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Abstract: Since avoiding the occurrence of natural disasters is difficult, building ‘resilient cities’ is
gaining more attention as a common objective within urban communities. By enhancing community
resilience, it is possible to minimize the direct and indirect losses from disasters. However, current
studies have focused more on physical aspects, despite the fact that social aspects may have a
closer relation to the inhabitants. The objective of this paper is to develop an assessment model
for social resilience by measuring the heterogeneity of local indicators that are related to disaster
risk. Firstly, variables were selected by investigating previous assessment models with statistical
verification. Secondly, spatial heterogeneity was analyzed using the Geographically Weighted
Regression (GWR) method. A case study was then undertaken on a flood-prone area in the
metropolitan city, Seoul, South Korea. Based on the findings, the paper proposes a new spatial
disaster assessment model that can be used for disaster management at the local levels.
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1. Introduction

Having the potential to cause great damage to individuals and communities, the frequency
and severity of natural hazards are expected to increase [1]. Urban communities are more likely
to suffer substantially from disaster losses due to their high population density and complex
interdependency [2,3]. Meanwhile, losses can differ greatly depending on the ability to reduce initial
damage, physical-social impact from damage, or recovery time. A community’s ability to minimize
disaster impact is generally defined as ‘disaster resilience’ [4].

The concept of disaster resilience gained wider interest throughout academic researchers after the
adoption of the Hyogo Framework for Action (HFA) 2005–2015 “Building the resilience of nations and
communities to disasters”. The HFA is the first 10-year international disaster risk-reduction plan to
explain, describe, and detail the work that is required from all of the different sectors and actors to
reduce disaster losses. The United Nations Office for Disaster Risk Reduction (UNISDR) has adopted
the Sendai Framework for Disaster Risk Reduction 2015–2030 (Sendai Framework) to substantially
reduce disaster risk and losses: in lives, livelihoods, and health; and in the economic, physical,
social, cultural, and environmental assets of persons, businesses, communities, and countries. There are
four priorities for action: (1) understanding disaster risk; (2) strengthening disaster risk governance
to manage disaster risk; (3) investigating disaster risk reduction for resilience; and (4) enhancing
disaster preparedness for effective response and to “Build Back Better” in recovery, rehabilitation,
and reconstruction [5]. As the Sendai Framework indicates, understanding disaster risk is important.
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Quantifying disaster resilience is one of the methods that is used to understand disaster risk.
It has been carried out in many research fields, including structural engineering, social science,
and economics [6–9]. However, due to the complex concept of resilience, refining and developing a
more applicable model is still an ongoing issue [10]. In particular, considerable research focuses on
examining the components of the physical and built environment, while overall disaster impact should
be measured by the interaction of the two aspects of resilience: physical and social [11–13]. The social
resilience focuses on the economic and cultural aspects; however, there has been little attention
paid to identifying and assessing various attributes for defining social resilience [14]. This creates
difficulties when applying social characteristics to the disaster management decision-making process.
Thus, it is necessary to include and examine the social aspects in order to comprehensively understand
disaster resilience. The assessment model should provide practical results so that it can be discussed
for actual use, as well as allow for further development of the model itself in relation to its
determinants [6,7,15].

This paper develops a practical assessment model of social resilience through the following
steps: (1) examine appropriate variables considered to be related to disaster damage; and (2) analyze
the impact of spatial heterogeneity of the social attributes by using the Geographically Weighted
Regression (GWR) method. A general model for disaster is developed, and a case study involving a
natural disaster (a flood) is used for the experiment. Conducting an experimental case study on the
Seoul Metropolitan Area (SMA), the authors propose meaningful variables to the resilience during the
flood event and distinguish the relationship between the disaster damage and the social resilience.

2. Literature Review

2.1. Physical and Social Resilience

The general concept of resilience emerged from several research studies, ranging from
environmental research to material science and engineering, psychology, and sociology. As the
concept has been studied extensively, the definition varies depending on the researchers. Holling [16]
and Perrings [17] defined resilience as the capacity to absorb stress and shock, embracing the
concept of sustainability. Wildavsky [18] defined resilience as the ability to bounce back, coping
with unanticipated dangers. Horne and Orr [19] explained that system resilience is the ability of
individuals, groups, organizations, and the system as a whole to withstand stresses. Tinch [20]
specified similar measures, such as stability, persistence, resistance, non-vulnerability and resilience,
while Rose [3] distinguished two types of resilience: inherent resilience in normal circumstances,
and adaptive resilience in crisis situations. As such, the definition of disaster resilience is an ongoing
topic by researchers.

