obstacle. The obstacle is not detected at ݐ଺ so it moved towards the goal. Then, it moved in forward and backward pattern and reached the
goal at ݐଵଷ.

Figure 16. The path taken by UAV in Scenario 1 using To Goal search when ∆	= 	0	s and ∆	= 	0.5	s.

Figure 17. The path taken by UAV in Scenario 1 using Maximum Velocity search: (a) with ∆	= 	0	s;
and (b) with ∆	= 0.5	s.

7.2. Scenario 2

For this scenario, the obstacle’s radius is 2 m, position at ݐ଴ = (5, 12, 2). The obstacle is moving
with constant velocity (ݒ௫ = –2 m/s, ݒ௬	= −1 m/s, ݒ௭	= 0 m/s). Figures 18 and 19 show the path taken
by UAV in this scenario using TG search and MV search, respectively.

Using TG search, the UAV moved towards goal with maximum velocity at ݐ଴ since no obstacle
is detected. Then at ݐଵ, it detected the obstacle and it stayed at its position until ݐ଻. It started to move
again towards the goal at ݐ଻ and ଼ݐ then it reached the goal at ݐଽ.

In MV search, the UAV moved towards goal at ݐ଴. Then, it stayed at position at ݐଵ. It goes
backward-upward at ݐଶ to avoid the obstacle. Then it moved forward at ݐଷ because no obstacle is
detected and stayed at its position until ݐସ. Then, at ݐହ, it moved backward-rightward. Then starting
from ݐ଺, it moved towards the goal until it reached the goal at ଼ݐ. Same trajectory is obtained when

Figure 16. The path taken by UAV in Scenario 1 using To Goal search when ∆ = 0 s and ∆ = 0.5 s.

Sustainability 2017, 9, 1174 16 of 23

When ∆	= 0.5	s, the UAV continually moves from ݐଶ until ݐଶ +	∆ and the avoidance maneuver
for ݐଷ is done at ݐଶ +	∆. It moved towards the goal at ݐଷ and stopped at ݐସ because the obstacle is
detected and then it moved towards right at ݐହ to avoid the obstacle. The obstacle is not detected at ݐ଺ so it moved towards the goal. Then, it moved in forward and backward pattern and reached the
goal at ݐଵଷ.

Figure 16. The path taken by UAV in Scenario 1 using To Goal search when ∆	= 	0	s and ∆	= 	0.5	s.

Figure 17. The path taken by UAV in Scenario 1 using Maximum Velocity search: (a) with ∆	= 	0	s;
and (b) with ∆	= 0.5	s.

7.2. Scenario 2

For this scenario, the obstacle’s radius is 2 m, position at ݐ଴ = (5, 12, 2). The obstacle is moving
with constant velocity (ݒ௫ = –2 m/s, ݒ௬	= −1 m/s, ݒ௭	= 0 m/s). Figures 18 and 19 show the path taken
by UAV in this scenario using TG search and MV search, respectively.

Using TG search, the UAV moved towards goal with maximum velocity at ݐ଴ since no obstacle
is detected. Then at ݐଵ, it detected the obstacle and it stayed at its position until ݐ଻. It started to move
again towards the goal at ݐ଻ and ଼ݐ then it reached the goal at ݐଽ.

In MV search, the UAV moved towards goal at ݐ଴. Then, it stayed at position at ݐଵ. It goes
backward-upward at ݐଶ to avoid the obstacle. Then it moved forward at ݐଷ because no obstacle is
detected and stayed at its position until ݐସ. Then, at ݐହ, it moved backward-rightward. Then starting
from ݐ଺, it moved towards the goal until it reached the goal at ଼ݐ. Same trajectory is obtained when

Figure 17. The path taken by UAV in Scenario 1 using Maximum Velocity search: (a) with ∆ = 0 s;
and (b) with ∆ = 0.5 s.

7.2. Scenario 2

For this scenario, the obstacle’s radius is 2 m, position at t0 = (5, 12, 2). The obstacle is moving
with constant velocity (vx = –2 m/s, vy = −1 m/s, vz = 0 m/s). Figures 18 and 19 show the path taken
by UAV in this scenario using TG search and MV search, respectively.

Using TG search, the UAV moved towards goal with maximum velocity at t0 since no obstacle is
detected. Then at t1, it detected the obstacle and it stayed at its position until t7. It started to move
again towards the goal at t7 and t8 then it reached the goal at t9.

In MV search, the UAV moved towards goal at t0. Then, it stayed at position at t1. It goes
backward-upward at t2 to avoid the obstacle. Then it moved forward at t3 because no obstacle is
detected and stayed at its position until t4. Then, at t5, it moved backward-rightward. Then starting
from t6, it moved towards the goal until it reached the goal at t8. Same trajectory is obtained when

Sustainability 2017, 9, 1174 17 of 23

∆ = 0.5 s because no time step is affected by the processing delay when the obstacle is not detected in
the next time step.

