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Abstract: Mini-grids powered by photovoltaic generators or other renewable energy sources have
the potential to bring electricity to the 17% of the world’s population, mainly in rural areas, that are
currently un-served. However, designing and managing a mini-grid so that it is reliable and
economically sustainable is difficult because of the high variability of demand that arises from
the small population of consumers. We describe an integrated set of four tools to assist mini-grid
operators to predict and manage demand. These comprise a decision support tool to predict peak
and average demand from a consumer population, a demand disaggregation tool that allows the
key statistical properties of connected electricity-consuming appliances to be identified, a battery
condition modeling tool which allows the impact on battery life of a planned operating regime to
be predicted and a demand control sub-system which limits the operating time of high demand
appliances to intervals when they can be supported. Results from application of the tool set to
mini-grids in Kenya and The Gambia are presented. We conclude that accessible, usable and low cost
tools of this form can improve mini-grid sustainability.
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1. Introduction

Currently, 1.2 billion people (about 17% of the world’s population) do not have access to
electricity [1]. The vast majority of these are in rural communities in non-OECD countries. Even where
grid connections are available, the reliability of access is often poor—for example in Nigeria 96% of
households are connected but only 18% of those connections function for more than half the time [2].
Electricity is so central to the functioning of modern lifestyles that economic opportunities and quality
of life are severely constrained by the lack of reliable access to it [3]. Operational experience and
research evidence is accumulating to show that a conventional grid system based on large scale
generation plant with extensive high voltage high capacity transmission and distribution networks is
not a practical or economic method of meeting all these needs, particularly in Africa [4]. In addition,
it is clear that with the global need to reduce carbon emissions by adopting renewable energy resources
that are inherently geographically distributed, localization of electricity generation and use becomes
economically beneficial and is being adopted in developed countries with mature grid systems [5].

These arguments make mini- or micro-grids attractive as a way forward for rural electrification
that has been vigorously promoted as a “high impact opportunity” by the United Nations and World
Bank joint initiative Sustainable Energy for All (SE4All) [6]. Such grids will serve a local community

Sustainability 2017, 9, 738; doi:10.3390/su9050738 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
http://www.mdpi.com/journal/sustainability


Sustainability 2017, 9, 738 2 of 15

with renewably-generated electricity and either have no connection to a national grid system at all
(hence off-grid) or have a connection that may be either severely limited in capacity relative to the local
demand or unreliable. The potential for mini-grids to meet the needs of this un-served population
has been shown by many practical demonstration projects [7] and start-up enterprises [8], but large
scale rollout of mini-grid systems has not yet happened. Many of these pilot systems have been
difficult to implement or not proved sustainable so investors have been deterred from supporting
replication. This experience contrasts with, for example, the relatively rapid roll-out of mobile phone
technology and the uptake of solar home systems in some countries, notably Bangladesh with four
million installed [9].

A review by Hazelton et al. [10] identifies a range of technical, economic, and regulatory risks
faced by photovoltaic (PV) powered mini-grids, most of which are applicable to systems powered
by other renewable sources. Of the technical risks, the most prominent is “load uncertainty”—the
difficulty of predicting and managing the total electrical load presented by a mini-grid’s customers.
Battery lifetime, equipment reliability, and compatibility of system components are also identified.
The latter two are being resolved as standards mature but battery storage continues to present cost
and durability issues for mini-grid operators [11]. The interplay between generation resource, energy
storage capacity and the behavior of demand customers was examined in a Rwandan setting by
Crossland et al. [12] with the conclusion that all these factors need to be considered together in both
system design and operation.

This paper presents a set of four tools and techniques for mini-grid planning and operation
that address the two critical technical issues of load uncertainty and battery lifetime. They have
been developed under a project entitled ESCoBox with the goal of reducing the cost of energy access
by improving both system reliability and economic sustainability for rural mini-grids. The rest of
the paper is structured as follows. In Section 2, we describe the overall concept of the ESCoBox
toolset and the theoretical background to each of the individual tools. Section 3 covers the practical
implementation and application methods of each tool. Section 4 reports the results of initial field trials
in the developing world. The potential for use and improvement of these tools is then discussed in
Section 5, followed by overall conclusions.

