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Abstract: In Ireland, timber and biomass haulage faces the challenge of transporting enough 

material within strict legal dimensions and gross vehicle weights restrictions for trucks and 

trailers. The objective of this study was to develop a method to control payload weight by 

knowing the moisture content of the wood. Weights, volumes, and moisture content were 

gathered from 100 truckloads of Sitka spruce pulpwood. Truck volume and weight 

utilization patterns were analyzed based on stacked volume, truck volume, and weights 

recorded from the weighbridge. Solid/bulk volume conversion factors for the truckloads 

were estimated indicating the truck’s solid volume capacity to be filled. Trucks were grouped 

into five conditions based on their configuration—volume capacity and legal maximum 

payload. A loaded volume fraction was estimated to assess the optimal volume capacity and 

stanchion height at which the trucks should be loaded. Results showed that 100% of the 

trucks presented volume underutilization, with a maximum of 27.5 m3 (only 39.85% volume 

capacity). In contrast, 67% of trucks were overweight while the remaining 33% were under 

the legal maximum weight. The average solid/bulk volume conversion factor was 0.66 ± 0.013 

at 95% confidence level. Depending on the conditions, trucks can be filled to 100% of their 

volume capacity with wood at an MC from 29% to 55%. The minimum truck volume 

capacity utilization was 45%. This methodology can be used by truck hauliers, enabling 

them to determine in-forest the optimum volume and weight of wood to be transported by 
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knowing the moisture content (MC), the wood specie, and using the height of the stanchions 

of the trailer as reference when loading the truck. 

Keywords: biomass log loading; payload optimization; legal maximum payload;  

moisture management; truck configurations; Ireland 

 

1. Introduction 

In 2007, forests covered 10% of Ireland’s land area, and this is projected to increase to 17% by 2030 [1]. 

It is also forecasted that roundwood volume will increase from 3.79 million m3 in 2011 to 6.41 million m3 in 

2028 [2]. This volume increase will also have a direct correlation and impact on the logistics involved 

in the wood supply chain. 

Several modes of transportation are used in the forestry sector worldwide and truck transportation 

constitutes an important part of the supply chain. Road haulage represents more than 75% of Europe’s 

freight transport activity and according to the European Conference of Ministers of Transport [3] freight 

transport will grow from 50% to 60% by 2015 from the 2001 values. Road transportation is and will 

remain the most important mode of timber transport in Ireland, forming a substantial part of the 

industry’s raw material cost and having a major influence on the sector’s overall economic performance 

and competitiveness [4,5]. 

The transport of wood from the forest to the industries is carried out by trucks of different makes and 

models. The difference is usually given by the number of axles, axle spacing, tare weight of the truck, 

and the engine position in relation to the front axle. All European countries impose haulage regulations 

related to the restriction on dimensions and weight of the trucks. The weight restriction is more complex 

due to the relationship between number of axles and the distance between them and how this changes 

the design gross vehicle weight (DGVW). 

Ireland sets a maximum of 44,000 kg for trucks with 6 axles (to be increased to 46,000 kg), and 

42,000 kg for 5-axled trucks (now proposed to be reduced to 40,000 kg) [6]. The truck’s weight is 

monitored at weighbridges and overloaded trucks incur penalties, normally of a financial nature or ban 

on transporting timber for a specified period of time. 

Overweight trucks can cause problems such as deterioration of roads, short vehicle life, vehicle 

maneouver difficulty and safety issues [7]. Martin et al. (2001) described how over one third  

(178,000 ha) of the existing forest in Ireland are located on peatland soil and are served by basic  

road infrastructure of flexible road pavements. These pavements were severely deteriorated due to 

heavily loaded trucks. It was reported that even trucks with 3000 kg overloaded could reduce the  

roads serviceability [8]. 

Smart Way, (2009) stated that truck fuel consumption increases with the weight of the vehicle. 

Heavier trucks require more fuel to accelerate and to climb hills, and may reduce the amount of cargo 

that can be carried relative to the unladen (tare) weight of the truck. For every 10% drop in truck weight, 

fuel use is reduced by between 5% and 10% [9]. 

