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Abstract: This study proposes a modified vegetation-dependent temperature-vegetation dryness
index (TVDI) model for analyzing regional drought disasters in the Beijing-Tianjin-Hebei
Metropolitan Region (BTHMR) of China. First, MODIS monthly normalized difference vegetation
index (NDVI), land surface temperature (LST) data and land use/cover data (Land cover type2) were
pre-processed as a consistent big dataset. The land use/cover data were modified and integrated into
six primary types. Then, these land types were used as the base data layer to calculate the TVDI by
parameterizing the relationship between the MODIS NDVI and LST data. By emphasizing different
types of land uses, this study was able to compare and analyze the differences of the TVDI indices
between the entire study area (no consideration of the land types) and the six classified land uses.
The soil moisture data were used to validate the modified TVDI values based on different land uses,
which confirmed that the modified model more effectively reflected drought conditions. Finally, the
aforementioned model was used to analyze the temporal and spatial variation of drought experienced
by vegetation cover from 2000 to 2014. The results of the modified model were validated with the
synchronized soil moisture and precipitation data. The case study clearly demonstrated that the
modified TVDI model, which is based on different vegetation indexes, could better reflect the drought
conditions of the study area.
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1. Introduction

Drought is a common, periodically occurring and complex natural disaster. Prolonged drought
causes reductions in crop production on one hand and directly affects the sustainable development of
agriculture and societal stability on the other hand [1,2]. The extent of a drought is determined by its
duration, intensity, and spatial distribution, as well as by the societal and economic status of the affected
area [3]. Global warming has recently become increasingly apparent [4]. As a consequence of global
warming, climate change directly influences the distribution of precipitation and spatial patterns [5,6],
which, again, results in prolonged droughts in certain areas. Since the 1980s, the temperature in the
BTHMR has markedly increased; reduced precipitation, a shortage of water resources, and the drying
of the climate have become evident, causing frequent meteorological disasters. These meteorological
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disasters have caused enormous economic lost in this area; an annual average of tens of billions of
Yuan has been lost since the 1990s, and the loss has increased every year [7].

With the continuous development of remote sensing technologies, we have observed significant
progress in drought monitoring investigations over large areas. Watson et al. [8] were the first to use
a thermal inertia model to investigate drought successfully. Idso et al. [9] proposed a Crop Water
Stress Index (CWSI) based on energy equilibrium; however, this index accounts for complex factors,
and its precision is determined by the extrapolation range of the meteorological parameters for
the land surface [10]. By comparison, the construction of various vegetation indexes based on the
spectral characteristics of vegetation has been more widely applied to monitor droughts. For example,
Kogan [11] introduced the Vegetation Condition Index (VCI), which was based on a normalized
difference vegetation index (NVDI), and Wang et al. [12] proposed the Vegetation-Temperature
Condition Index (VTCI). Building on the vegetation supply water index (VSWI) developed by
Nemani et al. [13] and the vegetation index/temperature (VIT) trapezoid proposed by Moran [14],
Sandholt et al. [15] proposed a Temperature-Vegetation Dryness Index (TVDI) based on the VI
(vegetation index) and LST (land surface temperature). Since then, more researchers have used TVDI
or have improved the TVDI to assess and predict drought [16–19], and they have fit the TVDI value
and observed value of soil moisture to the inverse of the soil moisture [20,21]. The results from a
large number of studies [22–26] have demonstrated that it is more advantageous to use the combined
vegetation index and the surface temperature to monitor drought or even to investigate the regional
soil moisture distribution.