Sustainability 2017, 9, 1174 17 of 23 ∆	= 0.5	s because no time step is affected by the processing delay when the obstacle is not detected
in the next time step.

 Figure 18. The path taken by UAV in Scenario 2 using To Goal search when ∆	= 	0	s and ∆	= 	0.5	s.

 Figure 19. The path taken by UAV in Scenario 2 using Maximum Velocity search: (a) with ∆	= 	0	s;
and (b) with ∆	= 0.5	s.

7.3. Scenario 3

For this scenario, the obstacle’s radius is 2 m, position at ݐ଴ = (6, 5, 2). The obstacle is moving
with constant velocity (ݒ௫ = −2 m/s, ݒ௬	= 0 m/s, ݒ௭	= 0 m/s). Figures 20 and 21 show the path taken by
UAV in this scenario using TG search and MV search, respectively.

For the TG search, the UAV detected the obstacle at ݐ଴ and so it did not move until the obstacle
has passed by. After the obstacle has passed by at ݐ଻, it moved with maximum velocity. It reached
goal at ݐଵ଴ (corresponding to 10 s).

In MV search, the UAV detected the obstacle at ݐ଴ and so it moved backward-leftward-upward
at ݐଵ to avoid the obstacle. It did not detect the obstacle at ݐଶ so it moved towards the goal. However,
it detected the obstacle again so it moved backward again at ݐସ. Starting at ݐହ, the obstacle is not
detected so it moved straight towards the goal and reached the goal at ݐଵ଴. Again, same path is taken
when processing delay is considered for this scenario.

Figure 18. The path taken by UAV in Scenario 2 using To Goal search when ∆ = 0 s and ∆ = 0.5 s.

Sustainability 2017, 9, 1174 17 of 23 ∆	= 0.5	s because no time step is affected by the processing delay when the obstacle is not detected
in the next time step.

 Figure 18. The path taken by UAV in Scenario 2 using To Goal search when ∆	= 	0	s and ∆	= 	0.5	s.

 Figure 19. The path taken by UAV in Scenario 2 using Maximum Velocity search: (a) with ∆	= 	0	s;
and (b) with ∆	= 0.5	s.

7.3. Scenario 3

For this scenario, the obstacle’s radius is 2 m, position at ݐ଴ = (6, 5, 2). The obstacle is moving
with constant velocity (ݒ௫ = −2 m/s, ݒ௬	= 0 m/s, ݒ௭	= 0 m/s). Figures 20 and 21 show the path taken by
UAV in this scenario using TG search and MV search, respectively.

For the TG search, the UAV detected the obstacle at ݐ଴ and so it did not move until the obstacle
has passed by. After the obstacle has passed by at ݐ଻, it moved with maximum velocity. It reached
goal at ݐଵ଴ (corresponding to 10 s).

In MV search, the UAV detected the obstacle at ݐ଴ and so it moved backward-leftward-upward
at ݐଵ to avoid the obstacle. It did not detect the obstacle at ݐଶ so it moved towards the goal. However,
it detected the obstacle again so it moved backward again at ݐସ. Starting at ݐହ, the obstacle is not
detected so it moved straight towards the goal and reached the goal at ݐଵ଴. Again, same path is taken
when processing delay is considered for this scenario.

Figure 19. The path taken by UAV in Scenario 2 using Maximum Velocity search: (a) with ∆ = 0 s;
and (b) with ∆ = 0.5 s.

7.3. Scenario 3

For this scenario, the obstacle’s radius is 2 m, position at t0 = (6, 5, 2). The obstacle is moving with
constant velocity (vx = −2 m/s, vy = 0 m/s, vz = 0 m/s). Figures 20 and 21 show the path taken by
UAV in this scenario using TG search and MV search, respectively.

For the TG search, the UAV detected the obstacle at t0 and so it did not move until the obstacle
has passed by. After the obstacle has passed by at t7, it moved with maximum velocity. It reached goal
at t10 (corresponding to 10 s).

In MV search, the UAV detected the obstacle at t0 and so it moved backward-leftward-upward at
t1 to avoid the obstacle. It did not detect the obstacle at t2 so it moved towards the goal. However,
it detected the obstacle again so it moved backward again at t4. Starting at t5, the obstacle is not
detected so it moved straight towards the goal and reached the goal at t10. Again, same path is taken
when processing delay is considered for this scenario.

