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Abstract: The industrial sector is a major contributor to resource consumption and environmental
pollution in China. The energy-intensive industrial development and energy structure are dominated
by coal, which has produced an enormous amount of industrial pollutants in China, and put great
pressure on the ecological environment. Hence, improving the performance of industrial green
development (PIGD) has become an urgent task of utmost importance. This study applies a global
non-radial directional distance function to estimate the PIGD for Jiangxi Province during 2003–2015,
and provides targeted policy suggestions. The empirical results show a rising trend in the PIGD
in Jiangxi Province. At the city level, Nanchang and Fuzhou performed considerably better than
other cities in regards to their PIGD. However, the poor environmental performance caused by the
excessive discharge of industrial pollutants has also hindered its PIGD. Most cities in Jiangxi Province
failed to efficiently use resources, especially energy and labor, in industrial production. The results of
the influencing factor analysis show that the performance of industrial green development in Jiangxi
could be improved through increasing per capita GDP, decreasing the share of coal consumption
in the total industrial energy consumption, and decreasing the share of industrial GDP in the total
GDP. Furthermore, a more efficient use of environmental management investment funds and timely
transfer of the surplus industrial labor are needed.

Keywords: energy consumption; performance of industrial green development (PIGD);
environmental management; global non-radial directional distance function; sustainable
development China

1. Introduction

China has achieved remarkable progress in industrial economic development since the reform
and opening-up of the late 1970s. However, the great differences between regions in the development
of industrial economy are not conducive to the balanced development of the country’s economy.
After the successful implementation of two famous development plans (e.g., the Western Development
program and Revitalizing the northeast old industrial base), the industrial sectors of the western and
northeastern regions are catching up with that in the eastern region. In March 2004, Premier Wen Jiabao
pointed out that industrial development in the central region should not be neglected, and
implementation of the famous “Central rise” plan officially began [1]. As a result, the industrial
development in China’s Jiangxi Province has enjoyed remarkable progress. According to the Jiangxi

Sustainability 2017, 9, 1757; doi:10.3390/su9101757 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-6373-893X
https://orcid.org/0000-0002-4951-4526
http://dx.doi.org/10.3390/su9101757
http://www.mdpi.com/journal/sustainability


Sustainability 2017, 9, 1757 2 of 17

Statistical Yearbook 2016, the industrial gross domestic product (GDP) was as high as 619.8 billion
yuan in 2015, accounting for more than 37 percent of the province’s GDP. The industrial sector has
become the pillar of social and economic development in this province [2].

Jiangxi province is located in the southeast of China, and is composed of 11 cities (i.e., Nanchang,
Jingdezhen, Pingxiang, Jiujiang, Xinyu, Yingtan, Ganzhou, Ji’an, Yichun, Fuzhou, and Shangrao,
see Figure 1). As a traditional agricultural province, Jiangxi’s industrial economy is relatively backward
compared with most of the other provinces in the central region (i.e., Henan, Hubei, Hunan, Anhui,
and Shanxi). According to the China Statistical Yearbook 2016, in 2015, the industrial GDP in Jiangxi
was only 111.1 billion US dollars, which was much lower than Henan’s 254.1 billion US dollars and
Hubei’s 191.6 billion US dollars. In addition, the great benefits of industrial production activities
have been accompanied by enormous resource consumption and serious environmental pollution [3].
In 2015, more than 50 million tons of standard coal equivalent (tce) of energy were consumed for the
purposes of industrial production in Jiangxi Province. The energy-intensive industrial development
and energy structure dominated by coal have produced an enormous amount of industrial pollutants,
which pose a great threat to the ecological environment. Almost all of the cities in Jiangxi have
frequently suffered environmental pollution incidents [4,5]. As shown in Figure 2, the high levels
of the three typical industrial pollutants—industrial wastewater, industrial SO2, and industrial solid
waste—have remained stable, and have shown no downward trend since 2003. As Albrizio et al.
(2017) pointed out, focusing on the economic benefits of industrial development and neglecting
environmental protection is not a wise choice; it is an unsustainable endeavor that inevitably leads to
disastrous consequences [6]. Further, transitioning to a green economy was recognized by the Chinese
central government as an important long-term strategy [7,8]. In this context, achieving green industrial
development in Jiangxi Province has become an urgent task [9–11].
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Figure 2. Trends in industrial wastewater, industrial SO2, and industrial solid waste discharge, 2003–
2015. Data source: China Statistical Yearbook (2004–2016). 
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Fortunately, the local government of Jiangxi Province has already started to pay attention to
this problem and attempted to take effective measures [12,13]. Many policies have been issued
in recent years that aim for a more effective use of industrial resources and address excessive
industrial pollution. An example of such policies is the “Regulations of Jiangxi Province for the
Prevention and Control of Environmental Pollution” from December 2000, which pointed out the
necessity and urgency of air pollution, water pollution, and solid waste pollution control in Jiangxi
Province. In addition, the “Notice of Jiangxi Water Pollution Prevention and Control Plan” and
“Regulations on Prevention and Control of Atmospheric Pollution in Jiangxi Province,” which were
launched in 2015 and 2016, respectively, provided detailed arrangements for pollution control missions
in Jiangxi Province. However, many previous environmental policies have not proven effective.
A possible reason is that industrial development varies by city and policy makers may not be aware of
regional differences [14]. Therefore, it is of utmost importance to assess the sustainability of industrial
development at the provincial and city levels for Jiangxi Province in order to provide appropriate and
targeted countermeasures [15].

