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Abstract: Given its proximity to an artificial oasis, the Donghu Nature Reserve in the Dunhuang
Oasis has faced environmental pressure and vegetation disturbances in recent decades. Satellite
vegetation indices (VIs) can be used to detect such changes in vegetation if the satellite images are
calibrated to surface reflectance (SR) values. The aim of this study was to select a suitable VI based
on the Landsat Climate Data Record (CDR) products and the absolute radiation-corrected results
of Landsat L1T images to detect the spatio-temporal changes in vegetation for the Donghu Reserve
during 1986–2015. The results showed that the VI difference (∆VI) images effectively reduced the
changes in the source images. Compared with the other VIs, the soil-adjusted vegetation index (SAVI)
displayed greater robustness to atmospheric effects in the two types of SR images and was more
responsive to vegetation changes caused by human factors. From 1986 to 2015, the positive changes in
vegetation dominated the overall change trend, with changes in vegetation in the reserve decreasing
during 1990–1995, increasing until 2005–2010, and then decreasing again. The vegetation changes
were mainly distributed at the edge of the artificial oasis outside the reserve. The detected changes in
vegetation in the reserve highlight the increased human pressure on the reserve.
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1. Introduction

Dunhuang was an important stop on the ancient Silk Road. Today, it is a famous cultural heritage
city. This city is located in Northwestern China in the Western Hexi Corridor in Gansu Province;
it lies within the triangle formed by Gansu, Qinghai, and Xinjiang Provinces [1–9]. In recent decades,
the water-based geological and environmental problems of the Dunhuang basin have worsened,
as indicated by the decline of its wetlands and the degradation of its vegetation. The Dunhuang
Xihu, Nanhu, Beihu, and Donghu Nature Reserves were established to maintain a natural “green
barrier” to protect the ecological diversity and environment of the desert oasis [3,4,10]. The Donghu
Nature Reserve is located to the east of Dunhuang and near the artificial oasis; it connects between the
Guazhou Oasis and the Dunhuang Oasis (Figure 1) and is of considerable importance to the stability
of the two oases.
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Figure 1. The study area is defined by a 2-km buffer that surrounds the Donghu Nature Reserve in
Dunhuang (red dotted line). The map on the left is a false-color composite Landsat TM image made up
of bands 6, 5, and 4 (i.e., the SWIR1, NIR, and red bands, respectively) for 2015.

The increasing environmental pressure on the Donghu Nature Reserve is primarily due to
uncontrolled human exploitation of the area and its water resources. In the 1960s and 1970s, the
upper reaches of the Shule River and the Dang River were dammed. This intervention caused sections
of the rivers to be cut off, reduced the area of wetlands, and caused the decline and die-off of natural
vegetation in the reserve [5–9]. In addition, continued increases in the population, the area of the
artificial oases [11], and the large-scale planting of cotton, grapes, and other crops that consume large
amounts of water in Dunhuang caused a surge in agricultural irrigation. Much of the groundwater
has been exploited, leading to a continuing decline in groundwater levels. The problem of water
shortages in the nature reserve has become increasingly prominent [3,4]. Protected areas are important
for the sustainable economic development of the region [5,8]. The environmental problems of the
protected areas in Dunhuang have attracted widespread attention. However, most of the research on
the protected areas has focused on the Xihu Reserve [5–8] and Nanhu Reserve [9], with few studies
addressing the Donghu Reserve. Detection of historical changes in the vegetation of the Donghu
Nature Reserve over the last 30 years could help the government understand the historical landscape
of the reserve. Understanding these changes in vegetation would facilitate identifying the drivers
of recent vegetation changes in the Donghu Reserve and provide a reference for research into the
vegetation of other reserves.