Sustainability 2017, 9, 1174 18 of 23
Sustainability 2017, 9, 1174 18 of 23

Figure 20. The path taken by UAV in Scenario 3 using To Goal search when ∆	= 	0	s and ∆	= 	0.5	s.

 Figure 21. The path taken by UAV in Scenario 3 using Maximum Velocity search: (a) with ∆	= 	0	s;
and (b) with ∆	= 0.5	s.

7.4. Worst Case Scenario

We consider a worst case scenario when the obstacle is located between the UAV and the goal
and the obstacle is moving towards the UAV as shown in Figure 22. Obviously, this scenario will not
work with TG search so we only show results in MV search.

Figure 22. Example scenario wherein the UAV and obstacle will converge.

7.4.1. Scenario 4

In MV search, we tested it when the obstacle’s position at ݐ଴ = (0, 10, 0), goal’s position = (0, 20,
0), UAV’s initial position = (0, 0, 0), obstacle’s velocity (ݒ௫ = 0 m/s, ݒ௬	= −1 m/s, ݒ௭	= 0 m/s), and
obstacle’s radius is 5 m. The trajectory of the UAV and the obstacle is shown on Figure 23. In this

Figure 20. The path taken by UAV in Scenario 3 using To Goal search when ∆ = 0 s and ∆ = 0.5 s.

Sustainability 2017, 9, 1174 18 of 23

Figure 20. The path taken by UAV in Scenario 3 using To Goal search when ∆	= 	0	s and ∆	= 	0.5	s.

 Figure 21. The path taken by UAV in Scenario 3 using Maximum Velocity search: (a) with ∆	= 	0	s;
and (b) with ∆	= 0.5	s.

7.4. Worst Case Scenario

We consider a worst case scenario when the obstacle is located between the UAV and the goal
and the obstacle is moving towards the UAV as shown in Figure 22. Obviously, this scenario will not
work with TG search so we only show results in MV search.

Figure 22. Example scenario wherein the UAV and obstacle will converge.

7.4.1. Scenario 4

In MV search, we tested it when the obstacle’s position at ݐ଴ = (0, 10, 0), goal’s position = (0, 20,
0), UAV’s initial position = (0, 0, 0), obstacle’s velocity (ݒ௫ = 0 m/s, ݒ௬	= −1 m/s, ݒ௭	= 0 m/s), and
obstacle’s radius is 5 m. The trajectory of the UAV and the obstacle is shown on Figure 23. In this

Figure 21. The path taken by UAV in Scenario 3 using Maximum Velocity search: (a) with ∆ = 0 s;
and (b) with ∆ = 0.5 s.

7.4. Worst Case Scenario

We consider a worst case scenario when the obstacle is located between the UAV and the goal
and the obstacle is moving towards the UAV as shown in Figure 22. Obviously, this scenario will not
work with TG search so we only show results in MV search.

Sustainability 2017, 9, x FOR PEER REVIEW 18 of 24

Figure 20. The path taken by UAV in Scenario 3 using To Goal search when ∆	= 	0	s and ∆	= 	0.5	s.

 Figure 21. The path taken by UAV in Scenario 3 using Maximum Velocity search: (a) with ∆	= 	0	s;
and (b) with ∆	= 0.5	s.

7.4. Worst Case Scenario

We consider a worst case scenario when the obstacle is located between the UAV and the goal
and the obstacle is moving towards the UAV as shown in Figure 22. Obviously, this scenario will not
work with TG search so we only show results in MV search.

Figure 22. Example scenario wherein the UAV and obstacle will converge. Figure 22. Example scenario wherein the UAV and obstacle will converge.

7.4.1. Scenario 4

In MV search, we tested it when the obstacle’s position at t0 = (0, 10, 0), goal’s position = (0, 20, 0),
UAV’s initial position = (0, 0, 0), obstacle’s velocity (vx = 0 m/s, vy =−1 m/s, vz = 0 m/s), and obstacle’s

Sustainability 2017, 9, 1174 19 of 23

radius is 5 m. The trajectory of the UAV and the obstacle is shown on Figure 23. In this scenario, the
UAV kept on moving backward to avoid the obstacle but it has collided with the obstacle at t26. This is
because the obstacle is not detected at t24 thus the UAV moved forward towards the goal. Then, at t25,
the obstacle is detected for the first time again so the UAV stayed at its position at t26 but the obstacle
has collided with the UAV on this time step while the UAV is planning for its next move. The position
of the UAV and obstacle at t24, t25, and t26 are shown in Figure 24.

Sustainability 2017, 9, 1174 19 of 23

scenario, the UAV kept on moving backward to avoid the obstacle but it has collided with the obstacle
at ݐଶ଺. This is because the obstacle is not detected at ݐଶସ thus the UAV moved forward towards the
goal. Then, at ݐଶହ, the obstacle is detected for the first time again so the UAV stayed at its position at ݐଶ଺ but the obstacle has collided with the UAV on this time step while the UAV is planning for its
next move. The position of the UAV and obstacle at ݐଶସ, ݐଶହ, and ݐଶ଺ are shown in Figure 24.