Regarding the research methods for estimating the sustainability of industrial development,
many related studies employed approaches based on multi-index analysis (e.g., the analytic hierarchy
process (AHP) approach, the principal component analysis [PCA] approach, or the distance function
approach), which incorporate a multitude of representative indicators. As Xie and Wang (2015) pointed
out, the AHP and PCA approaches are unsuitable for the task, because the value of weights in the AHP
method is determined by subjective scoring, and the dimension reduction in PCA is accompanied by
information compression [16]. In contrast, the distance function approach has the advantage of not
needing to set parameter weights and compress data information [17]. In particular, there are two main
approaches to estimate the distance function: the non-parametric data envelopment analysis (DEA)
approach and the parametric approach. A major advantage of the DEA approach over the parametric
method is that a specific functional form describing the underlying technology is not required [18].

Several studies evaluated the sustainability of industrial development in Jiangxi Province. He and
Wu (2013) estimated the competitiveness of industrial sectors for 11 cities in Jiangxi Province [19].
Zhou et al. (2016) applied an AHP approach to assess the industrial development in this province.
Attempting an improved estimation approach [20], Huang et al. (2016) estimated the efficiency of
industrial development based on a radial directional distance function (DDF) approach, which takes
industrial pollutants into account, for example, industrial wastewater and industrial SO2 [21].
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However, the estimation using the radial DDF approach is based on contemporaneous benchmark
technology, and the technologies over the years are evidently different. Thus, the estimation results
cannot be compared over time. In addition, the major drawback of the radial DDF approach is that it
aims to expand the good outputs and contract the bad outputs at the same rate. This is inconsistent
with the actual production process, and often leads to many observations under evaluation having
the same efficiency value of unity, thus hindering the ranking of observations [22,23]. Therefore, this
paper aims to apply a global non-radial directional distance function (GNDDF) approach to analyze
the dynamic changes in the performance of industrial green development (PIGD) for Jiangxi Province
at the city level in 2003–2015. We further decompose the PIGD into two indicators, i.e., the economic
performance of industrial development (ECPID) and the environmental performance of industrial
development (ENPID) to explore which one is the main driver of the growth in the PIGD. Lastly, we
explore the impacts on the PIGD of energy utilization, industrial development, and environmental
management in Jiangxi’s industry to present some policy implications to raise the PIGD.

This study’s contribution to the current literature is threefold. First, we present an empirical
analysis of PIGD in Jiangxi Province. We employ a GNDDF approach, which envelops all of the
contemporaneous benchmark technologies over the period under study, and estimates results for
different years that are comparable with each other. Second, we decompose the PIGD into two
indicators: ECPID and ENPID, which refer to the economic performance and the environmental
performance of industrial development, respectively, to identify the main driver for the growth of
the PIGD. Therefore, we can determine whether the economic performance or the environmental
performance of industrial development is more urgent to improve in each city in Jiangxi. Third, based
on slack variable analysis, we propose effective countermeasures to improve the PIGD in Jiangxi
Province and its 11 cities. Lastly, we select relative factors from among the social and economic
aspects, explore their impact on the PIGD by using a panel regression model, and present some policy
implications. The following questions are addressed in this study.

(1) What is the overall situation and dynamic change of the PIGD for Jiangxi Province? Are there
obvious regional differences? Which one of the two decomposition indices of the PIGD is the
main driver of the growth of the PIGD?

(2) What are the effective strategies for raising the PIGD?

The remainder of this paper is organized as follows. Section 2 introduces the GNDDF approach
and materials. Section 3 presents the empirical results, and Section 4 concludes with a discussion on
policy implications and the study’s limitations.

2. Materials and Methods

2.1. Global Non-Radial Directional Distance Function (GNDDF)

We assume that each of the 11 cities in Jiangxi Province has M inputs (x) to produce J desirable
outputs (y) and K undesirable outputs (b). Therefore, each city can use input vector x ε RM

+ to jointly
produce output vector y ε RJ

+ and undesirable output b ε RK
+. The production possibility set T(x) can

be expressed as follows:
T(x) = { (x, y, b) |x can produce (y, b)} (1)

where the production possibility set T(x) is assumed to satisfy the production function theory [24].
The theory states that it is costly to reduce the undesirable outputs during the production process,
and industrial production inevitably produces pollutants. In addition, the traditional radial DDF
approach assumes that the solution of the linear program reduces the inputs (or undesirable outputs)
and expands the outputs at the same rate, denoted as β in Equation (2), where g =

(
−gx, gy,−gb

)
is

the direction vector [25]:

→
D(x, y, b; g) = sup{β : ((x, y, b) + g× β) ∈ T} (2)
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Equation (3) represents the non-radial DDF approach, and wT = (x, y, b)T is the standard
weight matrix of inputs and outputs. β =

(
−βx, βy,−βb

)
refers to the adjustment ratios of all

the inputs, outputs, and undesirable outputs, thus, they are non-negative numbers. diag denotes the
diagonal matrix.