2. The ESCoBox Concept

2.1. System Overview

The challenge for mini-grid planners is to size a system that will meet the needs of a community
sufficiently to gain their engagement, at a capital and operating cost that can be recovered from
consumers. While the initial installation cost may be partly subsidized, the costs of maintenance and
renewal normally must be met from operating revenue. Operating the system close to capacity is
desirable in terms of generating income and keeping the unit cost per kWh affordable, but overloading
the system will result in brownouts or system failures and shorten battery life with a consequent high
cost impact. Maintaining an optimum balance between supply and demand is particularly difficult for
a mini-grid because of the high variability of demand arising from the small consumer population.
The mathematical reasons for this are detailed in [13] and summarized in the next subsection. Often the
only information a system manager has is a real-time indication of instantaneous generation and
demand, which may in some cases be logged to give an operating history.

Thus, the core component of this toolset is software that can be used to predict peak and average
electricity demand from a given population of consumers and their appliances. It is envisaged that
this will be used in the planning stage to size the system and subsequently in operation to support
decisions on whether to accept new consumer connections or appliance types, particularly higher
consumption devices with income-generating value such as grain mills. For this reason, it is referred
to as the decision support tool. Its use can be augmented where appropriate by two additional
software components:



Sustainability 2017, 9, 738 3 of 15

• A demand disaggregation tool: This analyzes the demand profile on a consumer’s connection to
determine the types and timing of appliance use. If performed on most of the connections served
by a mini-grid, this can provide reasonably accurate data for predicting peak demand with the
decision support tool, which otherwise relies heavily on survey data and the tool user’s judgment.

• A battery condition modeling tool, which allows the impact on battery state and life expectancy
to be predicted for a given daily generation and demand profile simulated by the decision
support tool.

The final component in this toolset is the demand controller, a hardware and software subsystem
which allows the time of operation of high demand appliances to be limited by the system manager.
The need for this device is illustrated by Figure 1, which shows the aggregate demand profile measured
for two days on a micro-hydro mini-grid in Malawi. The early evening peak around 6:00–9:00 p.m.
arising from household lighting and appliances is very evident and is typical of mini-grid loads as it is
of national grid systems. The system is capable of supplying this peak demand, but there is substantial
unused capacity earlier in the day. That unused capacity could support valuable commercial uses,
but to prevent system overload they must be constrained not to encroach on the evening peak. It is
expected that users limited in this way would be offered some form of “off-peak” tariff. The decision
support tool is designed to be used to quantify the capacity levels and time windows that can be sold
in this way.
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Figure 1. Daily demand profiles from a micro-hydro system. Source: Practical Action.

2.2. Decision Support Tool

The aggregate electrical demand presented at any time to the generator of a mini-grid will be
composed of a number of individual loads arising from appliances that have been switched on, and will
be switched off, at times determined by a human user or by some automated control responding to the
environment of the power-consuming appliance. While there will be some correlation of operating
times for loads with related functions, such as lighting coming on in the evening, as long as the
decision taking processes that determine times of operation of each load are independent, the precise
population of operating loads at any given time will be uncertain. For a micro-grid serving a small
number of households each with just a few electricity consuming devices it is likely that at some time
all will switched on and the maximum possible demand will be the sum of the loads drawn by all the
available appliances. As the number of power-consuming households and businesses rises, and they
start to collect a range of appliances for different purposes, the likelihood of every available appliance
being presented simultaneously becomes negligible. The challenge then is to decide what maximum
demand can be expected from a given population. The ratio between the maximum demand likely to
occur in practice and the total possible demand is known as the diversity factor.
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The simple heuristic formulae used by large scale grid operators to calculate maximum expected
demand from diversity values averaged across large numbers of consumers are not suitable for
mini-grid planning. This is a consequence of the central limit theorem, which states that the means of
n independent samples drawn from any distribution with mean m and standard deviation σ will have
an approximately normal distribution with a mean equal to m and a standard deviation equal to σ/

√
n.