Traditionally, such resilience studies focused on physical resilience. McAllister [21] addressed
resilience related to the built environments during and after disaster events. The objective of the
research was to investigate and improve the performance or capacity of the built environment and
infrastructure systems while facing to the disaster. Bosher [22] defined the built environment as a
tool to cope with the impacts of disaster demands and to mitigate effects of the disaster for the more
sustainable city.

While most of the studies primarily focused upon the physical conditions, social, economic,
cultural, and educational aspects were also acknowledged to be the cause of physical damage [23]:
an alternative paradigm with social perspective emerged recently. The susceptibility of people and
communities exposed, along with their social, economic, and cultural abilities against the damages,
were considered as the part of this approach [24]. Cutter et al. [12] used social indexes for discovering
social vulnerability from disaster. Bruneau et al. [25] defined resilience as the ability of social units
to mitigate hazards for earthquake disaster. They divided resilience into three aspects: the ability to
reduce failure probability, the ability to reduce consequences from failures (e.g., lives lost, damage,
and negative economic and social consequences), and the ability to reduce recovery time to the
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before-disaster level. The study involved both pre-disaster measures that seek to prevent damage and
losses, and post-disaster strategies that cope with minimizing disaster impacts.

2.2. Assessment Model Review

The authors reviewed a range of assessment models on vulnerability and social resilience, and
selected models that have variables related to the following categories: human, community, economic,
and organizational. The principal used to choose assessment models were brought out by the works
of Bruneau et al. [25] and Norris et al. [8]. As the study focuses on the social-economic part of
disaster resilience, the technical dimension was excluded as it was defined as the ability of physical
systems and components [25]. 10 assessment models were selected among previous studies (Table 1).
Although it was possible to check social resilience-related variables through a model review, it could
be said that, currently, social resilience studies in disaster management research are mostly limited
in their conceptual model building. The previous studies provided various indicators that can have
a relationship with disaster resilience; however, it is still difficult to understand the actual influence,
or significance, of the variables to the resilience [26]. This creates difficulties in applying social
characteristics to the disaster management decision-making process. Therefore, it is necessary to
develop an assessment model for more practical implementation so that it can explain the impact
of socio-economic attributes to the resilience, and thus be prepared for the hand-on use against the
disaster events.

Table 1. Assessment model review.

Type Model Details

Foreign

Risk Vulnerability
Assessment Tool (RVAT)

The RVAT was developed by the National Oceanic and Atmospheric Administration
(NOAA). It is a tool that helps to identify people, property, and resources that are at
risk of injury, damage, or loss from hazardous incidents or natural hazards [27].
The model consists of variables such as age, ethnic inequality, and poverty.

European Spatial Planning
Observation Network

(EPSON)

The EPSON project published a risk assessment based on historical tsunami events and
seismic hazards. It was set up to support policy development and to build a European
scientific community in the field of territorial development [13]. The model consists of
variables such as population density, age, education, and regional affordability.

Flood Vulnerability Index
(FVI)

The FVI is an index for assessing vulnerability to flood disasters that can be applied at
the river basin level. The main objective of the FVI is to be useful in versatile
applications for policy-making on flood disasters by governmental decision-makers
[28]. The model consists of variables such as population density, age, and poverty.

Baseline Resilience
Indicators for Communities

(BRIC)

The BRIC is an empirically-based resilience metric that was developed to compute
related indicators for use in a policy context [29]. The model provides a
conceptualization for understanding and measuring community-level resilience to
natural hazards. The model consists of variables such as age, foreigners, and disability.

The United States Agency for
International Development
(USAID) resilience domain

framework

USAID has adapted a resilience domain framework and identified a number of
potential indicators under each domain. The key points of this model are that
resilience is not an outcome, but a capacity that influences outcomes, and should be
measured at multiple levels. The model consists of variables such as age, education,
and social assistance.