→
D(x, y, b; g) = sup

{
wT β : ((x, y, b) + g× diag(β)) ∈ T

}
(3)

Thus, the adjustment ratios of all of the inputs and outputs may be different, which is consistent
with actual production. Equation (4) provides the linear programming functions for the global
non-radial DDF approach. We select industrial energy, industrial capital, and industrial labor used
for industrial production as inputs; industrial GDP as desirable output; and industrial wastewater,
industrial SO2, and industrial solid waste as undesirable outputs.

→
D(x, y, b; g) = max

(
wEβE + wKβK + wLβL + wY βY + wW βW + wSO2 βSO2 + wSβS

)

s.t.



T
∑

t=1

N
∑

n=1
λnEn ≤ (1− βE)E0,

T
∑

t=1

N
∑

n=1
λnKn ≤ (1− βK)K0,

T
∑

t=1

N
∑

n=1
λnLn ≤ (1− βL)L0,

T
∑

t=1

N
∑

n=1
λnYn ≥ (1 + βY)Y0,

T
∑

t=1

N
∑

n=1
λnWn = (1− βW)W0,

T
∑

t=1

N
∑

n=1
λnSO2n = (1− βSO2)SO20 ,

T
∑

t=1

N
∑

n=1
λnSn = (1− βS)S0,

βE ≥ 0, βK ≥ 0, βL ≥ 0, βY ≥ 0, βW ≥ 0, βSO2 ≥ 0, βS ≥ 0,

n = 1, 2, . . . , N; t = 1, 2, . . . , T; λn ≥ 0,
N
∑

n=1
λn = 1,

(4)

where subscripts E, K, and L represent the energy, capital, and labor used in industrial production,
respectively. Y refers to industrial GDP. W, SO2, and S represent industrial wastewater, industrial SO2,
and industrial solid waste, respectively. N refers to the number of cities and in this paper, N = 11.
T refers the number of years in the study period; in this paper, T = 13. The subscript 0 represents the city
being evaluated. Symbols βE, βK, βL, βW , βSO2 , and βS denote potential reduction ratios of industrial
energy, industrial capital, industrial labor, industrial wastewater, industrial SO2, and industrial solid
waste, respectively. βY is the potential expanded ratio of industrial GDP. Symbols wE, wK, wL, wY, wW ,
wSO2 , and wS denote the standard weight matrices of industrial energy, industrial capital, industrial
labor, industrial GDP, industrial wastewater, industrial SO2, and industrial solid waste, respectively.
Symbols E0, K0, L0, Y0, W0, SO20 , and S0 denote the original data of the corresponding input indices.
λn is a non-negative vector representing the intensities assigned to each observation in constructing

the production technology, and we impose the constraint
N
∑

n=1
λn = 1, assuming variable returns to

scale. The subscript n refers to the number of cities in the sample. The PIGD can be defined as follows:

PIGD =
1−

(
β∗E + β∗K + β∗L + β∗W + β∗SO2

+ β∗S

)
/6

1 + β∗Y
(5)

where β∗E, β∗K, β∗L, β∗W , β∗SO2
, β∗S, and β∗Y are the optimal solutions for inputs and outputs for the city

being evaluated. The city is located along the environmental production technology frontier in the g
direction if β∗E, β∗K, β∗L, β∗W , β∗SO2

, β∗S, and β∗Y equal zero. To provide further insight into the dynamic
change of the PIGD, we define the ECPID by subtracting economic factors from unity as follows:

ECPID = 1−
β∗E + β∗K + β∗L

3
(6)
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Similarly, we can define the ENPID as follows:

ENPID = 1−
β∗W + β∗SO2

+ β∗S
3

(7)

It is obvious that the values of the three indicators lie between 0 and 1. The city has achieved
sustainability in industrial performance if the value of the PIGD equals 1. The economic performance
of the city’s industry is efficient if the value of the ECPID equals 1, and the environmental performance
of its industry is efficient if the value of the ENPID equals 1.

2.2. Data

2.2.1. Input Indicators

In line with previous studies, we select industrial energy, industrial capital, and industrial labor
as input indicators. Energy consumption refers to the primary energy consumption in industrial
production activities, and is mainly composed of several typical types of energy, such as coal,
oil, and gas, and the data are sourced from the China Energy Statistics Yearbook (2004–2016) [9].
Industrial labor refers to the workers in the industrial sectors, and the data of industrial labor are
sourced from the China Statistical Yearbook (2004–2016). Industrial capital data could not be obtained
from the China Statistical Yearbook. Thus, we compute the data using the perpetual inventory method
following Zhang and Kim (2014) [26]:

Kt = (1− δ)Kt−1 + It (8)

where Kt and Kt−1 refer to industrial capital stock at times t and t−1, respectively. It represents
the investment in industrial fixed assets, and δ refers to the depreciation rate at time t. We use the
industrial capital stock in 2003 as the initial industrial capital stock, because 2003 is the first year in our
study. The investment in industrial fixed assets and the depreciation rate can be obtained from the
China Statistical Yearbook 2004–2013. The depreciation rate and capital stock values were procured
from Wu (2007) [27]. Data after 2006, which were not available, were estimated using the perpetual
inventory method. To eliminate the effect of price factors, the industrial GDP is converted to 2003
constant prices using the GDP deflator index, and the industrial capital is converted to 2003 constant
prices using the industrial capital deflator index, the data of the GDP deflator index and the industrial
capital deflator index can be collected from the China Statistical Yearbook (2004–2016) [28].