However, in performing a drought analysis by using TVDI or improved TVDI, most researchers
have considered the study area as a whole; none have taken into consideration the existence of
different land cover types. Given that vegetation heights and coverage can dramatically differ between
woodland, grassland and farmland, the experimental results show that the corresponding surface
maximum and minimum temperatures also exhibit large differences, resulting in a large variation in
the calculated results of the TVDI. By using the temporal and spatial monitoring of drought in the
BTHMR as the research objective to address this challenge, the present paper employs MODSI NVDI
and LST data products along with DEM data to calculate the TVDI for the BTHMR in May of 2010. The
coverage areas for woodland, grassland and farmland were also extracted, and the individual TVDI
was calculated; these results were compared with the above results. The soil moisture and precipitation
in the BTHMR were used to validate and analyze the above calculated results. The TVDI calculation
according to different land-cover types was confirmed to yield more ideal results. In combination with
land-cover type classification, the drought that occurred in the growing season from May to October
between 2000 and 2014 in the BTHMR was analyzed.

2. Study Areas and Data

2.1. Overview of the Study Area

The BTHMR originated with the idea of constructing the capital in an economic circle that
included Beijing, Tianjin, and 11 prefecture-level cities in Hebei province, as shown in Figure 1.
The geographic coordinates are longitude 113◦27′~119◦50′ and latitude 36◦05′~42◦40′. The land area is
216 thousand km2, and the population is 110 million, of which 17.5 million are migrants. The study
area has a higher elevation in the northwest than in the southeast, tilting from the northwest to
the southeast. The landform is complex and diverse, and it is complete with plateaus, mountains,
hills, basins and plains. There are three landform units, i.e., the Bashang Plateau, Yan and Taihang
Mountains, and Heibei Plains. The altitude ranges from 0 m to 2763 m, with an average of 1200~1500 m,
as shown in Figure 1. The BTHMR has a temperate, humid and semi-arid continental monsoon
climate. The temporal and spatial distribution of the mean annual precipitation is extremely uneven.
The precipitation varies significantly such that the precipitation between rainy and rainless years can
be 15–20 times different, and the variation can normally vary by 4–5-fold [27]. This irregularity leads
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to frequent drought and flood disasters in this area. This area is the one of the primary wheat and
maize production bases.Sustainability 2016, 8, 1327  3 of 16 

 

Figure 1. Study area (BTHMR) and sampling sites of precipitation and soil moisture. 

2.2. Source and Processing of Data 

2.2.1. Remote Sensing and DEM Data 

Due to the study area being large and covering a wide area, after fully considering the growing 
season, the temporal and spatial characteristics of the region’s different vegetation types [10,22], the 
temporal and spatial scale of the MODIS products, and the combination of phenological land cover 
characteristics, the MODIS Normalized Difference Vegetation Index (NDVI) and land surface 
temperature (LST) at a 1 km spatial resolution from May to October of each year were selected as the 
basic data sources. The data were collected for a total of 15 years, between 2000 and 2014. 

There were two sources of MODIS products. One was downloaded from the Geospatial Data 
Cloud (GSCloud) at The Computer Network Information Center (CNIC) of the Chinese Academy of 
Sciences (CAS), from which the synthetic MODIS and the monthly NDVI and LST products were also 
obtained. However, because the website only provides data products from 2000 to 2010, the 
remaining MODIS products from 2011 to 2014 were complemented by MOD11A2 and MOD13A3 
data that were downloaded from NASA’s official website. Among those complements, MOD11A2 
was used to construct the monthly LST product based on the maximum value composite (MVC) 
method, and the MOD13A3 is a 1-km vegetation index monthly synthetic product. 

The DEM data originated from the 30-m ASTER (Advanced Spaceborne Thermal Emission and 
Reflection Radiometer) GDEM data in GSCloud at CAS and were re-sampled to a 1-km resolution. A 
land surface temperature correction was performed by decreasing the temperature by 6 °C at a 1000-
m altitude [28,29]. 