Disaster Resilience
Leadership Academy

(DRLA)—State University of
Haiti (UEH) Model

The DRLA/UEH model was developed by the DRLA in partnership with the UEH.
It measures the connection between an event, humanitarian assistance and resilience
in seven dimensions: wealth, debt and credit, coping behaviors, human capital,
protection and security, community networks, and psychosocial status. The model
consists of variables such as education, social assistance, and crime/security.

Food and Agriculture
Organization (FAO)

resilience framework

The FAO resilience framework looks at the root causes of household vulnerability
instead of trying to predict how well households will cope with future crises or
disasters. The aim of the model is to provide information for decision-makers to
objectively target their actions and measure their results over time. The model consists
of variables such as education, social assistance, and health access.

Domestic (Korea)

The National Emergency
Management Agency

(NEMA) of South Korea

The NEMA of South Korea published an assessment on regional safety from disasters
[30]. The model consists of variables such as population density and disability.

Park (2006), Lee et al. (2006)

Some domestic research models were studied [31,32]. Most of the indicators are
focused on the physical aspects of the geology and hazard, some measures are related
to community characteristics, opening its potential to consider social resilience.
The model consist of variables such as population density and housing asset.
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3. Research Methodology

This paper consists of two major parts: the variable selection and spatial heterogeneity analysis
(Figure 1). For the variable selection, a review of previous assessment models was firstly carried out to
compose a list of candidate variables. Then, a survey of field experts was conducted to identify the
appropriate variables. Using the evaluated variables, a spatial heterogeneity analysis was performed.
The GWR method was used to check the spatial difference of local disaster resilience on social aspects.
In this study, flood scenarios were applied to understand the resilience of the developed model to the
local disasters.
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3.1. Variable Selection

To measure the spatial heterogeneity of regional social resilience, appropriate and applicable
variables needed to be selected as a first step. As shown in the literature review section, the authors
reviewed 10 related research models, specifically focusing on a common set of social resilience-
and vulnerability-related attributes. A total of 22 variables were identified from the reviewed
models, and the variables were then grouped into four categories: human, community, economic,
and organizational (Table 2). Variables from RVAT, EPSON, and FVI are majorly human related,
and USAID, DRLA/UEH, and FAO included community and economic variables. The domestic
studies included some variables that were related to the organizational category. The BRIC model
discussed variables from the four categories at a conceptual level.

With the determined 22 variables, the authors then conducted a survey for further variable
selection. As the central government (i.e., the Ministry of Public Safety and Security, the Ministry of
Land, Infrastructure and Transport) and local government (i.e., Seoul Metropolitan Government) play
major roles in disaster management [33], the survey participants have been selected in both fields on the
basis of recognition for their administrative expertise in disaster management. 35 experienced persons
of government organization evaluated the variables in the survey. The average work experience of
the survey participants was 10.58 years, from senior staffs to general managers. The survey asked the
importance of each variable to the regional resilience with Likert scale from 1 (never important) to
7 (most important). As a result, the average score of all 22 variables was 4.48, and 10 variables having
the score above the average were selected as being significantly important.

The correlation analysis was then conducted using 10 proxy variables (Table 3), since both
correlation and multicollinearity analysis needed to be carried out to perform the GWR analysis.
Many datasets were collected from Statistics Korea (KOSTAT). In this study, the variable ‘age’ was
considered as vulnerable age, thus the number of residents under 5 and over 65 was used for the test.
The number of international marriages was counted for ethnic inequality, and the number of social
assistance recipients was counted for poor. The number of administrative officers was considered
as ‘administrative work’ that explains the administrative working or supporting power for a region.
‘Political power’, the strength of the opinion of the region, was measured by the voting rate of each
region. Some of the datasets (social assistance, regional affordability, business environment, population
wellness) have been collected from ‘Seoul Survey’ by Seoul Statistics that makes 227 indexes regularly
for governmental decision-making.
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Table 2. Variables listed from the previous assessment models.