2.2.2. Output Indicators

We select industrial GDP as the desirable output, and the amount of industrial wastewater,
industrial SO2, and industrial solid waste as the undesirable outputs. Data of the four output variables
are sourced from the China Statistical Yearbook (2004–2016). Table 1 reports the descriptive statistics of
the input and output variables.

Table 1. Descriptive statistics of the input and output variables.

Type of Variable Variable Unit Max. Min. Mean St.
Dev.

Input
Energy 104 ton 1209.67 13.06 410.21 277.19
Capital 108 yuan 1596.61 24.90 358.12 325.95
Labor 104 people 177.40 11.90 64.75 40.79

Desirable output GDP 108 yuan 2179.96 37.83 428.22 375.08

Undesirable output
Industrial wastewater 108 ton 1.68 0.14 0.60 0.30

Industrial SO2 104 ton 10.25 1.34 4.59 2.26
Industrial solid waste 104 ton 4270.76 0.37 346.03 1018.14
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2.3. Influencing Factors

To propose effective advice for improving the PIGD, we selected several typical influencing
indicators. To overcome the heteroscedasticity problem, the regression model can be expressed in
logarithmic form as follows [29]:

Yit = αit + β1 ln(PGDPit) + β2ESit + β3 ln(INVit) + β4ISit + β5LS + εit (9)

where i and t (t = 2003, ..., 2015) refer to the ith city and year t, respectively. The term εit is the random
error term. Y denotes the PIGD. We describe the data in more detail below.

(1) We selected per capita GDP (PGDP) to represent the level of economic development in the city of
interest. In general, a greater PGDP makes sustainable development of the industrial economy
more likely. This is because a city with a relatively higher PGDP pays more attention to the quality
of industrial economic development, and does not focus solely on the scale of the industrial
economy [30]. Therefore, we assume a positive correlation between PGDP and PIGD; an increase
in the PGDP is expected to have a positive impact on the PIGD.

(2) We selected energy structure (ES), referring to the share of coal in the total energy consumption
used for industrial production, to represent the status of industrial energy consumption. It is
generally accepted that coal combustion produces significantly more pollutants than many
other types of energy sources, and substituting clean energy for coal promotes protection of the
ecological environment [31]. According to the China Energy Statistics Yearbook, coal accounted
for more than 90% of industrial energy consumption in Jiangxi Province in recent decades; such
a state of affairs is clearly not conducive to sustainable industrial development. We assume
that decreasing the share of coal in the total energy consumption used for industrial production
contributes to improving the PIGD; an increase in the ES is thus assumed to have a negative
impact on the PIGD.

(3) We selected investment in environmental pollution management (INV) to represent the
government’s regulation of industrial pollution. This is because many previous studies have
found that the government’s investment in environmental management plays an important
role in preventing industrial pollution [32,33]. A possible reason is that more investment
in environmental protection technology and management may positively affect sustainable
industrial development through energy savings and the reduction of industrial pollutants [34,35].
In fact, the investment in environmental pollution management was formally established in 1980s,
and the management of industrial pollution is one of its important goals, e.g., the management of
industrial pollution sources and reuse of industrial wastewater. The environmental pollution
control work in China has always been initiated by the central government and operated by local
governments, and the local governments are expected to use the environmental pollution control
investment effectively by quickly identifying and dealing with local pollution incidents [36].
Therefore, we assume that an increase in investment in environmental management has a positive
impact on the PIGD.

(4) We selected two indices—the share of industrial labor in the total labor (LS) and the share of
industrial GDP in the total GDP (IS)—to represent the current industrial structure. The problem
of surplus labor in the industrial sector is common in China, and Jiangxi is no exception.
Most industrial enterprises are labor-intensive and engaged in low-tech production activities
because of cheap labor. This inevitably impedes the large-scale use of new technologies and
industrial upgrading, and negatively affects the PIGD [37]. Further, many studies suggested
that China had entered a middle or late stage of industrialization, which implyies that
China’s industrial development will shift from a simple emphasis on economic output to
improvements in the quality of industrial development [38]. This might lead to a reduction
of the IS. Thus, we assume that an increase in both the LS and IS has a negative impact on
the PIGD.
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Data of PGDP, INV, IS and LS is obtained from the China Statistical Yearbook 2004–2016, and data
of ES is obtained from the China Energy Statistics Yearbook 2004–2016. Table 2 shows the descriptions of
the influencing indicators on the PIGD.