MODIS MOD12Q2 1-km standard data products of land grade 3 were used for the images of 
land use and cover change. The primary land cover classification products include the International 
Geosphere-Biosphere Program (IGBP) global vegetation classification scheme, the UMD Global Land 
Cover Classification, etc. The classification known as Land cover type2 from MODIS MOD12Q2 1 km 
standard data products was chosen for this paper, and it was further modified and combined with 
the farmland, grassland, woodland, water bodies, wetlands and urban use in the study area for each 
year. The land use type in the BTHMR for 2010 was used as the example. The distribution of the land 
types is shown in Figure 2. 

Figure 1. Study area (BTHMR) and sampling sites of precipitation and soil moisture.

2.2. Source and Processing of Data

2.2.1. Remote Sensing and DEM Data

Due to the study area being large and covering a wide area, after fully considering the growing
season, the temporal and spatial characteristics of the region’s different vegetation types [10,22],
the temporal and spatial scale of the MODIS products, and the combination of phenological land
cover characteristics, the MODIS Normalized Difference Vegetation Index (NDVI) and land surface
temperature (LST) at a 1 km spatial resolution from May to October of each year were selected as the
basic data sources. The data were collected for a total of 15 years, between 2000 and 2014.

There were two sources of MODIS products. One was downloaded from the Geospatial Data
Cloud (GSCloud) at The Computer Network Information Center (CNIC) of the Chinese Academy
of Sciences (CAS), from which the synthetic MODIS and the monthly NDVI and LST products were
also obtained. However, because the website only provides data products from 2000 to 2010, the
remaining MODIS products from 2011 to 2014 were complemented by MOD11A2 and MOD13A3 data
that were downloaded from NASA’s official website. Among those complements, MOD11A2 was
used to construct the monthly LST product based on the maximum value composite (MVC) method,
and the MOD13A3 is a 1-km vegetation index monthly synthetic product.

The DEM data originated from the 30-m ASTER (Advanced Spaceborne Thermal Emission and
Reflection Radiometer) GDEM data in GSCloud at CAS and were re-sampled to a 1-km resolution.
A land surface temperature correction was performed by decreasing the temperature by 6 ◦C at a
1000-m altitude [28,29].

MODIS MOD12Q2 1-km standard data products of land grade 3 were used for the images of
land use and cover change. The primary land cover classification products include the International
Geosphere-Biosphere Program (IGBP) global vegetation classification scheme, the UMD Global Land
Cover Classification, etc. The classification known as Land cover type2 from MODIS MOD12Q2 1 km
standard data products was chosen for this paper, and it was further modified and combined with the
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farmland, grassland, woodland, water bodies, wetlands and urban use in the study area for each year.
The land use type in the BTHMR for 2010 was used as the example. The distribution of the land types
is shown in Figure 2.
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2.2.2. Soil Moisture and Precipitation Data

Soil moisture and precipitation data were used to validate the calculation results of the TVDI [30].
The 10-day soil moisture data were obtained from the Dataset of the Growth and Development of
Crops and the 10-day Soil Moisture of Farmland in China from the China Meteorological Data Sharing
Service System. The mean monthly soil moisture was obtained using an average method based on
three 10-day data per month from May to October, from 2000 to 2014. In our experiment, several
abnormal data were removed. The source of the monthly precipitation data was the Dataset of Monthly
Values for the China Surface Climate, and the collection duration span ran from 2000 to 2014, the
same as that of the remote sensing products and soil moisture data collection times. The soil moisture
and precipitation sites were distributed the over entire area, which can be seen in Figure 1. Among
them, the black dots are locations of precipitation sites, and the black triangles are the location of soil
moisture sites.

3. Methods

3.1. Maximum Value Composite (MVC)

MVC (Maximum Value Composites) is a procedure in which the maximum LST is chosen every
month or every 8 days for each month. The maximization of the 8-day LST of each month can effectively
remove the errors caused by clouds, solar zenith angles, and the atmosphere, thus improving the image
quality [31,32]. This method was used to synthesize the maximum LST every month. Its equation is
as follows:

LSTi =
3

∑
j=1

(LSTj) (1)
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where LSTi is the maximized LST in the ith month, and LSTj is the maximized LST in the jth 8-day
period of the ith month.