This implies that, as the number of electricity-consuming appliances n served by a grid increases,
the variability of their total electricity consumption will decrease by a factor of 1/

√
n, benefiting

large grids but ensuring high variability on mini-grids. The approach taken for the software tool
described here is to simulate the aggregate consumer demand using a Monte Carlo method from three
data elements:

• the population N of each main type of electricity-consuming appliance expected or in use;
• the typical load E presented by an example of each type; and
• an assessment for each type of the probability p that it will be in use at a given time of day.

These data can be obtained by surveying consumers, or automatically from the demand
disaggregation tool. The simulation takes each device in the population, and at each time interval
determines randomly whether it is “on” or “off” with a probability p and power consumed when on E.
A binomial distribution of on and off states for each appliance Xi is created over nt trials (time intervals):

Xi ~ bin (nt, pi) (1)

Then, the time sequence of aggregate demand D is simply the sum of these distributions over all
N appliances:

D =
i=N

∑
i=1

XiEi (2)

The software then computes the mean and standard deviation of all the values of D in the set,
and finds the maximum value Dmax. It also calculates the maximum possible demand Dposs that would
occur if all the appliances were in use simultaneously. In order to keep the run time convenient,
the default value for nt is set to 1000. This is sufficient to reveal the standard deviation with adequate
accuracy but not the maximum expected demand, which for most cases is calculated using the normal
distribution. This is a reasonable approximation to the binomial for N > 10 and allows the cumulative
normal distribution to be used to estimate the maximum expected demand with a specified (small)
risk that it will be exceeded [14,15]. For N < 10 and other ill-conditioned cases, Dmax or Dposs are used
as the estimates of maximum expected demand.

2.3. Demand Disaggregation Tool

Demand disaggregation has been described as the “holy grail of energy efficiency” for its potential
to inform consumers concerning the energy consumption of their individual appliances [16]. It has
proven computationally challenging to implement in developed countries because of the vast range
of devices in use. However, for a rural mini-grid, the problem is more tractable—we have found
that valuable data for system management can be obtained. This software tool employs a Hidden
Semi-Markov Model [17] in which a set of states Z represents possible combinations of active appliances,
a set of emissions X represents the total power consumption for each state, and a transition matrix holds
the probability Pr(i|j) of transition from one state to another. A modified form of the forward-backward
algorithm proposed by Yu [18] is used to identify the most likely sequence of states in a time series of
power measurements from a consumer connection and update the model parameters.

The most probable combination of active appliances is then mapped onto each state in the
sequence, drawing on a database of appliance types known to be in use and the expected power
consumption of each type. The mapping uses the expected power of each possible appliance
combination EPi calculated as the sum of M different possible appliance values Pj, weighted by
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their probability Prj of being observed (where probabilities for an individual appliance type add up
to 1),

EPi =
M

∑
j=1

PrjPj (3)

Each of the N observed states with a power value PMi is then mapped to the nearest EPi and the
sum of differences SD calculated:

SD =
N

∑
j=1
|EPi − PMi| (4)

The estimated power draws of the mapped appliances are then updated, and the process repeated
to minimize SD. The overall processing flow of this tool is shown in Figure 2.
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2.4. Battery Condition Modeling

The battery condition modeling tool employs an event-based general approach to engineering
lifetime prediction known as a Wöhler curve [19]. In this application, approximate time-to-failure,
expressed as a number L of charge/discharge cycles, can be related to the depth of discharge D at each
cycle for a given battery technology [20]. A typical curve for a lead-acid battery is shown in Figure 3
derived from a manufacturer’s product specification [21]. These data can be used to derive curve
parameters U0, U1, and U2 [22] to give a lifetime model of the form:

L = U2

(
Dr

D

)U0

eU1(1− D
Dr ) (5)