Vegetation is the primary component of terrestrial ecosystems, and it is a natural medium
that connects soil, air, and moisture. It also represents the general status of the environment in
a region and acts as an indicator that is used in global change research [12,13]. Vegetation indices
(VIs) are important remote sensing (RS) parameters because they reflect the status of vegetation
through the digital combination of information from diverse spectrum bands, especially the visible
and near-infrared bands. VIs reflect the collective status of chlorophyll, leaf area, coverage, and
canopy structure [14,15]. Repeated VI images of the same area can be used to measure variations in
the bio-physical characteristics of vegetation, including vegetation coverage. The difference between
a later image and an earlier image is called the VI difference (∆VI) [16]. In a ∆VI image, the unchanged
pixels surround the mean value of 0, whereas the changed pixels cluster at the positive and negative
ends of the distribution.
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Many external factors must be considered when analyzing images of the same area taken at
different times; these factors include the soil background, atmospheric conditions, topography,
illumination, observation angles, and sensor calibration, all of which can affect the Vis’ values [17,18].
These factors often contribute substantial amounts of noise, which can affect the results of applying
the VI values. To accurately evaluate changes in a VI, the images must be calibrated to surface
reflectance (SR) data to eliminate or reduce the influence of atmospheric conditions [19,20]. The
methods used to invert the true reflectivity of features include both relative and absolute radiation
corrections. The FLAASH model is based on the MODTRAN5 radiation transmission model and is
commonly used to perform absolute radiation corrections. This model obtains SR values with relatively
high accuracy [21]. Landsat’s advanced CDR products provides SR images from the TM sensor [22].
The provisional Landsat 8 Surface Reflectance Code (LaSRC), which employs Moderate Resolution
Imaging Spectroradiometer (MODIS) data, is distinctly different from the algorithm used by the USGS
to process TM L1T products to obtain SR values [23,24].

The overall goal of the present study was to detect spatio-temporal changes in vegetation in the
Donghu Reserve using seven Landsat datasets from different time points (1986, 1990, 1995, 2000, 2005,
2010, 2015). The specific objectives were: (1) explore the impact of the differences between the VIs
produced using the CDR products and the results of absolute radiation corrections of the Landsat L1T
images on the inferred vegetation changes in the reserve, (2) determine a suitable VI for assessing the
vegetation changes within the study area, and (3) analyze the historical changes in the vegetation of
the reserve from a spatio-temporal perspective. The present study provides a basis for the study of
vegetation changes in other reserves.

2. Study Area and Data

2.1. Study Area

The Donghu Nature Reserve (40◦7′51”–40◦28′58” N, 94◦47′45”–95◦19′41” E) is located along the
Dang River Plain in Dunhuang on the eastern side of an artificial oasis. It covers Yitang Lake, Xindian
Lake, and Daquanwan and has an area of approximately 2.7 × 104 km2. The average elevation of
the reserve is 1110 m, and the average annual precipitation and evapotranspiration are 39.9 mm and
2490 mm, respectively. The reserve has a warm temperate arid climate. The abundances of water and
plants represent barometers of the ecological environment of the desert oasis in Dunhuang, which
has been well protected by the local government and relevant departments for many years. However,
because of its proximity to the artificial oasis, the reserve has been affected by drought and agricultural
production activities. Serious desertification has been observed in the area surrounding the reserve,
reeds and other wetland vegetation have declined, and the plant community has experienced serious
degradation [25]. In addition, the Yitanghu wetland is rich in nitrate and thick shrubs, and many
springs are present in the surrounding area; thus, this area is subject to frequent human activities, such
as mining, grazing, digging, and hunting. These activities have exacerbated the degradation of the
vegetation in the reserve [26]. The boundaries of the Donghu Reserve were extracted based on the forest
resources distribution map of Dunhuang (1:250,000) for 2004. In this study, because the vegetation was
the main object of analysis, the mountains in the reserve were masked out, and the area within a 2-km
buffer surrounding the reserve (shown by the red line in Figure 1) was the main study area.

2.2. Data

The Landsat images used in this study, which cover the period from 1986 to 2015 and are located
at path 137 and row 32, were downloaded from the USGS. The scenes, which were collected by the
Landsat 5 TM and Landsat 8 OLI satellites, have a resolution of 30 m and are terrain-corrected Level
1T products and the corresponding Landsat CDR-SR products. As shown in Table 1, the time period
covered for each year was July to August [11]. This period corresponds to the best phenological period
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for the vegetation. The use of a consistent period avoided differences caused by different seasons and
allowed for the differentiation of different features in the images.