3.2. Temperature-Vegetation Dryness Index (TVDI)

Studies have shown that there is a pronounced negative correlation between the land surface
temperature (Ts) and the vegetation index [33]. Price [34] and Carlson [35] found that the variation in
the vegetation coverage and soil moisture is large; a scatter plot of Ts and NDVI obtained from the
remote sensing images often results in a triangular shape, as shown in Figure 3a. Later, through a large
set of experiments, Moran et al. [14] found that a scatter plot of Ts and NDVI resulted in a trapezoidal
space, as shown in Figure 3b.
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The TVDI can be calculated with the following equation:

TVDI =
Ts − Tsmin

Tsmax − Tsmin
(2)

Tsmin = a1 × NDVI + b1 (3)

Tsmax = a2 × NDVI + b2 (4)

where Tsmin is the minimum land surface temperature observation for a given NDVI, which
corresponds to the wet edge in Figure 3; Ts denotes the land surface temperature at a given pixel; Tsmax

is the maximum land surface temperature observation for a given NDVI, which corresponds to the dry
edge in Figure 3. The boundary lines of the dry and wet edges can be obtained by linear fitting; a1, b1,
a2, and b2 are the coefficients of the fitting model for the dry and wet edges.

3.3. Temperature Correction

The study area has a higher altitude in the northwest area than in the southeast, with large
variations in elevation, the maximum of which reaches 2700 m. This landform difference is thus an
important controlling factor in terms of the vegetation, moisture and climate of the study area. On one
hand, the regional patterns with huge altitude differences such as mountains and river valleys affect
the flow of dry and wet air and lead to precipitation and wind differences, which further affect the
soil texture and moisture. On the other hand, the elevation controls the temperature, thus affecting
the vegetation coverage in different elevation zones and the extent of evapotranspiration and surface
runoff [23]. To ensure the consistency of the calculation scale of these data, the regional DEM was used
to correct the land surface temperature products and to reduce the effects of terrain undulation on the
energy equilibrium. Specifically, the land surface temperature correction was performed by decreasing
the temperature by 6 ◦C at an altitude of 1000 m [28,29].
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3.4. Calculating TVDI on the Basis of Different Land Cover Types

For the current drought analysis using TVDI, most literature has shown that the study area was
treated as a whole. Considering that the vegetation height and coverage differ greatly between
woodland, grassland and farmland, the corresponding land surface maximum and minimum
temperatures vary significantly. Therefore, a large variation in the TVDI may result if the study
area is calculated as a whole. The TVDI was calculated and compared on the basis of whole and
different vegetation types. In using the May 2010 data as an example, the research group divided
the study area into woodland, grassland and farmland according to the University of Maryland land
cover/use classification to calculate the TDVI.

To address the large quantity of repeated work in this study, an ENVI-based subprogram was
developed by combining the IDL and TVDI calculation model, and it was used to calculate the TVDI;
the calculation results based on the whole vegetation area was called WTVDI, and the calculation
results are based on the respective classified vegetation was called DTVDI. Because the focus of this
drought monitoring investigation is woodland, grassland and farmland, water bodies, wetlands, urban
use and other land use types have not been considered in the DTVDI calculation.

To compare the two calculation results more clearly, the percentage change between the WTDVI
value and DTDVI value was calculated; the equation is as follows:

∆µ% =
WTVDI − DTVDI

WTVDI
× 100% (5)

where ∆µ%: the percentage of change; WTVDI: TDVI results calculated based on the whole area;
DTVDI: TVDI results calculated based on land cover/use.