No. Category Variable RVAT EPSON FVI BRIC USAID DRLA/UEH FAO NEMA Park et al. (2006) Lee et al. (2006)

1

Human

Population Density
2 Age
3 Ethnic Inequality
4 Foreigner
5 Disability
6 Poor
7 Education

8

Community

Social Assistance
9 Political Power

10 Crime/Security
11 Health Access
12 Population Wellness
13 Migration

14

Economic

Housing Asset
15 Income
16 Homeownership
17 Employment
18 Female Participation
19 Business Environment

20
Organizational

Administrative Work
21 Regional Affordability
22 Shelter Capacity
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The Pearson correlation was checked through the implementation by IBM SPSS Statistics 22.0,
and a total of five out of 10 variables that had a p-value less than 0.05 were identified to have a
significant correlation with the inundated areas during the flood events in Seoul in 2010: population
density, age, ethnic inequality, disability, and administrative work. The selected variables were then
examined to see whether multicollinearity existed between the variables. The variance inflation factor
(VIF) was used to assess the multicollinearity. Generally, if the VIF result is less than 10, it can be
assumed that there exists no multicollinearity, meaning that it will not significantly influence the
stability of the parameter estimates [34]. The VIF scores of the five variables ranged between 1.096 and
3.357. Thus, all five variables were determined to be used for the regression model.

Table 3. Variable selection by survey, correlation analysis, and multicollinearity test.

No. Variable Survey
Result

Selection
(Above Average)

Pearson
Correlation Sig. (2-Tailed) VIF N

1 Population Density 6.514 O 0.113 * 0.020 1.096 423
2 Age 5.371 O 0.105 * 0.031 3.357 423
3 Ethnic Inequality 4.771 O 0.266 ** 0.000 1.183 423
4 Foreigner 3.829
5 Disability 5.086 O 0.100 * 0.039 3.238 423
6 Poor 4.429
7 Education 3.114
8 Social Assistance 3.800
9 Political Power 3.486

10 Crime/Security 4.057
11 Health Access 5.314 O −0.021 0.667 423
12 Population Wellness 4.657 O −0.033 0.500 423
13 Migration 4.714 O 0.028 0.560 423
14 Housing Asset 3.714
15 Income 3.800
16 Homeownership 3.743
17 Employment 3.600
18 Female Participation 3.457
19 Business Environment 4.371
20 Administrative Work 5.429 O 0.152 ** 0.002 2.255 423
21 Regional Affordability 5.429 O −0.043 0.381 423
22 Shelter Capacity 5.886 O 0.010 0.845 423

* Correlation is significant at the 0.05 level (2-tailed); ** Correlation is significant at the 0.01 level (2-tailed).

3.2. Geographically Weighted Regression

GWR is a spatial analysis technique that captures the variation of spatial data to analyze the
relationships of points in space [35]. The topological, geometric, or geographic property information
can be used for GWR analysis. Through analyzing the spatial dependency of each variable, it is possible
to derive information on spatial relationships. The variables can be sorted into independent and
dependent types. The relationship between the two types of variables provides information on the
spatial heterogeneity. Thus, estimated parameters can be generated for each spatial point through the
GWR technique [36]. The equation for the regression model and the estimator is described below:

yi = β0(i) + β1(i)x1i + β2(i)x2i + · · ·βn(i) xni + εi

β′(i) = (XTW(i)X)
−1

XTW(i)Y
(1)

where i denotes the coordinates of the points in space, and W(i) is a matrix of weights specified to
location i, such that observations nearer to i are given greater weight than others. β represents the
vector of global parameters to be estimated, y is a vector of observations on the dependent variable,
and X is a matrix of independent variables. This equation can check the spatial heterogeneity of local
disaster resilience on social aspects.