U2 is the rated number of life cycles at a reference depth of discharge Dr. The tool includes
a representative set of parameters for different battery types.
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For a battery of nominal capacity Cn kWh with rated life Lr cycles at depth of discharge Dr and
cycle efficiency µ, the total potential lifetime charging energy throughput Etot is given by:

Etot = DrCnLr (6)

At a different depth of discharge Di with corresponding life expectancy Li cycles, the fraction of
Etot that is consumed by a further incremental discharge Ei giving rise to charge Ei/µ, is changed by
a factor Fi = Lr/Li obtained by re-arrangement of Equation (3):

Fi =

(
Di
Dr

)U0

eU1(
Di
Dr−1) (7)

Then, the fraction of life ∆Li (where whole life = 1) consumed by Ei is given by:

∆Li = (FiEi)/(Etotµ) (8)

By summing the loss of life from each predicted discharge event an estimate can be calculated
of the overall impact on expected battery lifetime of a particular operating regime. This approach
provides a more realistic model of the impact of discharge events than the linear ∆Li = Ei/(Etotµ)
embodied in the popular mini-grid planning tool HOMER [23,24].

2.5. Demand Control Sub-System

The demand control sub-system is conceptually simple, comprising a software component
integrated with the decision support tool that allows the micro-grid manager to set the times that he or
she will permit one or more high consumption appliances to run, having simulated their operation and
verified that it is within available capacity. These times are then communicated to a microprocessor
(the control node), which executes the schedule for each appliance on a radio-controlled power
switch (a remotely-controlled socket) that is not accessible to the consumer. Figure 4 illustrates the
sub-system architecture.
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3. ESCoBox Implementation and Testing

3.1. Decision Support Tool

The decision support tool has been implemented as a Microsoft Excel spreadsheet with embedded
software macros executing the algorithms described in Section 2. It may be downloaded from the
project website [25] in two versions (the spreadsheets are protected to avoid accidental corruption;
the password is ESCoBox–see Discussion Section for caveats). One is for power limited mini-grids such
as micro-hydro and biomass systems where energy storage would take the form of a header reservoir
and fuel store respectively, so no battery is required. This tool allows peak and average demand from
a population of appliances to be modeled with available generator output power provided by the user.
The second version is aimed at PV and battery mini-grids, and includes an estimate of the output
over a day that can be expected from the PV generator given system parameters (day of year, location,
weather, and system kWp). It also incorporates the battery condition model. A typical set of inputs and
outputs from the simulation of non-controlled appliances using the PV version is shown in Figure 5.
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Figure 5. Decision support tool display for uncontrolled appliances.

The shaded cells (not green) in Figure 5 are for data entry. The appliance population is entered at
top left, and then the probability of each appliance type operating on a given hour of the day is entered
against the hour, with zero or very low probability hours left blank. System parameters, the location,
date, and weather selected from drop-down options are entered in the pink shaded cells. When the
simulation is run, the expected peak and average loads for the day, PV generation, and impact on
battery life are calculated for each hour and plotted. If the results indicate a risk to the stable operation
of the system, the predominantly green results cells visible in Figure 5 turn progressively from green
to red depending on the severity of the risk.

A second form of simulation is provided by the tool for planning the operation of loads controlled
by the demand control sub-system. This is shown in Figure 6. The appliances are entered individually
at top left and assigned to a switch number. Their probability of operation during their assigned
operating window is entered as before against the hour of the day. This simulation also allows
operation of a fuel powered generator to be included where it is available and its most effective
operating time and power level to be determined. When this simulation is run, the expected peak and
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average loads for the day (including both uncontrolled and controlled loads), total generation (PV
plus genset), and impact on battery life are calculated for each hour and plotted. The result cells are
similarly color coded for system risk from green to red as for the first simulation. A costing function
is included in both simulations allowing the revenue from “anytime” and “off-peak” loads to be
predicted and the cost of any generator runtime.