Table 1. Landsat acquisition date and sensor type.

Sensor Path/Row Imaging Time Cloud Cover (%)

Landsat TM5 137/32 1986-07-23 0.05
Landsat TM5 137/32 1990-08-19 8.38
Landsat TM5 137/32 1995-08-17 0.15
Landsat TM5 137/32 2000-07-29 0
Landsat TM5 137/32 2005-07-11 11.04
Landsat TM5 137/32 2010-07-09 7.66
Landsat OLI8 137/32 2015-08-08 0.52

3. Method

The workflow, shown in Figure 2, primarily includes data preprocessing, evaluation of the
FLAASH atmospheric correction, the calculation of the VIs and ∆VIs, the extraction of the vegetation
changes based on threshold criteria and the production of maps of the spatio-temporal vegetation
changes. These steps are described in detail below.
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3.1. Data Preprocessing

To ensure that pairs of images occupying the same position had consistent coordinates, image
registration of the different phases was performed when possible to eliminate “pseudo-changes”
caused by geometric errors [27]. A Landsat CDR-SR image obtained on 8 August 2015, was selected as
the reference image; as required, this image largely reflected clear atmospheric conditions. Although
this image did contain cloud-covered areas, the pixels within the study area were not affected [28].
Based on the “Map_Registration_Select GCPs: Image to Image” module in software ENVI v5.1 (Exelis
Visual Information Solutions, Boulder, CO, USA), 42 uniformly-distributed points were selected for
image registration. To ensure the accuracy of the results, surface pixels that were not prone to warpage
and spectral deformation, such as road intersections and inflection points, river confluences, and
buildings that did not change over time, were selected as control points. Using the second-order
polynomial correction, the registration errors were found to be equal to or less than 0.5 pixels.

The digital number (DN) of each image was transformed into radiance by radiometric calibration.
The following conversion formulas were applied to the TM and OLI data, respectively:

L(TM) =
Lmax − Lmin

QCALmax −QCALmin
× (QCAL−QCALmin) + Lmin (1)

L(OLI) = Lmin + (Lmax − Lmin)×DNi/65535 (2)
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where QCAL represents the DN of a pixel; QCALmax and QCALmin represent the maximum and
minimum DN values of the image, respectively; and Lmax and Lmin represent the maximum and
minimum radiance measured by the sensor, respectively. These values were determined from the
metadata of each image.

3.2. FLAASH Atmospheric Correction

FLAASH is an atmospheric correction model that is based on the MODTRAN5 radiation
transmission model and produces high-precision results. The atmospheric properties were estimated
via feature points on the spectrum of the image pixels using the model instead of using atmospheric
data collected at the same time that the images were taken. This process effectively removed scattering
by vapor and aerosols. The pixel-based corrections were also able to rectify the effects of cross radiance
caused by the proximity between the target pixels and adjacent pixels [29]. In addition, the model
performed effective spectral smoothing of the noise caused by artificial suppression, and accurate
parameters of the true physical model, such as reflectivity, emissivity, and surface temperature, were
obtained. The atmospheric corrections used in the FLAASH model are based on the standard planar
Lambertian (or the approximate planar Lambertian) in the range of the solar spectrum in addition to
the thermal radiation [21,29]. In this study, seven images with absolute atmospheric corrections were
produced using the FLAASH module embedded in ENVI 5.1.

3.3. Vegetation Indices

The following four main VIs were tested to determine the applicability of the CDR-SR and the
SR calculated with the FLAASH model (Fa-SR) images: the Normalized Difference Vegetation Index
(NDVI), the Generalized Difference Vegetation Index (GDVI), the Global Environment Monitoring
Index (GEMI), and the Soil-Adjusted Vegetation Index (SAVI). These VIs employ the spectral
information contained in the red (ρR) and near-infrared (ρNIR) bands, which facilitates the delineation
of vegetation compared with the delineation obtained using other bands. The NDVI and GDVI are
ratio indices and derivatives of the Ratio Vegetation Index (RVI) [15]. The SAVI and GEMI use fixed
constants instead of the band ratio model. The NDVI is the most widely used VI [30]. The SAVI can
reduce the impact of the soil background in areas of sparse vegetation [31], whereas the GDVI has
higher sensitivity in areas of sparse vegetation [14]. The GEMI performs well in detecting vegetation
in arid areas [32,33].