Figure 23. The path taken by UAV in Scenario 4 using Maximum Velocity search.

Figure 24. The path taken by UAV in Scenario 4 using Maximum Velocity search at ݐଶସ to ݐଶ଺.

7.4.2. Scenario 5

Another simulation was run with similar parameters in the Scenario 4 but the obstacle’s position
at ݐ଴ = (0, 15, 0). In this case, the UAV also kept on moving backward similar to the previous
simulation but there was no collision and the UAV was able to reach the goal as shown in Figure 25.

Figure 25. The path taken by UAV in Scenario 5 using Maximum Velocity search: (a) with ∆	= 0	s;
and (b) with ∆	= 0.5	s.

Figure 23. The path taken by UAV in Scenario 4 using Maximum Velocity search.

Sustainability 2017, 9, 1174 19 of 23

scenario, the UAV kept on moving backward to avoid the obstacle but it has collided with the obstacle
at ݐଶ଺. This is because the obstacle is not detected at ݐଶସ thus the UAV moved forward towards the
goal. Then, at ݐଶହ, the obstacle is detected for the first time again so the UAV stayed at its position at ݐଶ଺ but the obstacle has collided with the UAV on this time step while the UAV is planning for its
next move. The position of the UAV and obstacle at ݐଶସ, ݐଶହ, and ݐଶ଺ are shown in Figure 24.

Figure 23. The path taken by UAV in Scenario 4 using Maximum Velocity search.

Figure 24. The path taken by UAV in Scenario 4 using Maximum Velocity search at ݐଶସ to ݐଶ଺.

7.4.2. Scenario 5

Another simulation was run with similar parameters in the Scenario 4 but the obstacle’s position
at ݐ଴ = (0, 15, 0). In this case, the UAV also kept on moving backward similar to the previous
simulation but there was no collision and the UAV was able to reach the goal as shown in Figure 25.

Figure 25. The path taken by UAV in Scenario 5 using Maximum Velocity search: (a) with ∆	= 0	s;
and (b) with ∆	= 0.5	s.

Figure 24. The path taken by UAV in Scenario 4 using Maximum Velocity search at t24 to t26.

7.4.2. Scenario 5

Another simulation was run with similar parameters in the Scenario 4 but the obstacle’s position
at t0 = (0, 15, 0). In this case, the UAV also kept on moving backward similar to the previous simulation
but there was no collision and the UAV was able to reach the goal as shown in Figure 25.

Since Scenarios 4 and 5 have different initial position of the obstacle, it resulted to different sensor
readings, thus generated different VOA|B and provided different choices of the velocities to be taken
by the UAV. For this reason, the UAV’s trajectory are different on Scenarios 4 and 5.

7.5. Velocity Obstacle on Different Obstacle Sizes

We obtained the velocity obstacles on obstacles with varying obstacle sizes. First, we set
urB = 20 m. Then we examined the generated velocity obstacles when the actual obstacle’s size
is 1 m, 10 m, and 20 m. For all of the obstacles, we positioned them at the front of the UAV and made
their nearest distances from the UAV similar.

Sustainability 2017, 9, 1174 20 of 23

Sustainability 2017, 9, x FOR PEER REVIEW 20 of 24

Figure 24. The path taken by UAV in Scenario 4 using Maximum Velocity search at ݐଶସ to ݐଶ଺.

7.4.2. Scenario 5

Another simulation was run with similar parameters in the Scenario 4 but the obstacle’s position
at ݐ଴ = (0, 15, 0). In this case, the UAV also kept on moving backward similar to the previous
simulation but there was no collision and the UAV was able to reach the goal as shown in Figure 25.

Since Scenarios 4 and 5 have different initial position of the obstacle, it resulted to different
sensor readings, thus generated different ܸ ஺ܱ|஻ and provided different choices of the velocities to be
taken by the UAV. For this reason, the UAV’s trajectory are different on Scenarios 4 and 5.

Figure 25. The path taken by UAV in Scenario 5 using Maximum Velocity search: (a) with ∆	= 0	s;
and (b) with ∆	= 0.5	s.

7.5. Velocity Obstacle on Different Obstacle Sizes

We obtained the velocity obstacles on obstacles with varying obstacle sizes. First, we set ݎݑ஻ =
20 m. Then we examined the generated velocity obstacles when the actual obstacle’s size is 1 m, 10
m, and 20 m. For all of the obstacles, we positioned them at the front of the UAV and made their
nearest distances from the UAV similar.