Sustainability 2017, 9, 738  8 of 15 

effective operating time and power level to be determined. When this simulation is run, the expected 

peak and average loads for the day (including both uncontrolled and controlled loads), total 

generation (PV plus genset), and impact on battery life are calculated for each hour and plotted. The 

result cells are similarly color coded for system risk from green to red as for the first simulation. A 

costing function is included in both simulations allowing the revenue from “anytime” and 

“off-peak” loads to be predicted and the cost of any generator runtime. 

 

Figure 6. Decision support tool display for controlled appliances. 

3.2. Demand Disaggregation Tool 

The initial realization of this tool is in Matlab, as this allowed published code from Yu [18] to be 

employed. The complete tool code can be found in [26]. Given a dataset of power consumption by 

each user of a mini-grid over at least 20 days, it is able to produce an output file in comma-separated 

variable (csv) format containing the power consumed by each appliance observed and its probability 

of use for each hour of the day. The Decision Support Tool imports these data if given the filename 

thereby avoiding the need for manual data entry.  

To validate the accuracy of the disaggregation, laboratory testing employed four lamps (two 

LED and two halogen) of power draw 3.8 W, 3.7 W, 36.9 W and 31.4 W that were connected to a 

monitored socket. Each was switched on and off in a known sequence, derived from mini-grid 

monitoring data to ensure realism, while the overall power consumption was monitored. The 

performance on this test is shown in Table 1; the algorithms had an overall accuracy of 92.4%. The 

algorithms were unable to differentiate between the two low energy lamps, but estimated their 

combined state with an accuracy of 93.9%. 

Table 1. Laboratory test results from demand disaggregation. 

Appliance On-State Accuracy % Overall Accuracy % 

LED lamps 85.2 93.9 

Small halogen 91.0 98.9 

Large halogen 84.1 98.6 

State of system 88.0 92.4 

  

Figure 6. Decision support tool display for controlled appliances.

3.2. Demand Disaggregation Tool

The initial realization of this tool is in Matlab, as this allowed published code from Yu [18] to be
employed. The complete tool code can be found in [26]. Given a dataset of power consumption by
each user of a mini-grid over at least 20 days, it is able to produce an output file in comma-separated
variable (csv) format containing the power consumed by each appliance observed and its probability
of use for each hour of the day. The Decision Support Tool imports these data if given the filename
thereby avoiding the need for manual data entry.

To validate the accuracy of the disaggregation, laboratory testing employed four lamps (two LED
and two halogen) of power draw 3.8 W, 3.7 W, 36.9 W and 31.4 W that were connected to a monitored
socket. Each was switched on and off in a known sequence, derived from mini-grid monitoring data
to ensure realism, while the overall power consumption was monitored. The performance on this test
is shown in Table 1; the algorithms had an overall accuracy of 92.4%. The algorithms were unable to
differentiate between the two low energy lamps, but estimated their combined state with an accuracy
of 93.9%.

Table 1. Laboratory test results from demand disaggregation.

Appliance On-State Accuracy % Overall Accuracy %

LED lamps 85.2 93.9
Small halogen 91.0 98.9
Large halogen 84.1 98.6
State of system 88.0 92.4
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3.3. Battery Condition Modeling

The battery condition modeling method described in Section 2 is implemented in the Decision
Support Tool for PV and battery systems. It accepts as inputs the battery chemistry type, nominal
capacity, cycle efficiency, and charge state at the beginning of the simulated day. This is required
because the tool simulates one day at a time without retaining history. When the tool is run, the viability
of the proposed consumer load and battery charge profile is indicated by the battery charge state in
each hour and an estimate of the expected life of the battery if this cycle is repeated. These parameters
change from green to red to indicate the sustainability of the operating plan.

The estimate of battery life assumes that the user is starting with a new battery and that the daily
profile calculated is repeated indefinitely. In order to provide a realistic estimate of the possible charge
fraction at the end of the day and battery lifetime, the battery charge fraction indicated at the end
of each hour assumes that the power supplied to consumers over the hour is equal to the average
demand power plus one standard deviation. The user is advised to schedule loads so that the charge
fraction at the start of the day is achieved or exceeded by the end of the day.