The percentage change between WTVDI and DTVDI is shown in Figure 4, in which different
colors represent different degrees of variability. The degree of variability is within 20% for a major
portion of the study area and 20%–40% for a partial area. Compared with the DTVDI value, the WTDVI
value was underestimated for woodland; on the contrary, the WTDVI value was overestimated for
grassland and farmland (Figures 2 and 4).Sustainability 2016, 8, 1327  7 of 16 
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To explore the reason for this difference, the dry/wet edges, the maximum/minimum LST and
NDVI, which were used to calculate the WTDVI and DTVDI, have been summarized and compared
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(Tables 1 and 2). A comparison of Tables 1 and 2 shows that the temperatures of choice for the whole
calculation were the maximum grassland temperature and the minimum woodland temperature. The
difference in vegetation types results in calculation error. The TVDI for woodland was found to have
been underestimated, and those of the grassland and farmland were overestimated when the dry and
wet edges in Table 1 were inserted into Equation (2).

Table 1. The dry and wet edges from each calculation.

Type Dry Edge Wet Edge

Whole LST = −6.51 × NDVI + 317.27 LST = 2.83 × NDVI + 290.65
Woodland LST = −2.83 × NDVI + 311.33 LST = 2.92 × NDVI + 292.23
Cropland LST = −5.92 × NDVI + 316.77 LST = 3.42 × NDVI + 292.73
Grassland LST = −10.86 × NDVI + 318.49 LST = 5.89 × NDVI + 291.60

Table 2. Statistical values of NDVI and LST for each land cover type.

Type NDVI Minimum NDVI Maximum LST Minimum LST Maximum

Whole 0.16 0.99 294.65 314.51
Woodland 0.41 0.97 294.65 307.94
Farmland 0.19 0.99 297.34 313.48
Grassland 0.16 0.844 300.18 314.51

To assess the efficacy of the two calculation methods, as an example, the soil moisture data of
study area, which were collected in May 2010, were used to validate the results [30]. The soil moisture
sampling points are shown as black triangular spots in Figure 1. The two TVDI calculation results
were extracted and then correlated with the corresponding soil moisture. The correlations are shown
in Figure 5; there is a significant correlation between the calculation results and the soil moisture, with
a correlation coefficient (R2) that ranges from 0.531 to 0.674.
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4. Results

4.1. Results of DTVDI

The DTVDI time-series from May to October in the BTHMR were calculated by using the MODIS
NDIV and LST monthly products between 2000 and 2014. The calculated DTVDIs range from 0 to 1.
The larger the TVDI, the more severe the drought, and vice versa [34]. Therefore, the calculated DTVDIs
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for each month were divided into five grades based on the TVDI values as follows: 0 ≤ TVDI < 0.2: very
wet, 0.2 ≤ TVDI < 0.4: wet, 0.4 ≤ TVDI < 0.6: normal, 0.6 ≤ TVDI < 0.8: drought, and 0.8 ≤ TVDI ≤ 1:
severe drought [30,36]. Because this calculation covers a total of 15 years and 6 months in each year,
there are 90 drought grade maps. In the interest of saving space, a typical case every 2 years for
showing the drought change was selected in our study (Figure 6).
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4.1.1. Correlation Analysis between DTVDI and 10-cm Soil Moisture

A 10-cm soil depth was chosen at the meteorological stations in the study area for use in
comparative analyses with DTVDI on spatial and temporal scales. Figure 7 shows the comparison
result between the measured moisture data and the DTVDI at 22 observation stations. The histogram
in the figure represents the TVDI value at each observation station, and the line chart represents the
mean monthly soil moisture value. There is a negative correlation between the DTVDI and the soil
moisture (R = −0.855).
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Figure 7. Comparison of the DTVDI and the soil moisture at each observation station in September 2010.
(Note: HA-Huai’an, BP-Buping, WJ-Wuji, NQ-NeiQiu, NQ2-NeiQiu2, FF-Fengfeng, WC-Wei
County, GP-Guangping, CD-Chengde, SH-Sanhe, LC-Luan County, FN-FengNan, WD-Wangdu,
HJ-Hejian, JH-Jinghai, YS-Yanshan, WQ-Wuqiang, JC-Jing County, JC2-Jing County2, NP-Nanpi,
DM-Daming, GT-Guantao).