Regulation on the trucks weight and dimensions highlights the challenge facing truck operators to 

place enough material on a truck (and trailer) of fixed dimensions in an efficient manner. According to 
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Angus-Hankin et al. (1995) to carry less than the legal maximum weight is incurring opportunity  

costs [10]. In the case of wood biomass (chips and bundles) low density can decrease the productivity 

in transport with loads reaching the maximum legal dimensions of the truck and/or trailer before meeting 

the legal maximum weight [10]. Talbot and Suadicani (2006) considered the cost of road transport as 

being the main factor limiting the expansion of the bioenergy sector since secondary transport can be 

responsible for 20% to 40% of the supply chain costs [11]. Johansson et al. (2006) studied the transportation 

of bundles, and results showed that material with desirable low moisture content could not reach the full 

load weight capacity due to volume constraints, even though the material was subject to different 

compaction techniques. This implies that the transport vehicles cannot be used in an optimal way [12].  

In the case of logs the situation is different; the material has a higher bulk density in comparison to 

bundles and woodchips. Maximizing the load implies attempting to reach the full load volume capacity 

without exceeding the legal maximum weight. Beardsell (1986) determined that there could be a 

substantial net gain in average payloads by eliminating both overloading and under loading [13]. 

Considering that many problems arise in the distribution of the payload on the truck and the effect of 

this on the forest road structure, Bustos and Bussenius (1996) developed a model to calculate how to 

distribute the load keeping the logs’ weight in an optimal position so that the gross vehicle weight 

(GVW) is evenly distributed in order to obtain a homogeneous weight [14]. 

Hamsley et al. (2007) stated that another way to potentially increase efficiency in transportation is to 

reduce the variability of the GVW. Their study examined variability of gross, tare and net weights to 

determine if more uniform weights were associated with higher payloads and lower costs. Results 

showed that there was an inverse relationship between the variability of GVW and mean net payload, 

concluding that less variable GVW yielded higher net payloads [15].  

Gross vehicle weight can be controlled by weighing devices—a truck scale is a common device for 

measuring the weight of a heavy vehicle. However, truck scales are usually installed at fixed locations, 

which are not convenient for patrols to check vehicle payload on the road [7]. Gallagher et al. (2004) 

analyzed the differences in GVW between trucks that use scale and trucks that do not use scales (either 

with in-forest platform scales or electronic on-board scales). In general, they found that trucks weighed 

in the forest had higher net payloads than those that were not weighed. In addition, trucks that utilized 

scales had higher average GVW than those without scales, and they had reduced variation of GVW [16]. 

Bustos and Bussenius (1996) considered that it is practically impossible to handle the relationship of 

weight and volume of the wood accurately. The interactions between parameters as wood Moisture 

Content (MC), dry matter, solid and bulk density and truck payloads constraints are complex but need 

to be evaluated in order to deliver the material cheaply and efficiently [14]. Acuna et al. (2012) [17] 

used the interaction of these parameters to study how the moisture content of wood affected the costs 

and operational planning of three biomass supply chains. Transportation decisions from this study 

included calculation of total number of truckloads with chips or logs to be transported to the plant by 

using MC as a determining factor [17,18]. 

The objective of this paper is to present a methodology that can be used by truck hauliers to determine 

in-forest the optimum volume and payload weight of wood to be transported by knowing the wood moisture 

content and using the height of the stanchions of the trailer as reference point to improve the overall log 

loading efficiency for subsequent improved payload as a more sustainable and efficient approach to 
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timber/biomass transportation which is a major link in the supply chain for both the timber and bio-economy 

going forward 

2. Materials and Methods 

2.1. Study Site 

The study was carried out in Medite Europe Ltd., one of the leading manufacturers of MDF (medium 

density fibreboard) in Europe, located in Clonmel, Co. Tipperary, Ireland (Figure 1). The plant has an 

average wood consumption of 233,525 dry tonnes/annum, used not only for panelboard production but 

also satisfying 90% of their 55MW heating system [18]. In 2012, Ireland processed 2.59 million m3, 

with 811,000 m3 processed by the panelboard industry. Biomass in this instance is mentioned as 

pulpwood for panel and sawmills and is also used for biomass energy. Depending on the supply chain, 

the pulpwood for energy is also transported in the same manner (chipped at depot as opposed to chipped 

in forest which means hauling biomass in timber skellig trailers and woodchips in box trailers.) Quality 

requirements for woodchip deliveries (chipped in forest) are based primarily on moisture and range 

between 40%–55% MC. MC for logs to be chipped is more flexible since chipping can occur at depot 

locations and in most situations can undergo a process of storing and natural drying before chipping, so the 

analysis in this paper has implications whether it transports logs for panel mills/sawmills or logs for biomass. 