The generated velocity obstacles, represented by the green lines, are shown in Figure 26. The
blue lines represent the actual velocity obstacle. Figure 26a shows the velocity obstacle when the
obstacle’s size is 1 m, Figure 26b is when the obstacle’s size is 10 m, and Figure 26c is when the
obstacle’s size is 20 m. Even though the obstacle’s sizes are different, the covered ranges of their
corresponding velocity obstacles do not have big differences.

The black arrow line represents the velocity with shortest distance from the UAV’s center that is
outside the generated velocity obstacles. It can be observed that all of the velocities have similar
magnitudes which are around 25 m per time step. Thus, for these scenarios, collision avoidance is
guaranteed only when the UAV’s velocity allows a magnitude of at least 25 m per time step. This is
because the velocity obstacle is generated not based on the actual obstacle’s size but based on the ݎݑ஻
and ݈ݎ஻. The bigger value assigned to ݎݑ஻, the bigger scope of the velocity obstacle will be and faster
speed of the UAV is needed to be able to guarantee collision avoidance.

Figure 25. The path taken by UAV in Scenario 5 using Maximum Velocity search: (a) with ∆ = 0 s;
and (b) with ∆ = 0.5 s.

The generated velocity obstacles, represented by the green lines, are shown in Figure 26. The blue
lines represent the actual velocity obstacle. Figure 26a shows the velocity obstacle when the obstacle’s
size is 1 m, Figure 26b is when the obstacle’s size is 10 m, and Figure 26c is when the obstacle’s size is
20 m. Even though the obstacle’s sizes are different, the covered ranges of their corresponding velocity
obstacles do not have big differences.

Sustainability 2017, 9, 1174 20 of 23

Since Scenarios 4 and 5 have different initial position of the obstacle, it resulted to different
sensor readings, thus generated different ܸ ஺ܱ|஻ and provided different choices of the velocities to be
taken by the UAV. For this reason, the UAV’s trajectory are different on Scenarios 4 and 5.

7.5. Velocity Obstacle on Different Obstacle Sizes

We obtained the velocity obstacles on obstacles with varying obstacle sizes. First, we set ݎݑ஻ =
20 m. Then we examined the generated velocity obstacles when the actual obstacle’s size is 1 m, 10
m, and 20 m. For all of the obstacles, we positioned them at the front of the UAV and made their
nearest distances from the UAV similar.

The generated velocity obstacles, represented by the green lines, are shown in Figure 26. The
blue lines represent the actual velocity obstacle. Figure 26a shows the velocity obstacle when the
obstacle’s size is 1 m, Figure 26b is when the obstacle’s size is 10 m, and Figure 26c is when the
obstacle’s size is 20 m. Even though the obstacle’s sizes are different, the covered ranges of their
corresponding velocity obstacles do not have big differences.

Figure 26. The generated velocity obstacles when ݎݑ஻ = 20 m and obstacle’s actual size is: (a) 1 m; (b)
10 m; and (c) 20 m.

The black arrow line represents the velocity with shortest distance from the UAV’s center that is
outside the generated velocity obstacles. It can be observed that all of the velocities have similar
magnitudes which are around 25 m per time step. Thus, for these scenarios, collision avoidance is
guaranteed only when the UAV’s velocity allows a magnitude of at least 25 m per time step. This is
because the velocity obstacle is generated not based on the actual obstacle’s size but based on the ݎݑ஻

Figure 26. The generated velocity obstacles when urB = 20 m and obstacle’s actual size is: (a) 1 m;
(b) 10 m; and (c) 20 m.

Sustainability 2017, 9, 1174 21 of 23

The black arrow line represents the velocity with shortest distance from the UAV’s center that
is outside the generated velocity obstacles. It can be observed that all of the velocities have similar
magnitudes which are around 25 m per time step. Thus, for these scenarios, collision avoidance is
guaranteed only when the UAV’s velocity allows a magnitude of at least 25 m per time step. This is
because the velocity obstacle is generated not based on the actual obstacle’s size but based on the urB
and lrB. The bigger value assigned to urB, the bigger scope of the velocity obstacle will be and faster
speed of the UAV is needed to be able to guarantee collision avoidance.

7.6. UAV’s Travelled Distances for Different Obstacle Moving Patterns

More simulations are run using different moving patterns of the obstacle to reflect the
appearance of the obstacle in UAV’s detection range at random times. In each simulation, the goal’s
position = (0, 20, 0), the obstacle’s radius is 2 m, and obstacle’s speed is in between 0.75 and 2.5 m/s.
Figure 27 shows the moving patterns of the obstacles that are used in the simulations. One direction is
used for each simulation. In these scenarios, the obstacle is detected by the UAV in random point in
time, depending on the obstacle and UAV’s location in each time step. In Figure 27, the arrow lines
show the moving patterns of the obstacle, and the circle is the UAV’s initial position. The shortest
distance from the UAV’s initial position to the goal is 20 m. The orange lines are the directions to the
right while the green lines are to the left.