Software called GWR4 was used, which was developed and programmed by Professor Tomoki
Nakaya of the Department of Geography, Ritsumeikan University, Kyoto in Japan [37]. The GWR4
software provides features for model fitting, including conventional Gaussian models and generalized
linear models such as geographically weighted Poisson and logistic regression models. In this study,
the adaptive bi-square kernel method was used for geographical weighting to estimate local coefficients
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and a bandwidth size as the observation points of the studied regions consist of irregular distances.
The adaptive spatial kernels can reduce the difficulty of estimating parameters due to insufficient
variation in small samples by allowing for variations in the density of the data [38]. To clarify local
extents for model fitting, the bi-square kernel was selected as it evidently separates non-zero weighting
kernels. The bi-square function is considered as a popular choice for the kernel function, in which
observations with distances greater than the bandwidth are zero weighted and excluded from any
calculation [39,40]. The golden-section search was then applied to automatically search for the optimal
bandwidth size. The optimal bandwidth size is determined by means of comparison of model selection
indicators with different bandwidth sizes using AICc and AIC (Akaike’s Information Criterion) as a
measure to assess the model fitness [41].

The software also provides ordinary least square (OLS) modeling results; it is useful to compare
both the GWR and OLS results. The OLS is a method used to estimate parameters in a linear regression
model. It uses the method to minimize the sum of squares of the differences between the observation
and prediction of variables. The method provides minimum variance estimation under the assumption
that errors are normally distributed.

4. Experimental Results

4.1. Case Study Region

Seoul is a city with an intense concentration of political, economic, and other urban functions.
Lloyd’s City Risk Index 2015–2025 analyzed the potential impact on the economic output of 301 of the
world’s major cities from 18 manmade and natural threats [42]. Seoul was evaluated as being third
out of 301 cities for all of the threats, including flood. The expected economic loss is $103.5 billion
dollars—2.27% of the total sum of all cities. Nearly 24 million of the nation’s population is settled
around the city. There are 25 autonomous districts and 423 administrative “dong” units in Seoul
(see Figure 2). Its population is dense, and its buildings and underground networks are intricately
structured. Flooding in such a city would result in considerable loss, as well as prohibitive costs and
restoration time. In Korea, two thirds of the annual rainfall is typically concentrated during the wet
season, from June to September, usually in the form of monsoons, typhoons, or torrential rains.
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4.2. Data Collection and Preprocessing

The data used in the case study were collected through public sources. The data of five proxy
variables for regression analysis were collected by accessing the Seoul Metropolitan Government
department and government websites. The flood-damage data (i.e., inundated area information) were
collected through each district offices. Most of the districts only stored the flood-damage data for 2010
and 2011, where Seoul experienced huge storms and heavy rainfalls. The authors used the data of
inundated records for 2010 in Seoul.

Before performing regression analysis, all data were standardized to avoid the errors caused by the
unit size difference of each variable. Table 4 provides details of the standardization information of proxy
variables. In addition, the geographically weighted regression analysis requires coordinates of every
data point. In this study, the UTM-K (GRS-80) coordinate system, which is the coordinate designed for
the GIS shape file of Seoul districts, was used for the GIS projection of QGIS (Quantum GIS) software.

Table 4. Details of proxy variables.

Variable
Raw Data Standardized Data

Mean Std. Dev. Mean Std. Dev. Min Max

Y Inundated Records 47.34 109.32 0.00 1.00 −0.43 10.28

X

Population Density 24,928.70 12,384.70 0.00 1.00 −1.94 3.28
Disability 943.03 480.48 0.00 1.00 −2.43 3.20

Age (under 5, over 65) 3859.92 1512.13 0.00 1.00 −1.90 5.80
Administrative Work 15.87 2.51 0.00 1.00 −2.74 4.03

Ethnic Inequality 53.44 49.00 0.00 1.00 −1.07 8.40

4.3. Geographically Weighted Regression (GWR) Results

The GWR analysis was performed by using the GWR4 software. The dependent variable
was inundated records from 423 sub-districts, and five variables (population density, disability,
age, administrative work, and ethnic inequality) were independent variables. As a result, Seoul’s
resilience heterogeneity to flood disaster in 2010 was discovered. Figure 3 shows the distribution
of significant coefficients. The areas with positive coefficients are in green, whereas the negative
coefficient areas are in red. Non-significant areas (i.e., confidence interval 90%) are colored in light-grey.
Figure 4 shows the proportion of these coefficients by signs in a bar chart.