3.4. Demand Control Sub-System

This has been implemented using a Raspberry Pi single board Linux computer to host an appliance
control program which accepts appliance operating schedules either by manual entry on a web server
interface or by reading the decision support tool spreadsheet cells that contain a valid schedule. It then
signals on and off states by short range radio to up to six “smart plugs” each of which switches
a controlled appliance on or off. The radio uses amplitude shift keying in the 433 MHz low power
device band [27]. Figure 7 shows the switching element—it is configured so that one of the 13 A
sockets has a permanent supply with a restricted current limit so can be used for low consumption
purposes such as phone charging, while the other socket can support high power but is time limited
under remote control. The cost of the computer and a single remote unit as shown is about $65.
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4. Field Trials

Data from a PV-powered mini-grid on Mageta Island, Lake Victoria, Kenya (provided courtesy of
SteamaCo Ltd., Kisumu, Kenya) was used to exercise the toolset (excluding the control sub-system)
on a fully operational system. This system primarily serves a variety of commercial customers
including bars, video halls, and fish merchants. The 28 kWh battery and control plant with 4.8 kWp
of PV panels overhead is shown in Figure 8a while Figure 8b depicts the premises of a video hall.
The disaggregation tool was employed to analyze the appliance use of all the consumers—Figure 9
illustrates the disaggregation of the appliances used by the video hall showing the probability of
each appliance operating at each hour of the day. Because the clients are fishermen who fish at night,
the business is most active during the day providing good alignment with PV generation.
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Figure 9. Disaggregated appliance use (shown as probability of use in each hour of the day) by video
hall, Mageta Island, Kenya.

The disaggregated data were imported into the decision support tool giving the results shown in
Figure 10 for a day with clear sun. It can be seen that, in these conditions, there is ample generation to
meet demand and ensure that the battery charge state is higher at the end of the day than at the start.
There is also spare generation capacity from midday to late afternoon which could be used to supply
loads constrained to that period so that battery charging is not affected. If the simulation is re-run for a
stormy day of the kind that does occur on Lake Victoria the battery charge state at the end of the day
falls to 0.67—a manageable outcome as long as there is not a run of such days. Overall, the system is
lightly loaded and there is scope for the system manager to permit time-controlled loads in the period
11:00–17:00.
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In contrast to the relatively robust performance of the Mageta Island system, application of the
decision support tool to an operational but unreliable micro-grid system supplying a community
center in The Gambia showed the kind of scenario that can arise when the system manager is unable
to resist consumer pressure to accept connection of higher power appliances—in this case a water
heating urn. Figure 11 shows the results. Although the average daily consumption of 6 kWh was well
within the day’s generation of 9 kWh, the deep discharge caused by the occasional peak loads was
drastically shortening battery life and also overloading the inverter.
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Following analysis using the decision support tool and discussion with users, the PV capacity of
this micro-grid was increased to 1.75 kWp, the operation of the television was time-limited using a
demand control unit as shown in Figure 7, and the water heating urn was replaced with a bottled gas
heating ring. This gave operating profiles as shown in Figure 12—note the y-axis scale is expanded.
The system is now operating reliably and the manager plans to open a video hall similar to that
described above for Mageta Island which will generate revenue and allow further improvements.
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The operating economics of a micro-grid such as this can be summarized as follows. The installed
capital cost of the PV system for an aid agency or other funding body would be about $3500, of which
the batteries cost about $800. To deploy the tools described in this paper would cost an additional
$360 for a simple laptop, Excel software, and the demand control sub-system with a single remote
switch unit. The sustainable revenue shown in Figure 12 from a realistic per kWh tariff of GMD 40
(Gambian Dalassi where GMD45 = $1) is about $1600 per annum which is just about sufficient to pay
for basic cleaning and maintenance and battery replacement. This compares with the subsidized tariff
of GMD 10–11 offered by the national grid system in The Gambia [28], which has limited geographic
coverage and cannot provide a 24-h service [29]. The operator will usually have opportunities to
capture additional value from supplying electricity by offering services such as mobile phone charging
and internet access. However a micro-grid at this scale can only repay its capital cost over a long term
that is supportable by strategic investors such as governments, aid agencies, and targeted commercial
schemes, e.g., the Microgrid Investment Accelerator [30].