As observed on the simulations, the effect of the obstacle’s moving pattern to the UAV’s travelling
distance can be grouped into two. In the first group, as shown in Figure 27a, the obstacle’s directions
mostly move away from the UAV, while it can be seen that, in Figure 27b, the directions move towards
and closer to the UAV. These moving patterns in Figure 27b have greater effect on the UAV’s trajectory
and the average travelled distance of the UAV for the obstacles’ moving patterns in Figure 27b is 80 m.
On the other hand, the average travelled distance of the UAV in Figure 27a is 50 m.

Sustainability 2017, 9, 1174 21 of 23

and ݈ݎ஻. The bigger value assigned to ݎݑ஻, the bigger scope of the velocity obstacle will be and faster
speed of the UAV is needed to be able to guarantee collision avoidance.

7.6. UAV’s Travelled Distances for Different Obstacle Moving Patterns

More simulations are run using different moving patterns of the obstacle to reflect the
appearance of the obstacle in UAV’s detection range at random times. In each simulation, the goal’s
position = (0, 20, 0), the obstacle’s radius is 2 m, and obstacle’s speed is in between 0.75 and 2.5 m/s.
Figure 27 shows the moving patterns of the obstacles that are used in the simulations. One direction
is used for each simulation. In these scenarios, the obstacle is detected by the UAV in random point
in time, depending on the obstacle and UAV’s location in each time step. In Figure 27, the arrow lines
show the moving patterns of the obstacle, and the circle is the UAV’s initial position. The shortest
distance from the UAV’s initial position to the goal is 20 m. The orange lines are the directions to the
right while the green lines are to the left.

As observed on the simulations, the effect of the obstacle’s moving pattern to the UAV’s
travelling distance can be grouped into two. In the first group, as shown in Figure 27a, the obstacle’s
directions mostly move away from the UAV, while it can be seen that, in Figure 27b, the directions
move towards and closer to the UAV. These moving patterns in Figure 27b have greater effect on the
UAV’s trajectory and the average travelled distance of the UAV for the obstacles’ moving patterns in
Figure 27b is 80 m. On the other hand, the average travelled distance of the UAV in Figure 27a is 50
m.

Figure 27. Obstacle’s moving patterns. UAV’s average travelled distance is shorter in (a) compared to
(b).

8. Conclusions

We have presented a solution for 3D collision avoidance on a low-cost UAV using the velocity
obstacle approach. The UAV’s limited sensing capability limits our knowledge on the environment
of the UAV. Because of this limitation, we derived the needed obstacle parameter values to be able
to apply the velocity obstacle approach. Finally, from our generated velocity obstacles, we searched
for the UAV’s trajectory to the goal using the To Goal (TG) heuristic and Maximum Velocity (MV)
heuristic. We also implemented another approach that takes into account the processing delay of the
system. We showed our results on scenarios with different obstacle velocities, and different obstacle
starting positions. The results also show that our approach works even when processing delay is not
negligible. We also showed a special scenario wherein collision happened.

It was also observed that the value assigned to ݎݑ஻ is critical in our algorithm. Greater value
assigned to ݎݑ஻ makes the covered range of the generated velocity obstacles bigger and the UAV
must be capable of travelling a velocity outside the generated velocity obstacles to guarantee collision
avoidance.

Figure 27. Obstacle’s moving patterns. UAV’s average travelled distance is shorter in (a) compared
to (b).

8. Conclusions

We have presented a solution for 3D collision avoidance on a low-cost UAV using the velocity
obstacle approach. The UAV’s limited sensing capability limits our knowledge on the environment
of the UAV. Because of this limitation, we derived the needed obstacle parameter values to be able
to apply the velocity obstacle approach. Finally, from our generated velocity obstacles, we searched
for the UAV’s trajectory to the goal using the To Goal (TG) heuristic and Maximum Velocity (MV)
heuristic. We also implemented another approach that takes into account the processing delay of the
system. We showed our results on scenarios with different obstacle velocities, and different obstacle
starting positions. The results also show that our approach works even when processing delay is not
negligible. We also showed a special scenario wherein collision happened.

Sustainability 2017, 9, 1174 22 of 23

It was also observed that the value assigned to urB is critical in our algorithm. Greater value
assigned to urB makes the covered range of the generated velocity obstacles bigger and the UAV
must be capable of travelling a velocity outside the generated velocity obstacles to guarantee
collision avoidance.