Since the differences between the CDR-SR images and the Fa-SR images could potentially affect
the VI images, a correlation analysis and a linear regression analysis of the VICDR images (which were
produced using the CDR-SR images) and the VIFa images (which were produced using the Fa-SR
images) were performed to assess the sizes of these differences.

3.4. Detecting Changes in the Vegetation

The VICDR images were ordered in chronological order, and the ∆VICDR images were produced
by taking the subsequent image (t2) minus the previous image (t1) in pairs of consecutive images [22].
Here, each ∆VICDR included the four ∆VIs produced from the four Vis’ Equation (3): ∆GDVICDR,
∆GEMICDR, ∆NDVICDR, and ∆SAVICDR. Similarly, each ∆VIFa image included the four ∆VIs produced
from the four VIs’ Equation (4): ∆GDVIFa, ∆GEMIFa, ∆NDVIFa, and ∆SAVIFa. A total of 48 ∆VI images
were obtained.

∆VICDR−SR = VICDR−SR,t2 −VICDR−SR,t1 (3)

∆VIFa−SR = VIFa−SR,t2 −VIFa−SR,t1 (4)

Images taken close to the day of the year on which the reference image was taken were selected to
reduce the effects of seasonal variation in vegetation. However, the “pseudo-changes” in vegetation
caused by differences in the annual data could still be captured by the VI images. The four ∆VI
distributions were compared to assess whether such “pseudo-changes” in vegetation caused by



Sustainability 2017, 9, 1780 6 of 13

changes in the annual data had been captured by the CDR-SR images and whether the Fa-SR images
could reduce these effects.

A simple classification extraction was conducted to investigate whether the use of the CDR-SR
images, the Fa-SR images and the different VIs (i.e., the NDVI, the GDVI, the GEMI, and the SAVI)
affected the mapping of the vegetation changes. Generally, an appropriate threshold was selected
to classify the pixels of the ∆VI images as representing a change or no change. Several methods
are available to determine these thresholds [34–36]. Ideally, independent reference data, such as
surface data and high-resolution aerial photographs, would be used to verify the accuracy of the
classifications [37]. However, independent reference data were not available for the study area.
The upper and lower 5% were selected as the final thresholds based on multiple experiments that
combined the field data, Google Earth and visual maps [38]. The upper 5% reflected the positive
changes in vegetation, and lower 5% represented the negative changes. The pixels of the 48 ∆VI images
were divided into two categories, which reflected either changed or unchanged areas [39]. A 3 × 3
median filter was used to reduce the noise of each of the classified images.

The percentage of consistency between the pixels classified as representing the change using the
same threshold in the ∆VICDR images and the corresponding ∆VIFa images was calculated. A high
percentage of consistency would indicate that the method of calibrating the SR had little or no effect
on the number of pixels that were classified as reflecting changed vegetation. Moreover, the choice of
VI can also affect the number of pixels classified as changed; a high consistency shows that the VI has
little effect on the different methods of radiometric correction.

3.5. Historical Vegetation Changes

Based on the results of the above analysis, the ∆SAVIFa images were selected to analyze the
historical changes in vegetation in the study area. The annual change of vegetation was not spatially
invariant over time [22,40]. The changes in vegetation caused by rotation or fallowing of cultivated
land or changes in the growth of natural vegetation manifested as steady changes. In the case of
wasteland reclamation or serious incursions into previously undisturbed areas, the area of change
showed an increasing trend. To investigate these factors, the changed areas (including positive and
negative changes) were calculated.

To determine the spatial changes in the study area, six maps derived from the ∆SAVI images
reflecting the positive and negative changes were created for all the years to increase the likelihood
that all changes in vegetation due to human factors were included.