In Figure 4a,c–e showed a tendency towards the positive signs. This means that the population
density, disability, administrative work, and ethnic inequality are directly proportional to the disaster
damage. Thus, these variables should be considered to control the social resilience; for example,
whether a region has too high population density or high ethnic inequality levels. On the other hand,
the vulnerable age (under 5, over 65), (Figure 4b), was negatively proportional to the disaster damage.
It can be interpreted that the damaged regions have less residents in vulnerable ages, or the regions
without damage have more residents in vulnerable ages. In the analysis, the result of administrative
work shows that more damage occurs when there are more administrative officers. Since the growth
in the size and complexity of government may make mistakes more easily and frequently, it can cause
greater damage [44]. Defective administrative decision making also tends to cause ineffective and slow
implementation of disaster management [45].
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Figure 5 shows the relationship between the significant coefficients from the assessment and the
inundated records by districts. The x-axis is the damage of each district (inundated records by flood
disaster), while the y-axis is the significance of each variable for districts. Each point plotted on the
graph indicates each district. The trend line shows the existence of relationships between the disaster
damage and the significant coefficients. In other words, the more damaged the area is, variables get
more significance for the damage.
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Table 5 explains further details of the assessment results. st indicates the proportion of significant
areas by districts from the total 423 districts. p(+) and n(-) represents the significant coefficient’s
positive and negative signs. For all of the variables, Gangseo-gu had the highest significant coefficients
over 0.045. 10 districts (i.e., Dobong-gu, Eunpyeong-gu, Gangbuk-gu, Gangdong-gu, Jongno-gu,
Jung-gu, Jungnang-gu, Seodaemun-gu, Seongbuk-gu, and Yongsan-gu) turned out to have no
significance. Here, the districts that are significant can be grouped into three types. One is the
district with only positive signs. Three districts (i.e., Gangseo-gu, Guro-gu, and Yangcheon-gu)
had positive significance for population density. This means that these areas’ population density
is directly proportional to the disaster damage. Another is the districts that have only negative
signs. For example, seven districts (i.e., Dongjak-gu, Gangseo-gu, Guro-gu, Gwanak-gu, Seocho-gu,
Yangcheon-gu, and Yeongdeungpo-gu) had negative significance for age. This means that these areas’
vulnerable age population is negatively proportional to the disaster damage. The other is the districts
with both signs. For example, two districts (i.e., Dongjak-gu and Gwanak-gu) had both positive and
negative significance for ethnic inequality. This means that the relationship between disaster damage
and ethnic inequality varies among sub-districts. The third type of districts should be monitored more
carefully since the level of social resilience cannot be determined uniformly.
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Table 5. Results of assessment model by districts.

Districts No. of Sub-Districts Inundated Records
Population Density Age Disability Administrative Work Ethnic Inequality

st p(+) n(-) st p(+) n(-) st p(+) n(-) st p(+) n(-) st p(+) n(-)

Dobong-gu 14 2 - - - - - - - - - - - - - - -
Dongdaemun-gu 14 59 - - - - - - - - - 0.002 - 0.002 - - -
Dongjak-gu 15 908 0.005 - 0.005 0.024 - 0.024 0.019 0.019 - 0.012 0.012 - 0.017 0.014 0.002

Eunpyeong-gu 16 459 - - - - - - - - - - - - - - -
Gangbuk-gu 13 228 - - - - - - - - - - - - - - -

Gangdong-gu 18 1756 - - - - - - - - - - - - - - -
Gangnam-gu 22 355 0.009 - 0.009 0.007 0.007 - 0.002 0.002 - - - - 0.002 0.002 -
Gangseo-gu 20 3126 0.047 0.047 - 0.045 - 0.045 0.045 - 0.045 0.045 0.045 - 0.047 0.047 -

Geumcheon-gu 10 418 - - - - - - - - - - - - 0.017 0.017 -
Guro-gu 15 496 0.014 0.014 - 0.012 - 0.012 0.012 0.012 - 0.021 0.021 - 0.017 0.017 -

Gwanak-gu 21 2309 0.012 - 0.012 0.012 - 0.012 0.017 0.017 - 0.012 0.012 - 0.038 0.035 0.002
Gwangjin-gu 15 1508 - - - - - - - - - 0.021 - 0.021 - - -

Jongno-gu 17 99 - - - - - - - - - - - - - - -
Jung-gu 15 249 - - - - - - - - - - - - - - -