5. Discussion

The results from the two trial sites presented above illustrate the potentially fragile nature of
mini-grid systems and help to explain why their sustainability has proved challenging worldwide.
Two studies, employing techniques similar to the authors’ Monte Carlo simulations at [13] that are the
basis of the decision support tool, have further demonstrated the need for systematic load planning.
Louie and Dauenhauer [31] show how errors in load forecasting leading to overload conditions have
a severe effect on reliability, while Mandelli et al. [32] seek to mitigate the impact of load profile
uncertainty in a system design method. A key point we have sought to keep in mind in this project is
that however sound the initial design no mini-grid system can remain static in operation—the customer
base and commercial pressures on the operator will evolve continuously and ideally the system capacity
will need to expand as the customers prosper. The tools needed for ongoing operational management
must therefore be low cost and easy to use. By publishing the code of these ESCoBox software tools
we hope to stimulate further development under other projects. The usual caveat for open source
software applies to all the code published with this paper, that it is offered in the hope that it is useful
but no assurance of fitness for purpose is given.

There are unavoidably limitations to the accuracy of the predictions provided by this toolset.
When used as part of the system design process, the designer will have imperfect knowledge about the
appliances available to his potential customers, unless they possess none and an initial fit of lighting,
phone charging, etc., is to be supplied as part of the project. A common approach is to perform a survey
of the potential customer base to identify:

• the appliances already owned that the system should accommodate;
• those not owned but that the system operator should promote or supply (such as LED lights and

efficient ceiling fans); and
• higher power devices such as grain mills that are in use (possibly powered intermittently by fossil

fuel generators) that can be served on a time controlled basis or not at all.

At the same time, the survey can acquire data concerning the likely frequency of appliance
use that can be entered into the decision support tool. The designer’s judgment will have to be
applied using knowledge of the customer community to moderate the survey findings and fill in gaps.
This application of intuition and experience is unavoidable—it is often part of the design process
for electrical installations in the developed world. Use of the tool to predict and plan a load profile,
followed by experience of the actual operational outcome, will help to build the expertise to make
these judgments.

Once a mini-grid system is in operation, if user electricity consumption is monitored on
a sufficiently fine-grained basis, data disaggregation can be used as described above to obtain quite
accurate data on appliance populations and frequency of use, allowing the decision support tool
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model to be kept up to date and capable of consistently useful predictions. The cloud-based mini-grid
management systems offered by suppliers such as SteamaCo [8] and Powerhive [33] provide the
opportunity to perform disaggregation as a cloud application and supply the results to operators on
the ground.

The key limitation of the battery condition model as implemented in the decision support tool
is that there is no memory in the model of the past operating regime so the single day snapshot it
provides has to operate with an assumption of the charge state at the start of the day and a new
battery. Clearly it would be desirable to integrate the model into a mini-grid supervisory system
which would track the operating history. This is also a potential application to include in a cloud
management system.

6. Conclusions

The long-term sustainability of a mini-grid system generally depends on the consumers paying
the operator enough to support running costs and the cost of replacement of major components,
particularly batteries, when that is unavoidable. This implies that the operator must permit a level
of revenue-generating demand that is close to the system capacity but avoids overload conditions.
They can only do this with an understanding of the impact of the decisions they take and the ability to
regulate demand where necessary. Despite their limitations, the evidence from our trials is that the
quantitative and rational approach to mini-grid management encouraged by these relatively simple
tools can empower operators to strike a better balance between short-term revenue and long-term
costs than is possible otherwise.
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