Table 2. Descriptive statistics of the influencing indicators.

Variable Unit Max. Min. Mean St. dev.

PGDP 104 yuan 2.10 -0.90 0.60 0.74
ES — 1.00 0.48 0.94 0.14

INV 104 yuan 3.24 -3.91 0.73 1.38
IS — 0.67 0.33 0.52 0.08
LS — 0.64 0.19 0.43 0.11

3. Results and Discussion

3.1. The PIGD and Its Decomposition Indicators

Based on the GNDDF approach, we computed the PIGDs for Jiangxi Province and its 11 cities
during 2003–2015 (Figure 3). For comparison, we also present the results excluding undesirable
outputs. As shown in Figure 3, in each year of the period under study, the estimation result including
undesirable outputs is lower than the result not accounting for undesirable outputs, with average
values of 0.441 and 0.498, respectively. This indicates that ignoring the undesirable outputs would
inevitably lead to overestimating the efficiency of industrial development, which is consistent with the
conclusion of Ozkan and Ulutas (2017) [39]. Further, the PIGD values show a sustained rising trend,
except for in 2006 and 2009. The decline in 2006 may due to the environmental pollution caused by the
massive discharge of industrial pollutants, as shown in Figure 2. Both industrial waste and industrial
sulfur dioxide emissions have significant upward trends around 2006, which lowers the environmental
performance of industrial development. The decline in 2009 may has been caused by the international
financial crisis around 2008, which had a serious negative impact on industrial development in Jiangxi
Province. Excessive emphasis was put on selected sectors of the heavy industry, while the monitoring
and implementation of environmental policy were temporarily suspended in favor of the economic
stimulus plan [40]. The result was inefficient industrial production and poor environmental protection,
which was reflected in the relatively poor performance, as measured by the PIGD [41].Sustainability 2017, 9, 1757  9 of 17 
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Figure 3. The evolution of the performance of industrial green development (PIGD) for Jiangxi Province
during 2003–2015.
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To gain further insight into the dynamics of the PIGD, it is necessary to estimate its two
decomposition indicators, the ECPID and ENPID, and identify which is the main contributor to
the increase in the PIGD (Figure 4). We find that both the ECPID and ENPID follow similar trends
to the PIGD. The ECPID is greater than the ENPID each year, and the PIGD value lies between them.
The average values of the PIGD, ECPID, and ENPID are 0.441, 0.569, and 0.341, respectively. Thus, an
increase in the PIGD is mainly driven by the ECPID, and poor environmental performance hinders
sustainable industrial development in Jiangxi Province. This implies that the great benefits of industrial
production in Jiangxi Province are accompanied by serious environmental pollution, and improving
the ecological environment can effectively raise the PIGD. This is consistent with the conclusion of Wan
et al. (2017) [42], who stated that environmental problems caused by industrial development deserve
more attention than issues of economic development. Therefore, the most important issue of industrial
development in Jiangxi province is to achieve environmentally friendly industrial production through
various effective ways, e.g., develop new energy saving and environmental protection technologies.
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Figure 4. The evolution of the PIGD, economic performance of industrial development (ECPID), and
environmental performance of industrial development (ENPID) for Jiangxi Province during 2003–2015.

At the city level, as shown in Figure 5, Fuzhou performed best, with an annual average PIGD
value of 0.831, annual average ECPID of 0.916, and annual average ENPID value of 0.745. It is followed
by Nanchang, with the values 0.749, 0.817 and 0.674, respectively. However, the other nine cities in the
province performed significantly worse, as measured by all three indicators. Jiujiang performed the
worst, with the lowest annual average PIGD value of 0.26 and annual average ENPID value of only
0.178, and Yingtan had the lowest annual average ECPID value (0.391).

In summary, none of the 11 cities in Jiangxi Province achieved sustainable industrial development.
Poor performance concerning the ecological environment is the main reason. Thus, countermeasures
aimed at reducing industrial pollution emissions and preventing environmental pollution need to
be implemented as soon as possible. In addition, the local government of Jiangxi Province should
mitigate regional disparity in sustainable industrial development.
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Figure 5. PIGD and its decomposition indicators for each city.