Jungnang-gu 16 268 - - - - - - - - - - - - - - -
Mapo-gu 16 730 - - - - - - - - - 0.017 0.017 - 0.002 - -

Nowon-gu 19 6 - - - - - - - - - - - - - - 0.000
Seocho-gu 18 2103 0.017 - 0.017 0.024 0.005 0.019 0.031 0.031 - 0.012 0.012 - 0.026 - 0.026

Seodaemun-gu 14 182 - - - - - - - - - - - - - - -
Seongbuk-gu 20 55 - - - - - - - - - - - - - - -
Seongdong-gu 17 126 - - - - - - - - - 0.009 - 0.009 - - -

Songpa-gu 26 360 - - - - - - - - - - - - 0.009 0.009 -
Yangcheon-gu 18 2876 0.043 0.043 - 0.026 - 0.026 0.024 0.007 0.017 0.040 0.040 - 0.028 0.028 -
Yeongdeungpo-gu 18 1235 - - - 0.007 - 0.007 0.007 0.007 - 0.009 0.009 - 0.028 0.028 -
Yongsan-gu 16 111 - - - - - - - - - - - - - - -

Average 16.92 20024 0.147 0.104 0.043 0.156 0.012 0.144 0.156 0.095 0.061 0.201 0.168 0.033 0.232 0.201 0.031
Total 423 800.96 0.006 0.004 0.002 0.006 0.000 0.006 0.006 0.004 0.002 0.008 0.007 0.001 0.009 0.008 0.001
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4.4. Validation

The performance of the GWR model can be evaluated by the estimated local R2 and standard
residuals. Figure 6a shows the distribution of local R2 values. Local R2 values range between 0 and 1,
indicating how well the GWR model fits the observed y value [46]. The higher value means that the
local model is performing well, whereas the lower value means that the model failed to perform well
for the given region. 189 regions were estimated to have higher classes of local R2 values (above 0.46).
These regions fit the model to the observed inundated records. Figure 6b shows the distribution of
standard deviations of residuals. It represents that the assessment model fails to explain if the value is
under −2.5 or over 2.5. Six sub-districts had standard residuals higher than 2.5 or lower than −2.5;
thus, apart from these areas, the assessment model can explain the relationship between disaster
damage and social aspects.
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The comparison between the results of the OLS and GWR models can also be used for performance
evaluation (Table 6). The OLS model refers to the global model, and the GWR model refers to the local
model. The Akaike’s Information Criterion (AICc) was used as a measure to assess the model fitness.
The corrected AICc is information-based criteria that assess model fit. The AICc is computed from the
measure of the divergence between the observed and fitted values, and the measure of the complexity
of the model. AICc can be defined as follows:

AICc = −2 log Likelihood + 2k + 2k(k + 1)/(n− k− 1) (2)

k is the number of estimated parameters in the model and n is the number of observations in the
dataset. These values can be used to compare various models for the same data set to determine the
best-fitting model. The model having the smallest value, as discussed in Akaike [41], is usually the
preferred model.

The global model’s AICc value was 1178.13, and the local model’s AICc value was 1082.39;
thus, the difference of 95.74 is the strong evidence of improvement in the model fit to the data [41].
The global r-squared value was 0.08 and the local r-squared value was 0.61, which suggests that there
has been improvement in the model performance. Thus, the local model (GWR) performs better than
the global model (OLS).
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Table 6. Results of ordinary least square (OLS) and Geographically Weighted Regression (GWR)
analysis model.

No. Variable
Global, OLS (n = 423) Local, GWR (n = 423)

Coefficient Standard Error T(Est/SE) Mean STD

1 Population Density 0.054 0.049 1.092 0.027 0.225
2 Age −0.021 0.086 −0.244 −0.226 0.418
3 Disability −0.052 0.085 −0.610 0.104 0.479
4 Administrative Work 0.126 0.071 1.790 0.162 0.314
5 Ethnic Inequality 0.236 0.051 4.620 0.266 0.671

R2 0.081 0.612

AICc 1178.13 1082.39

To verify the result of variable significance, survey results were used to compare with the analysis
result qualitatively. The survey results found that the most important feature was population density,
and the following variables were administrative work, age, disability, and ethnic inequality. However,
the GWR model found that the most important feature was ethnic inequality, and the following
variables were age, administrative work, disability, and population. In addition, the OLS model
also found the most important variable to be ethnic inequality, followed by administrative work,
population density, disability, and age. Ethnic inequality turns out to be the most important feature by
the assessment model, with the significant relationship to the disaster damage. This can explain that
multi-cultural families or foreign residents may have less social resilience than others, which were not
identified by the field expert survey.