In general, using MV search gives more possible avoidance maneuver to the UAV as compared
to the TG search in which the velocity is limited to only with direction towards the goal. Hence,
in TG, the UAV may decide to stay in its position, while, in MV, the UAV can choose velocity while
maintaining the UAV’s maximum allowable velocity. However, in some cases, using MV makes the
UAV go farther away from its goal making TG search reach the goal faster.

As mentioned previously, our approach cannot be applied to avoid collisions with multiple
obstacles. To make that possible, it is required for the system to have capabilities to identify different
obstacles and to track them. Then, more accurate information on the sizes and moving patterns of the
obstacles will be available to the system and the proposed method can be applied to avoid collision
with multiple obstacles. For this, visual information about the obstacles will be required.

In this study, the focus is on the evaluation of the applicability of the velocity obstacle approach
to the collision avoidance scheme of a UAV with limited sensing capability. In the next step, to deal
with real flights, the algorithm needs to be tested in a realistic simulation to validate its performance
considering the flight dynamics, sensor noise, and external disturbances.

Acknowledgments: This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A01061155). This
also covered the costs to publish in open access.

Author Contributions: M. Choi and H. Choi conceived key ideas and the system architecture; T. Shon and H. Choi
designed the algorithm and analyzed the scheme; M. Choi and A. Rubenecia developed and ran the simulations;
M. Choi and T. Shon verified the algorithm and analyzed the experimental results; and M. Choi and A. Rubenecia
wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Cheng, C.-M.; Hsiao, P.-H.; Kung, H.T.; Vlah, D. Maximizing throughput of UAV-relaying networks with the
load-carry-and-deliver paradigm. In Proceedings of the IEEE Wireless Communications and Networking
Conference, Kowloon, China, 11–15 March 2007; pp. 4417–4424.

2. Meka, H.; Chidambaram, L.M.; Madria, S.K.; Linderman, M.; Kumar, M.; Chakravarthy, S. ROMAN: Routing
and opportunistic management of airborne networks. In Proceedings of the IEEE International Conference
on Collaboration Technologies and Systems (CTS), Philadelphia, PA, USA, 12 July 2011; pp. 555–562.

3. Choi, H.H.; Nam, S.H.; Shon, T.; Choi, M. Information delivery scheme of micro UAVs having limited
communication range during tracking the moving target. J. Supercomput. 2013, 66, 950–972. [CrossRef]

4. Pham, H.; Smolka, S.A.; Stoller, S.D.; Phan, D.; Yang, J. A survey on unmanned aerial vehicle collision
avoidance systems. arXiv, 2015, arXiv:1508.07723.

5. Fu, Y.; Yu, X.; Zhang, Y. Sense and collision avoidance of unmanned aerial vehicles using Markov decision
process and flatness approach. In Proceedings of the IEEE International Conference on Information and
Automation, Lijiang, China, 8–10 August 2015; pp. 714–719.

6. Park, J.-W.; Oh, H.-D.; Tahk, M.-J. UAV collision avoidance based on geometric approach. In Proceedings of
the IEEE SICE Annual Conference, Tokyo, Japan, 20–22 August 2008; pp. 2122–2126.

7. Lin, Y.; Saripalli, S. Collision avoidance for UAVs using reachable sets. In Proceedings of the IEEE
International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 9–12 June 2015;
pp. 226–235.

8. Roelofsen, S.; Gillet, D.; Martinoli, A. Reciprocal collision avoidance for quadrotors using on-board visual
detection. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 4810–4817.

http://dx.doi.org/10.1007/s11227-013-0931-x

Sustainability 2017, 9, 1174 23 of 23

9. Lyu, Y.; Pan, Q.; Zhao, C.; Zhu, H.; Tang, T.; Zhang, Y. A vision based sense and avoid system for small
unmanned helicopter. In Proceedings of the IEEE International Conference on Unmanned Aircraft Systems
(ICUAS), Denver, CO, USA, 9–12 June 2015; pp. 586–592.

10. McGee, T.G.; Sengupta, R.; Hedrick, K. Obstacle detection for small autonomous aircraft using sky
segmentation. In Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona,
Spain, 18–22 April 2005; pp. 4679–4684.

11. Lyu, Y.; Pan, Q.; Zhao, C.; Zhang, Y.; Hu, J. Vision-based UAV collision avoidance with 2D dynamic safety
envelope. IEEE Aerosp. Electron. Syst. Mag. 2016, 31, 16–26. [CrossRef]

12. Roelofsen, S.; Martinoli, A.; Gillet, D. 3D collision avoidance algorithm for Unmanned Aerial Vehicles with
limited field of view constraints. In Proceedings of the IEEE 55th Conference on Decision and Control (CDC),
Las Vegas, NV, USA, 12–14 December 2016; pp. 2555–2560.