4. Results

4.1. Comparative Analysis of the VIs

The correlation analysis showed that the four VIs produced using each CDR-SR image displayed
a very strong relationship with the corresponding Fa-SR image (R ≥ 0.986). The highest correlation
was obtained for the SAVI (Rmin = 0.991, 1995a), followed by the NDVI (Rmin = 0.988, 2010a), the GDVI
and the GEMI (Rmin = 0.986, 2010a). The linear regression analysis showed that the largest values of the
slope (a) and offset (b) of the four VIs occurred in 1995 compared with the other years. The differences
between the pairs of images corresponded to the higher RMSE values in 1995. In general, among the
VI images produced from the same CDR-SR images and the Fa-SR images, the lowest values of the
RMSE and the strongest correlations were observed for the SAVI images followed by the NDVI images.

4.2. Impact of Vegetation Changes

To obtain the actual changes in the surface vegetation rather than spurious effects caused by
properties of the images themselves, the areas of vegetation change (including both positive and
negative changes) were extracted through a simple classification experiment. The consistency of the
classification of the changed vegetation in the ∆VICDR images was the percentage of changed pixels
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produced by the CDR-SR images, where the changed pixels were extracted using the CDR-SR images
and the Fa-SR images (Figure 3a). In addition, the percentage of changed pixels produced using the
Fa-SR images, where the changed pixels were extracted by the CDR-SR images and the Fa-SR images,
represented the consistency of changed vegetation in the ∆VIFa images (Figure 3b). The consistency
between ∆VICDR and ∆VIFa was poor when the same threshold (5%) was used. The worst consistency
was obtained in 1995–2000, followed by 1990–1995, which displayed a significant relationship with
the larger slope, offset, and RMSE of the VIs calculated using the two kinds of SR images in 1995.
The consistency of the two kinds of SR images in the other periods exceeded 60%. However, the
changed pixels produced using the CDR-SR images and the Fa-SR images differed among the different
VIs and the different periods. The ∆SAVI images displayed a higher consistency than the other ∆VIs
between the CDR-SR images and the Fa-SR images (Figure 3).
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Figure 3. Comparison of the consistency among the four ∆VIs calculated using the CDR-SR images
and the Fa-SR images: (a) the percentage of changed pixels produced using the CDR-SR images, where
the changed pixels were extracted using the CDR-SR images and the Fa-SR images; (b) the percentage
of changed pixels produced using the Fa-SR images, where the changed pixels were extracted using
the CDR-SR images and the Fa-SR images. Horizontal axis labels indicate the pairs of the two years
used to create the ∆VI images (centuries are not shown).

As shown in Figure 3, the worst consistency in the changed pixels contained in the CDR-SR
images and Fa-SR images was observed in the periods 1995–2000 and 1990–1995, respectively, and large
inconsistencies were observed between the areas of vegetation change obtained using the two types of
SR images. Many small changes in the images themselves were captured by the ∆GDVICDR images in
1995–2000 and 1990–1995 (Figures 4 and 5). These changes were monitored for “pseudo-changes” in
vegetation. These changes were considered to be disruptive to the extraction of vegetation changes and
represented the main reason for the poor consistency. Correspondingly, the ∆VIFa images displayed
better performance in eliminating the changes in the images themselves and more accurately reflected
the changes in vegetation. Most of the areas of the Gobi landscape (Figure 4: Sections A and B; Figure 5:
Section F) and bare rock (Figure 4: Section E; Figure 5: Section G) were monitored for “vegetation
changes” in the ∆GEMICDR images. The changes in natural vegetation caused by changes in water
were also detected by the ∆NDVICDR and ∆GEMIFa images (Figure 4: Section C and D; Figure 5:
Section H). The effect of vegetation changes caused by the soil and image brightness factors were
eliminated more completely from the ∆SAVI images than from other ∆VI images. The vegetation
changes extracted using the ∆SAVI images mainly reflected vegetation changes (either reductions
or increases) in the periphery of the protected area. The corresponding ∆SAVI inconsistent maps
displayed similarly spatial patterns of inconsistent as the ∆NDVI images; however, the affected area
was significantly reduced.
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4.3. Map of Historical Vegetation Changes in the Reserve