The authors also interviewed three disaster management experts from the sewerage treatment
division at Seoul Metropolitan Government for further validation of the results. First of all, they agreed
with the concept of quantifying each related variable’s influence by each community for social resilience.
Currently, physical aspects, for example, road runoff, and drainage system capacity for storm and flood
disaster, are the major considerations for decision making and project planning. Recently, attempts to
include social aspects in the decision-making process have been made but with insufficient information.
Thus, the developed model in this study could gain an affirmative answer. Also, comments on the
regions with significant coefficients were made. Historically, during the 70s–80s’ Seoul development
plans, inhabitants living without permission after the Korean War were displaced to public land. At the
time, most of this public land comprised lowlands, located beside the Han River. Since the lowlands
usually act as a storm or flood retarding basin, the land value was low. This could possibly have a
relationship with the characteristics of the population living there nowadays. Thus, the variables seem
to have a significant relationship with social resilience during a storm and flood disaster.

5. Conclusions

The study developed an assessment model of social resilience through examining appropriate
variables that were considered to be related to the disaster damage, and analyzing the impact of
spatial heterogeneity of the social attributes by using the GWR method. Through an experimental
case study of the SMA, the authors suggested variables that were related to the flood events and
distinguished the relationship between the disaster damage and the social resilience. Firstly, a total
of 10 variables were suggested to be significant to flood and storm disaster losses. Through the
correlation and multicollinearity test, five variables (i.e., population density, vulnerable age, population
with a disability, administrative work, and ethnic inequality) were selected as the final variables
for the analysis method. Secondly, the spatial heterogeneity was measured on the scale of social
resilience using the GWR analysis. The results were visualized by the GIS platform using QGIS
(Quantum GIS) software. Thirdly, an assessment model was developed, and the positive or negative
signs of coefficients were discussed to analyze the relationship between social resilience and each
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variable. The quantitative and qualitative validations concluded that the developed assessment
model has significant potential for disaster planning, yet more challenges should be solved, such as
looking for missing explanatory variables, or combining both physical and social aspects of resilience.
However, discovering significance between disaster damages and social indicators by conducting
a case study using a proxy variable is meaningful apart from conceptual frameworks or survey
results. The proposed model identifies the relationship between disaster damages and the social
indicators by estimating a set of local parameter coefficients for each observation point using GWR.
Thus, it is possible to identify practical values for social resilience, for example, whether the indicator
has a small or big value, or a direct or indirect proportional effect on disaster damage is determined by
using the developed model.

The understanding of regional social aspects can support the disaster management
decision-making process. More specifically, disaster managers can determine the need for external
assistance by using the information. For example, over 70 percent of the fatalities from Hurricane
Katrina were represented by individuals aged 65 and older [47]. This suggests that it is necessary to pay
attention to the residents in vulnerable ages. The study can support governments and decision-makers
to develop and implement a policy that moves from a reactive response to a more proactive approach
focusing on the level of preparedness of different districts. The study could also support answering to
equity-related residential complaints by providing practical information as a reference, which is the
estimated local parameter coefficients of social resilience: the relationship between disaster damages
and social indicators.

In this study, the results show that population density, disability, administrative work, and ethnic
inequality had positive relationship with the flood damage. From the assessment, it can be derived that
areas with more density, disabled population, administrative officers, and multi-cultured population
are likely to suffer from the disaster. Hence, these variables should be additionally considered for
mitigation project planning. The developed model can be applied to countries or regions that needs an
investigation of regional difference on social resilience. The model can strongly perform if there is a
significant difference between observation points when compared to the global models. The countries
having a possible difference in social aspects across regions could have advantages by adopting this
model for their disaster management.
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