 

Figure 1. Study area location. 
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2.2. Utilization of Load Volume and Weight 

In order to understand the pattern of utilization of volume, two cameras were positioned on both sides 

of the weighbridge at Medite Europe Ltd. Pictures were taken of 100 trucks entering the weighbridge 

carrying pulpwood logs of Sitka spruce. Sitka spruce represents Ireland’s most important timber species, 

accounting for slightly less than 60% of the forested area but more than 80% of the harvest volume [19]. 

The images were then processed with Adobe Photoshop CS5 Extended® software in order to digitally 

determine the stack volume of the loads on the trucks. Photoshop counts with a measurement extension 

that can define any section in an image with a ruler tool (set to a known scale o value) and accurately 

compute height, area, perimeter, etc. [20] 

The use of Photoshop and its precise measuring tool has been used in other forest research areas [21,22]. 

In this study, a measurement scale was set specifying the number of pixels in the image equal to the 

length (cm) of the telescopic measuring staff located next to the weighbridge (Figure 2). 

 

Figure 2. Location of the measuring staff for scaling. 

Based on truck specifications and volume capacities of the 100 trucks studied, three types of truck 

combinations were identified (Table 1). However, in order to estimate the real volume utilization on 

trucks carrying pulpwood (3 m-long logs) the trucks were classified based in two types of volume: trucks 

with 3 and 4 bays carrying capacity (Figure 3). 

Table 1. Truck type base on volume capacity. 

Truck Type Truck Configuration Volume Capacity (m3) 

1 Articulated/3 bays capacity 67.6 
2 Articulated/4 bays capacity 78.2 
3 Rigid + Trailer/4 bays capacity 90.3 

 

Figure 3. Types of truck based on real volume capacity for pulpwood. 
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To study the weight patterns on the trucks, the gross vehicle weight (GVW) at the weighbridge was 

recorded and compared to the design gross vehicle weight (DGVW) established in the Ireland Road 

Traffic Construction and Use of Vehicles Regulations [6]. 

2.3. Solid/Bulk Volume Conversion Factor 

Wood solid volume in Ireland includes bark (indicated as over back volume) and is expressed in cubic 

meters. The stack volume does not accurately represent the amount of solid wood per m3 on the trucks 

since the logs are stacked with air spaces between them [23]. For this reason, a solid/bulk volume 

conversion factor needed to be calculated in order to estimate the actual solid wood volume carried by 

the trucks. A sample of the data recorded for the trucks can be seen in table 2 outlining the truck number 

in sequence, crane details, axle configuration, number of timber bays, bulk and solid volume measured 

along with the payload and gross vehicle weights. 

The solid/bulk volume conversion factor (F) was estimated for 44 out of the 100 trucks through image 

processing (using the same technique used to measure stack volume), and following the standard 

procedures for the measurement of round timber in Ireland. This procedure consists of using a quadrant 

of a known area (0.49 m2) and recording the diameter of the pulpwood logs inside the quadrant, this 

process was repeated five times on each truck load [23]. 

The conversion factor is then determined by dividing the total area of the five quadrants by the area 

occupied by the surface area of the logs. The solid/bulk volume conversion factor helped to determine 

the solid volume capacity of the trucks.  

Table 2. Sample selection of truck data recorded on site. Volume data measured through 

image processing with Photoshop. 

No. 
Crane 
(Y/N) 

Axles Configuration 
No. 

Bays 

Bulk 
Volume 

(m3) 

Solid 
Volume 

(m3) 

DGVW 
(kg) 

Payload 
(kg) 

GVW 
(kg) 

Tare 
Weight 

(kg) 