3.2. Spatio-Temporal Pattern of PIGD and Its Decomposition Indicators

To supplement the general trends of PIGD and its decomposition indicators in Jiangxi Province
during 2003–2015, this study explored the spatio-temporal pattern of PIGD and its decomposition
indicators in the three representative years of 2003, 2009, and 2015. As shown in Figure 6, the PIGD and
its decomposition indicators have increased significantly for most cities in the three years. In addition,
the ECPIDs are much greater than ENPIDs for most cities in the three years, which further confirm that
the relatively low ENPID hinders the improvement of PIGD, and environmental protection against
industrial pollution deserves more attention. Out of the 11 cities, Fuzhou is the only city that achieved
sustainability in industrial performance, with the values of 1 in all three years. In addition, most
cities have improved its PIGD, and three cities achieved sustainability in industrial performance in
2015, i.e., Fuzhou, Nanchang, and Pingxiang. Similar results appeared in the ENPID. As for the
ECPID, Fuzhou is the only city that achieved perfect economic performance of industrial development.
This may be because the consumption of industrial resources in Fuzhou and Pingxiang are relatively
small compared with those of other cities, though the industrial economies in these two cities are not
very large, and the volumes of industrial pollutants in Fuzhou and Pingxiang are much smaller than
those in other cities. In fact, many high-tech industrial parks have been established in Fuzhou and
Pingxiang recently, which has made a great contribution to improving the quality of local industrial
development. Additionally, Nanchang enjoys the largest industrial economy in Jiangxi Province,
which accounts for about a quarter of the industrial GDP in this province [43], and as the capital
city of Jiangxi Province, Nanchang enjoys obvious advantages compared with other cities in many
aspects (e.g., policy, technology, and talent) [44]. However, the PIGDs for Shangrao and Ganzhou
have not made significant progress, nor have its decomposition indicators. This may be because
the industrial economic development of the two cities has not made obvious progress, and more
importantly, the discharges of industrial pollutants in these two cities are much larger than those in
other cities. In summary, cities with larger industrial economies, less resource consumptions, and less
pollutant discharges tend to have better performance in the PIGD.
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3.3. Optimization of the PIGD

Equation (4) shows that if the PIGD value is less than 1, the city under estimation has not
achieved sustainable industrial development. To examine the reasons for this, and be able to suggest
improvements, we can analyze the slack variables from the model. Table 3 shows the excesses of inputs
and undesirable outputs and shortages of desirable outputs, which inform us about the direction of
PIGD optimization.

In view of the overall situation for Jiangxi Province, the excess ratio of industrial energy, which
is as high as 62.51%, ranks first from among all three input indicators. It is followed by industrial
labor and industrial capital, whose excess ratios are 52.03% and 20.92%, respectively. This implies
unreasonable energy allocation and utilization, as well as a severe labor surplus in the industrial
sector in Jiangxi Province. Hence, more attention needs to be paid to these issues, and effective
countermeasures need to be taken to save energy, labor, and capital in future industrial production.
Some of these countermeasures can include, using energy-saving production equipment, improving
energy utilization technology, transferring surplus labor to the tertiary industry sectors, and optimizing
capital allocation in the industrial production process. With regard to undesirable outputs, the excess
ratio of industrial solid waste ranks first, with a score of 75.42%, followed by industrial SO2 and
industrial wastewater, whose excess ratios are 56.31% and 48.30%, respectively. This means that if
Jiangxi achieved sustainable industrial development of industrial solid waste, 56.31% of industrial
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SO2, and 48.30% of industrial wastewater, would be eliminated. The result is consistent with Wang
and Dong (2007) [45], who argued that the vigorous industrial development in Jiangxi Province came
at the expense of the environment, and was not sustainable. In addition, the shortage ratio of the
desirable output is 29.15%, which suggests that a 29.15% increase in the industrial GDP would yield
optimal production.

Table 3. Optimization of the PIGD for cities in Jiangxi Province in the period 2003–2015.

Inputs Excess (%) Desirable Output
Shortage (%) Undesirable Output Excess (%)

Energy Capital Labor GDP Wastewater SO2 Solid Waste

Nanchang 27.99 2.25 17.48 0.00 30.20 20.32 43.35
Jingdezhen 75.16 41.89 56.82 62.04 73.81 86.80 84.46
Pingxiang 76.87 24.23 55.91 16.19 16.83 75.89 83.69

Jiujiang 64.98 18.71 27.72 80.87 40.17 58.16 42.21
Xinyu 57.18 27.46 33.57 21.14 49.47 54.84 62.32

Yingtan 65.66 24.87 8.53 51.95 69.61 66.69 88.39
Ganzhou 32.70 2.21 78.68 12.75 67.98 70.57 88.34

Jian 61.94 39.28 67.22 55.46 77.48 87.26 86.01
Yichun 81.54 30.94 68.61 50.10 46.38 69.18 85.90
Fuzhou 0.98 8.55 21.21 0.00 26.27 30.70 24.98

Shangrao 55.98 19.29 75.24 31.03 49.05 63.43 89.94
Jiangxi Province 62.51 20.92 52.03 29.15 48.30 56.31 75.42

From a city perspective, Fuzhou shows the lowest excess ratio of industrial energy, 0.98%, which
is significantly lower than those of the other cities. Hence, if Fuzhou achieved sustainable industrial
development, its industrial energy consumption could be potentially reduced by 0.98%. In using
industrial capital, Ganzhou and Nanchang performed significantly better than the other cities; the
excess ratios of industrial capital in these two cities are 2.21% and 2.25%, respectively. Yingtan shows
the lowest excess ratio of industrial labor, with a score of 8.53%. On the other hand, the excess ratio of
industrial energy in Yichun is as high as 81.54%, and the scores in Pingxiang and Jingdezhen are close
to 80%. These cities need to take effective measures to use energy more efficiently in the industrial
production process. In addition, the excess ratios of labor for Ganzhou and Shangrao are greater
than 70%, implying that the two cities have serious industrial labor surpluses, and effective measures
should be taken to disperse the surplus labor.