The spatial distribution of vegetation changes that occurred from 1986–2015 in the Donghu
Reserve are shown in Figure 6. From 1986 to 1990, the most obvious positive changes in vegetation
occurred mainly near Xihu nitrate ore and a smaller number of changes (including positive and
negative changes) occurred close to Xindiantai, in the southwestern region of the area (Figure 6a).
From 1990 to 1995, the vegetation changes occurred mainly at the edges of artificial oases and were
primarily distributed near the southwest corner of the Donghu Reserve (Figure 6b). The vegetation
changes (including positive and negative changes) gradually appeared in the protected area during
1995–2000, and a large area of positive changes appeared near Yingwoliang, the terminal area of the
Shule River (Figure 6c). From 2000 to 2005, there were a large increase in vegetation near Dongfeng
Farm and Xindiantai in the southwest corner of the reserve, whereas the vegetation near Yingwoliang
showed a marked decrease (Figure 6d). During 2005–2010, the vegetation showed obvious increases
around Yingwoliang and Sangedunzidaoban in the northwest corner of the reserve, and the area of
changes in vegetation was larger in this period than that in the previous period (Figure 6e). From
2010–2015, vegetation changes simultaneously occurred near Yingwoliang and Xindiantai, in the
northwest and southwest corners of the area (Figure 6f).
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As showed in Figure 6, obvious changes in the vegetation in the main part of the reserve occurred
during 1986–1990; fewer obvious changes occurred in the other periods. These findings indicate
that, since 1990, the vegetation in the reserve has generally remained stable. The changed areas
were consistently concentrated in the northwest and southwest corners of the reserve, adjacent to the
artificial oasis, and were easily affected by human activities. The small plots inside the reserve showed
small changes in space and time from 1995–2015.

As is shown in Figure 7, the areas reflecting vegetation changes decreased from 1990 to 1995,
increased after 1995, and then decreased again until 2010–2015. The positive changes in vegetation
showed the same trend as the overall vegetation changes. The area of positive changes was consistently
larger than that of negative changes in the period of 1986–2010, whereas the areas of positive and
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negative changes were similar during 2010–2015. The area of negative changes in vegetation displayed
a slight decrease during 1990–1995, increased after 1995, decreased during 2005–2010, and then
increased again. However, the positive changes in vegetation dominated the overall trend of changes
in vegetation.
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5. Discussion

The high correlations between the various VI images calculated using the CDR-SR images and the
Fa-SR images occurred because the VIs were calculated using a non-linear combination of the red and
near-infrared bands of the SR images. The differences in the offset and slope and the RMSE values were
caused by the different radiation transmission models employed in producing the CDR-SR images
and the Fa-SR images [22,41]. The linear regression analysis of the VIs showed that the atmospheric
correction method used to generate the CDR-SR images and the FLAASH correction method were not
equivalent among the VIs.

Obvious differences in the consistency of the vegetation changes produced using ∆VICDR and
∆VIFa with the same threshold were observed, likely because the CDR-SR images and the Fa-SR
images used to calculate the VIs were extracted using different radiation transmission equations [22,42].
However, the choice of VIs had a stronger effect on the consistency of the pixels that were classified
as changed than the choice of SR images. The ∆GDVI images yielded the worst consistency when
the changed vegetation pixels were extracted using the CDR-SR images and the Fa-SR images with
the same threshold. Among the ∆VI images, the ∆GDVI images were more sensitive to differences in
the images caused by precipitation and different acquisition times; thus, they captured more variable
information [14,15]. These phenomena were more pronounced in the CDR-SR images than in the
Fa-SR images. The ∆GEMI images eliminated some of the differences associated with the images
themselves, although the areas of bare rock and Gobi landscape in the study area were also monitored
for vegetation changes. However, the changed pixels extracted using the ∆NDVI and ∆SAVI images
were found to have little effect on the residual atmospheric correction effect in the images [31,42].
Subtle changes caused by water and natural vegetation were also detected by the ∆NDVI images,
which reduced the ability of the method used here to distinguish the vegetation changes driven by
artificial effects from those produced by natural factors. Since the Donghu Reserve is close to the
artificial oasis, and beacuse protective forest management has been implemented there, the vegetation
changes were mainly caused by human factors [8–10]. Thus, the ∆SAVIFa images were used to detect
and reflect the changes in vegetation in the Donghu Reserve in this study.