Figure 8 shows the comparison between the measured moisture data and DTVDI from May to
October from 2000 to 2014 at the Nangong observation site. The histogram in the figure represents the
TVDI value of different months at the Nangong observation station from 2000 to 2014, and the line
chart represents the mean monthly soil moisture. There is a negative correlation between the DTVDI
and the soil moisture (R = −0.793), that is to say, the higher the TVDI, the lower the soil moisture and
the more severe the agricultural drought.
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Figure 8. Comparison of the DTVDI and the soil moisture at the Nangong observation station from
May 2000 to October 2014.
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4.1.2. Correlation Analysis between DTVDI and Precipitation

The drought that occurred in the study area was primarily relieved by precipitation. The total
monthly precipitation observed at the meteorological stations and the TVDI were compared and
analyzed at spatial and temporal scales, and the results are shown in Figures 9 and 10. As an example,
Figure 9 shows the comparison between the precipitation and TVDI at 24 observation stations in
September 2010, and Figure 10 shows the comparison between the precipitation from May to October
between 2000 and 2014 and the corresponding TVDI at the Miyun observation station. The histogram
in the figure represents the TVDI value at each station or for a different month at the Miyun observation
station, and the line chart represents the mean total monthly precipitation. A detailed comparison of
the two figures reveals that there was also a negative correlation between precipitation and DTVDI
(R = −0.771 and −0.732 respectively). Theoretically, with decreased precipitation, the TVDI value
increased. But at some stations, many farmlands were equipped with an irrigation facility for relieving
drought, leading to a lower TVDI. Therefore, the negative correlation observed did not continue during
certain months at the observation stations.
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Figure 9. Comparison of DTVDI and precipitation in September 2010. (Note: ZB-Zhangbei, WC-Wei
County, SJZ-Shijiazhuang, XT-Xingtai, FN-Fengning, WC2-Weichang, ZJK-Zhangjiakou, HL-Huailai,
MY-Miyun, CD-Chengde, ZH-Zunhua, QL-Qinglong, QHD-Qinhuangdao, BJ-Beijing, LF-Langfang,
TJ-Tianjin, TS-Tangshan, LT-Leting, BD-Baoding, RY-Raoyang, BT-Botou, TG-Tanggu, HH-Huanghua,
NG-Nangong).
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Figure 10. Comparison of TVDI and precipitation from May 2000 to October 2014 at the Miyun station.