Regarding the excess ratios of undesirable outputs, Pingxiang, with a score of 16.83%, has the lowest
excess ratio of industrial wastewater. Nanchang shows the lowest excess ratio of industrial SO2 of 20.32%.
With respect to the excess ratio of industrial solid waste, Fuzhou has the lowest score, 24.98%.

As for the shortage ratio of industrial GDP, Nanchang and Fuzhou performed best: their scores
equal zero. The two cities achieved the maximum industrial GDP under the current constraints on
resources and the environment.

In sum, resources for industrial production, especially energy and labor, have not been effectively
used in most cities in Jiangxi Province. Optimizing the allocation of resources and using resources more
efficiently are thus of prime importance. In addition, the potential for reducing industrial pollution is
vast. The local government of Jiangxi Province should take effective measures to counter and prevent
industrial pollution, such as severely punishing illegal sewage companies, for instance.

3.4. Influencing Factor Analysis

Using a regression analysis based on Equation (9), we explore the impact of the influencing factors
on the PIGD. First, because the PIGD value lies between 0 and 1, we apply a Tobit regression model,
which models dependent variables with censored data [46]. The Tobit model can be expressed as follows:

Yi∗ = γXi + εi, i = 1, 2, . . . , N (10)
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Yi =

{
Yi∗, i f Yi∗ ≥ 0
0, i f Yi∗ ≤ 0

(11)

where Yi is the dependent variable. Yi∗ is the latent variable, and Yi is a positive value or censored
otherwise. Xi is a vector of independent variables, and γ is a vector of parameters to be estimated.
Generally, zero in Equation (11) can be replaced by any lower limit L or upper limit L, which can be
expressed in Equation (12) [47].

Yj =


L, i f Yj∗ ≥ L
Yj∗, i f L < Yj∗ < L
L, i f Yj∗ ≤ L

(12)

Second, we use four widely used panel unit root tests, i.e., LLC (Levin-Lin-Chu), IPS
(Im-Pesaran-Shin), ADF-Fisher, and PP-Fisher [48,49], to test whether panel data is stationary or
not. Table A1 in from the Appendix A reports the estimated results of the unit root test, including
the LLC test, IPS test, ADF-Fisher test, and PP-Fisher test. The results of the tests show that all of the
variables are stationary in their level form, which rejects the null hypothesis of a non-stationary series
at 1% level of significance. Third, the variance inflation factor (VIF) for the variables is much smaller
than five, which indicates that there is not much chance of the existence of multicollinearity. Lastly, the
Hausman test results reported in Table 4 show that fixed effects are rejected (Hausman test statistic
values are small, and all of the Hausman test Prob. Values >0.05); therefore, we establish random effect
models. We introduce the influencing factors successively to enhance the robustness of the regression
results. The estimation results are shown in Table 4.

Table 4. Regression results.

Dependent Variable: PIGD

(1) (2) (3) (4) (5)

lnPGDP
0.1475 *** 0.1456 *** 0.1954 *** 0.2641 *** 0.2361 ***
(5.7529) (5.7646) (6.4144) (9.3551) (7.0675)

ES
−0.2871 ** −0.2648 ** −0.2291 * −0.2186 *
(−2.1538) (−2.0355) (−1.8085) (−1.8569)

lnINV
−0.0454 *** −0.0582 *** −0.0563 ***
(−2.7738) (−3.9435) (−3.8008)

IS
−2.0174 *** −2.0249 ***
(−6.0556) (−6.0986)

LS
−0.2453

(−1.0168)

Constant
0.3529 *** 0.0852 0.1094 1.1367 *** 1.0323 ***
(14.4801) (0.6736) (0.8853) (5.6181) (4.5636)

Adjusted R2 0.2931 0.3177 0.3582 0.4121 0.4153

Prob. 0.0000 0.0000 0.0000 0.0000 0.0000

Hausman test 0.48 1.05 2.19 6.76 6.96

Hausman test Prob. 0.7855 0.7901 0.7003 0.2389 0.3244

*** Denotes p < 0.001, ** denotes p < 0.05, and * denotes p < 0.01. t statistics in parentheses.

We find that PGDP has a positive impact on the PIGD, and is significant at the 1% level in all
five columns, indicating that increasing the per capita GDP can effectively help improve the PIGD.
This is consistent with our assumptions presented in Section 2.3. The coefficient of ES is significant and
negative in Columns (2)–(5), which suggests that to increase the PIGD, the ES needs to be decreased.
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According to the Jiangxi Statistical Yearbook, the value of ES invariably exceeded 90% during the
period under study. The outcome was serious pollution of the ecological environment in the industrial
areas around the cities. This is consistent with the findings of Zhou et al. (2017) [50]. The coefficient on
IS yields a similar result; it is negatively related with the PIGD and statistically significant in Columns
(4)–(5). Thus, the current value of IS is high, and hinders the improvement of the province’s PIGD.
This provides further incentive for Jiangxi to enter the post-industrialization stage and aim at reducing
the scale but improving the quality of industrial development.