The historical vegetation changes in the Donghu Reserve occurred mainly at the edge of the
artificial oasis between 1986 and 2015 (Figure 6). The positive changes in vegetation were consistent
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with the overall trend in vegetation change (Figure 7). According to Xu et al., Zhang et al. [2,11], and
the field investigation, the artificial oasis of the Dang River Plain expanded parallel to the Donghu
Reserve. Over the period from 1986 to 1990, the change in the area of the oasis was very small and had
little impact on the reserve. The positive changes in vegetation occurred primarily near Xihu nitrate
ore, where the vast desert is located, far from the oasis and traffic line and free from human activities;
thus, these changes are likely related to natural factors, especially precipitation. The vegetation
changes decreased during 1990–1995 because a small increase in the area of the oasis occurred, and the
vegetation within the protected area displayed essentially no change during this period. From 1995
to 2010, the artificial oasis near Yingwoliang, Xindiantai, and Dongfeng Farm gradually expanded
and encroached on the reserve, resulting in an increase in the area displaying vegetation changes [2].
During 2010–2015, because of the small change in the area of the oasis, the area of vegetation change in
the study area decreased [11]. The slight changes in vegetation in the southeast of the reserve were
related to the implementation of enclosure management in the region. Since this area is located far
from the artificial oasis, the vegetation changes were less strongly controlled by human factors than the
areas near the oasis. The vegetation changes in the reserve were mainly related to changes in natural
vegetation, and the changes were not obvious.

6. Conclusions

This study showed that the VI images calculated using the CDR-SR images and the Fa-SR images
were strongly correlated (R ≥ 0.986). The differences in the slope and offset were small, but important.
The consistency of the vegetation changes detected using the ∆VICDR and ∆VIFa images was poor
during 1990–1995 and 1995–2000. This poor consistency displayed significant relationships with
the larger slope, offset, and RMSE of the VIs calculated using the two types of SR images in 1995.
However, the consistency of the vegetation changes extracted using the SAVI images was higher than
that obtained with the other VIs, and the ∆VIFa images displayed better characteristics in terms of the
changes in the images themselves compared with the ∆VICDR images (Figure 3).

The resulting vegetation changes extracted using ∆GDVICDR and ∆GDVIFa included many small
changes in the images themselves. Most of the areas of the Gobi landscape and bare rock were
monitored for vegetation changes in the ∆GEMICDR images. The changes in natural vegetation caused
by changes in water were also detected using the ∆NDVICDR images and the ∆GEMIFa images. Thus,
the ∆SAVIFa images were considered to represent the best choice for the extraction of vegetation
changes within the study area.

Changes in vegetation have been occurring in the Donghu Reserve since at least 1986. Obvious
changes in vegetation in the main part of the reserve were only observed in the period from 1986
to 1990, with fewer changes observed in the other periods. These findings indicate that since 1990,
the vegetation in the reserve has generally remained stable. From 1986 to 1990, positive changes in
vegetation occurred mainly near Xihu nitrate ore within the protected area. After 1995, the areas of
changed vegetation (including positive and negative changes) were mainly distributed near Xindiantai,
Dongfeng Farm, and Yingwoliang at the edges of the artificial oasis and along the periphery of the
protected area. Positive changes in vegetation dominated the overall trend in the changes in vegetation,
with changes decreasing during 1990–1995, increasing until 2005–2010, and then decreasing again
during 2010–2015. The trends in vegetation change corresponded strongly with changes in the oasis
area of the Dang River Plain, highlighting the increased human pressure on the reserve. In the present
study, the analysis of changed vegetation was primarily based on Landsat images. Further applications
involving a combination of high temporal and spatial resolution images and hydrological data would
be valuable for analyzing changes in vegetation in the Donghu Reserve.
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