4.2. Spatiotemporal Analysis of Severe Drought in the Study Area

Figure 11 shows the spatial statistics for the severe droughts (0.8 < TVDI ≤ 1) that occurred from
May to October between 2000 and 2014 in the BTHMR. Statistical results and Figure 11 shows that
the total times of severe drought reached as high as 85 in some study areas during these 15 years.
From May to October, the areas prone to droughts are concentrated to the north of Zhangjiakou and
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west of Chengde, and the areas prone to severe droughts are concentrated northwest of Zhangjiakou
and Chengde, and west of Handan, Xingtai and Shijiazhuang.
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Figure 12 shows the percentage of severe droughts from May to October between 2000 and 2014.
In the figure, the different colors of the histograms represent the percentage of severe drought areas
from May to October of each year, and the line chart represents the mean percentage of severe drought
area from May to October for every year. Figure 12 indicates that the overall drought occurred primarily
in May, September and October, and it was least likely to occur in July and August. These results are
consistent with the continental monsoon climate of the BTHMR. The ample rainfall in summer resulted
in decreases in the areas that were hit by severe droughts. The statistical precipitation data from May
to October in 2010 (Figure 10) also confirm this finding. The calculations show that 2012, 2013 and 2014
were the three years when the area was hit hardest by drought. The severe drought rate of our study
region ranges from 5.25% to 9.52%, the least severe was 5.24% in 2000 and the worst was 9.52% in 2013.
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Figure 12. The percentage of severe droughts in the study area from May to October between 2000
and 2014.
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The primary land cover types in the study area are farmland and grassland, which account
for 53.11% and 29.46%, respectively, of the total area. These land types are directly related to the
region’s primary industries of agriculture and herding. The farmland and grassland that were hit by
severe drought disasters have been statistically analyzed; the results are shown in Figures 13 and 14.
The histograms show that for the farmland, severe drought disasters occurred in October of each year,
and 2008, 2010, 2012 and 2014 are the four years that were hit the hardest. During certain years, the
affected area could cover up to 15% of the total area. Figure 14 indicates that the severe droughts in
grassland primarily occurred in May and September. The areas that were hit by severe droughts were
small in 2006 and 2007; the overlay of this figure with Figure 6 shows that the areas that were hit by
severe droughts were primarily concentrated to the northwest of Zhangjiakou and across the majority
of Chengde, in Hebei province. These results are consistent with the large body of literature and
statistical data available for the BTHMR [37–40]. There are two reasons that caused the inconsistency in
the drought timing of the farmland and grassland: these regions are located at different latitudes, and
they have different irrigation conditions, e.g., many farmlands were equipped with irrigation facilities.
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Figure 13. Percentage of severe droughts in the farmland study area between 2000 and 2014.
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Figure 14. Percentage of severe droughts in the grassland study area between 2000 and 2014.

5. Discussion

In August 2012, the people’s government of Hebei province issued the strictest water resource
management system [41] (referred to as the Management System below). The Management System
outlined strict restrictions for groundwater exploitation in the area. To confirm the feasibility of the
aforementioned research method and to evaluate the impact of the Management System on agricultural
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production, the drought in the area’s farmland has been statistically analyzed since the implementation
of the Management System. According to the growth law of crops, June to September of every year
is the optimum period for vegetation growth and is thus the peak traditional irrigation season for
farmland. For this reason, the data from June to September were selected for analysis. Figure 15 shows
a comparison between the mean percentage of severe droughts from June to September each year for
the farmland in the study area, and the mean of the monthly total precipitation for the corresponding
time. The figure shows that the means of the monthly total precipitation exhibited small variations
and oscillated by approximately 100–150 mm. The monthly mean percentage of severe drought in the
farmland remained stable between 2000 and 2012; 2003 is the year when more droughts occurred, with
a monthly mean percentage of severe drought of 1.16%. However, because the implementation of the
Management System began in 2012, the mean percentage of severe droughts has exhibited a dramatic
change with an increase of 2.47% under the condition of no adjustment of planting structure, which is
more than 110% higher than the previous level. These experiments demonstrate that the restriction on
groundwater exploitation as outlined in the Management System issued by the Hebei government has
resulted in a huge increase in the area hit by severe droughts, to a certain extent.
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Figure 15. Comparison between the mean monthly total precipitation and the mean percentage of
severe droughts in farmland from May to September, between 2000 and 2014.

6. Conclusions

After analyzing the DTVDI calculation results, the times that were found to be most prone to
drought were May, September and October. By contrast, the area that was hit by drought in the summer
(June to August) was small and primarily concentrated in northern and southeastern Hebei province.

The experimental results from the study area confirm that the TVDI calculation method based
on vegetation classification can be used for the effective monitoring and assessment of regional
droughts. The results can provide effective data support to governmental departments for the
prevention and management of droughts. Admittedly, the BTHMR has complex and diverse landforms,
diverse climates and different land cover types. In addition, there are matching problems between
the resolution of the satellite remote sensing data and the real conditions on the land surface.
In particular, errors will result when matching unique landforms (e.g., valleys and mountains). All the
aforementioned factors will create uncertainty in the use of remote sensing for large area drought
monitoring; this uncertainty will be further explored in subsequent studies.
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