It is worth noting that the coefficient on INV is negative, and statistically significant in Columns
(3)–(5), which is not consistent with our assumptions presented in Section 2.3. The result suggests
that the government’s investment in environmental management has not achieved the desired effects.
This may be due to the inefficient use of investment funds, which would be consistent with Eyraud
et al. (2013) [51], who suggested that the improper use of investment allocated to environmental
protection is quite common in China.

The coefficient on LS is negative, although not statistically significant, in Column (5). This is
consistent with our initial assumptions. The finding suggests that the problem of labor surplus in
Jiangxi’s industrial sector is not serious. However, it warrants attention, and timely transfers of the
industrial labor surplus are necessary.

4. Conclusions

As resources consumption and pollution in the industrial sector of Jiangxi Province have increased
at alarming rates in recent years, estimating the state of performance of industrial green development
and proposing effective countermeasures is an urgent task. Employing a GNDDF approach, this study
estimates the PIGD for Jiangxi province and its 11 cities in the period 2003–2015, and puts forward
some policy suggestions through slack variable analysis and influencing factors analysis.

The empirical results show that industrial pollutants have a significant negative impact on
achieving industrial green development and disregarding industrial pollutants would inevitably lead
to biased estimation results. It is thus necessary to take industrial pollutants into account in order to
estimate the PIGD more accurately. In addition, the PIGD for Jiangxi Province shows a rising trend
during most of the research period, and its two decomposition indicators, the ECPID and the ENPID,
exhibit similar trends. The improvement in the PIGD is mainly driven by the ECPID, while poor
environmental performance hindered sustainable industrial development in Jiangxi Province. At the
city level, none of the 11 cities achieved sustainable industrial development. In particular, Fuzhou and
Nanchang performed considerably better than other cities in regards to the PIGD as well as its two
decomposition indicators. Jiujiang was identified as the city with the lowest PIGD.

The results of our slack variable analysis show that all of the cities are inefficient in using industrial
inputs, especially industrial energy and industrial labor. Excessive discharge of industrial pollutants is
another important reason for the industry’s failure to achieve sustainable development. Therefore,
effective measures should be taken to use industrial resources more efficiently. Further, the results
of our influencing factor analysis show that the PGDP is significantly positively related to the PIGD.
The ES, INV, and the IS are significantly negatively related to the PIGD. An increase in the LS impacts
the PIGD negatively, although the relationship is not statistically significant.

The empirical study holds some policy implications. First, the development of industries with
low energy consumption and high economic output, for example, electronics and the information
industry, should be promoted, and industries with high energy consumption and high pollution shut
down. In addition, the resource utilization efficiency should be improved in the process of industrial
production by introducing and developing advanced technologies that save resources and prevent
environmental pollution. Second, the local government needs to optimize and properly manage the
allocation of industrial capital so as to prevent its inefficient use. Third, the local government needs
to actively transfer surplus industrial workers to other sectors, especially to the tertiary industry,
and improve the skills of the labor through training and other measures, in order to avoid serious
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labor surplus and strive to make efficient use of industrial labor. Fourth, the energy structure of the
industry needs to be further optimized, and the ES decreased. In particular, the popularity of clean
energy (e.g., solar energy and nuclear energy) can be increased through subsidies, while environmental
taxes can be imposed on producers using coal and other types of fossil energy. Lastly, efficient use of
environmental protection investment is also very important. The local government needs to develop
detailed, science-based plans for the use of environmental protection funds.

There are several limitations of this study that deserve consideration. First, our empirical analysis
only considers data from the period 2003–2015. A longer period would help improve the accuracy
of the empirical analysis. Next, we selected only three typical industrial pollutants as undesirable
outputs. Other pollutants (e.g., phosphorus and heavy metals) are not considered, mainly due to
data unavailability. Further, factors capturing the humanistic aspect, such as human capital, are
not included in this study for the same reason. We will address improvements that allow for more
comprehensive empirical results in future research.
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Appendix A

Table A1. Results of panel unit root tests.

Variables

(1) (2)

ConclusionLLC IPS ADF-Fisher PP-Fisher

Statistic Prob. Statistic Prob. Statistic Prob. Statistic Prob.

PIGD −9.505 0.000 *** −8.082 0.000 *** 94.470 0.000 *** 96.814 0.000 *** Stationary
lnPGDP −3.989 0.000 *** −2.749 0.001 *** 38.414 0.002 *** 38.283 0.001 *** Stationary

ES −11.354 0.000 *** −7.544 0.000 *** 89.328 0.000 *** 90.046 0.000 *** Stationary
lnINV −9.711 0.000 *** −6.312 0.000 *** 76.856 0.000 *** 86.463 0.000 *** Stationary

IS −4.347 0.000 *** −2.832 0.002 *** 40.314 0.002 *** 39.424 0.002 *** Stationary
LS −5.233 0.000 *** −3.430 0.000 *** 46.474 0.001 *** 47.682 0.001 *** Stationary

*** Denotes p < 0.001, ** denotes p < 0.05, and * denotes p < 0.01. Approach below (1) assumes common unit root
process and approaches below (2) assume individual unit root process.
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