13. Viquerat, A.; Blackhall, L.; Reid, A.; Sukkarieh, S.; Brooker, G. Reactive collision avoidance for unmanned
aerial vehicles using doppler radar. In Field and Service Robotics; Springer: Berlin, Germany, 2008; pp. 245–254.

14. Rambabu, R.; Hahiki, M.R.; Azrad, S. Multi-sensor fusion based UAV collision avoidance system. J. Teknol.
2015, 76. [CrossRef]

15. Kwag, Y.K.; Chung, C.H. UAV based collision avoidance radar sensor. In Proceedings of the IEEE Geoscience
and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 639–642.

16. Griffiths, S.; Saunders, J.; Curtis, A.; Barber, B.; McLain, T.; Beard, R. Obstacle and terrain avoidance
for miniature aerial vehicles. In Advances in Unmanned Aerial Vehicles; Springer: Berlin, Germany, 2007;
pp. 213–244.

17. Gresham, I.; Jenkins, A.; Egri, R.; Eswarappa, C.; Kinayman, N.; Jain, N.; Anderson, R.; Kolak, F.; Wohlert, R.;
Bawell, S.P. Ultra-wideband radar sensors for short-range vehicular applications. IEEE Trans. Microw.
Theory Tech. 2004, 52, 2105–2122. [CrossRef]

18. Fiorini, P.; Shiller, Z. Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res.
1998, 17, 760–772. [CrossRef]

19. Van den Berg, J.; Lin, M.; Manocha, D. Reciprocal velocity obstacles for real-time multi-agent navigation.
In Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, CA, USA,
19–23 May 2008; pp. 1928–1935.

20. Conroy, P.; Bareiss, D.; Beall, M.; van den Berg, J. 3-D reciprocal collision avoidance on physical quadrotor
helicopters with on-board sensing for relative positioning. arXiv, 2014; arXiv:1411.3794.

21. Lin, Y.; Saripalli, S. Sampling-Based Path Planning for UAV Collision Avoidance. IEEE Trans. Intell.
Transp. Syst. 2017. [CrossRef]

22. Lin, Y.; Saripalli, S. Path planning using 3D dubins curve for unmanned aerial vehicles. In Proceedings of
the IEEE International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May
2014; pp. 296–304.

23. Shim, D.H.; Sastry, S. An evasive maneuvering algorithm for UAVs in see-and-avoid situations.
In Proceedings of the IEEE American Control Conference, New York, NY, USA, 9–13 July 2007; pp. 3886–3891.

24. Bai, H.; Hsu, D.; Kochenderfer, M.J.; Lee, W.S. Unmanned aircraft collision avoidance using continuous-state
POMDPs. Robot.: Sci. Syst. VII 2012, 1, 1–8.

25. Sigurd, K.; How, J. UAV trajectory design using total field collision avoidance. In Proceedings of the AIAA
guidance, navigation, and control conference and exhibit, Austin, TX, USA, 11–14 August 2003; p. 5728.

26. Frew, E.; Sengupta, R. Obstacle avoidance with sensor uncertainty for small unmanned aircraft.
In Proceedings of the 43rd IEEE Conference on Decision and Control, Nassau, Bahamas, 14–17 December
2004; Volume 1, pp. 614–619.

27. Hrabar, S. Reactive obstacle avoidance for rotorcraft uavs. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), San Francisco, CA, USA, 25–30 September 2011;
pp. 4967–4974.

28. Jun, M.; D’Andrea, R. Path planning for unmanned aerial vehicles in uncertain and adversarial environments.
In Cooperative control: Models, Applications and Algorithms; Springer: Berlin, Germany, 2003; pp. 95–110.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MAES.2016.150155
http://dx.doi.org/10.11113/jt.v76.5630
http://dx.doi.org/10.1109/TMTT.2004.834185
http://dx.doi.org/10.1177/027836499801700706
http://dx.doi.org/10.1109/TITS.2017.2673778
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Environment Model
	Velocity Obstacle
	Generating Velocity Obstacle Based on the Estimated Parameter Values of the Obstacle
	Computing Obstacle’s Possible Radius
	Determining Obstacle’s Possible Positions
	Determining Obstacle’s Possible Velocities
	Generating Possible Velocity Obstacles

	Collision Avoidance Algorithm
	Simulation
	Scenario 1
	Scenario 2
	Scenario 3
	Worst Case Scenario
	Scenario 4
	Scenario 5

	Velocity Obstacle on Different Obstacle Sizes
	UAV’s Travelled Distances for Different Obstacle Moving Patterns

	Conclusions