1 N 5 (2 + 3) Articulated 3 45.47 30.92 42,000 31,440 46,060 14,620 
2 Y 6 (3 + 3) Rigid + Trailer 4 37.18 25.28 44,000 24,380 44,900 20,520 
3 Y 6 (3 + 3) Rigid + Trailer 5 39.47 26.84 44,000 26,020 46,460 20,440 
4 Y 5 (2 + 3) Articulated 3 42.75 29.07 42,000 29,620 46,920 17,300 
5 Y 6 (3 + 3) Articulated 3 39.02 26.53 44,000 24,580 42,340 17,760 
6 Y 6 (3 + 3)  Articulated 3 41.76 28.39 44,000 26,080 43,640 17,560 
7 Y 6 (3 + 3)  Rigid + Trailer 4 42.09 28.62 44,000 24,840 43,420 18,580 
8 N 6 (3 + 3)  Articulated 4 41.85 28.46 44,000 26,040 41,600 15,560 
9 N 5 (2+3)  Articulated 4 52.75 35.87 42,000 30,020 44,480 14,460 
10 N 6 (3+3) Articulated 4 45.32 30.82 44,000 27,860 44,020 16,160 
12 N 5 (2+3)  Articulated 3 38.33 26.06 42,000 26,460 40,580 14,120 

2.4. Load Weight Determination 

The basic density of Sitka spruce was estimated from 12 truckloads where the MC was available. 

Sample MC data was recorded by collecting sawdust from chainsaw cutting into different parts of the 

logs on the truck and at various locations on the truck. These samples were then measured for MC 
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through the oven dry test method. The density of wood, including its MC was calculated in this study 

using Equation (1) from the Forest Products Laboratory (2010) [24]. 

1
100

(kg/m3) (1)

Where 	is density of wood as a function of Moisture Content (MC),  is the basic density of the wood 

and MCdb is the moisture content (dry basis) of the wood. By calculating the wood density ( ) at 

different MC the weight of the load (Wmax) to fill the two truck types based on volume (See Figure 2) and 

their solid volume ( ) capacities were estimated (Equation (2)). 

(kg) (2)

2.5. Legal Maximum Payload (LMP) 

In order to identify if the amount of wood loaded on the trucks was under the legal weight limit the 

average payload was calculated (Equation (3)), where DGVW is the design gross vehicle weight, and 

x̄Tw is the average truck tare weight.  

(kg) (3) 

Trucks were grouped into five conditions based on their configuration, volume capacity, design gross 

vehicle weight (DGVW) and number of axles which determine the legal weight limit; this consists on 

42,000 kg for 5-axle trucks and 44,000 kg for 6-axle trucks (Table 3). 

Table 3. Characteristics of each condition. 

Condition Truck Configuration Truck Vol. Type No. Axles DGVW (kg)

C1 Rigid + Trailer with crane T2 6 (3 + 3) 44,000 

C2 Truck articulated no crane 
T1 6 (3 + 3) 44,000 

T2 6 (3 + 3) 44,000 

C3 Truck articulated with crane T1 6 (3 + 3) 44,000 

C4 Truck articulated no crane 
T1 5 (2 + 3) 42,000 

T2 5 (2 + 3) 42,000 

C5 Truck articulated with crane T1 5 (2 + 3) 42,000 

2.6. Loaded Volume Fraction (LVF) 

To determine the optimal volume and stanchion’s height at which the LMP is met the Loaded fraction 

(LVF) was calculated for each condition as a function of the legal maximum payload (LMP), the density 

of the wood ( , the moisture content (MC) and the trucks volume capacity. 

 (4)
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3. Results 

3.1. Utilization of Weight and Volume Capacity  

The loads delivered to Medite ranged from 21,800 kg to 35,280 kg and load volumes ranged from 

36.16 m3 to 52.75 m3. In terms of weight utilization, a higher proportion of trucks in each condition were 

over the legal maximum weight, with up to an average of 5050 kg (individual maximum of 7006 kg),  

the average weight under the LMP was 1913 kg (individual maximum of 3000 kg). Comparison between 

the stack volume from the 100 truckloads and the truck’s volume capacity showed that 100% of the 

truck loads were under the truck’s maximum volume capacity. Truck volume type T2 (four bays and  

69 m3 capacity) presented the highest underuse of volume, with a maximum of 27.5 m3 for C1  

(rigid + trailer). Trucks T1 (three bays capacity and 51.75 m3) presented a maximum of 10.73 m3 

underused for C3 (articulated). 

Loads on trucks over the legal weight limit cannot be optimized in terms of volume due to weight 

constraints (Table 4).  

Table 4. Patterns of weight and volume by trucks under the five conditions. 

Condition Truck Vol. Type 

Over the Legal Weight Limit Under the Legal Weight Limit 

% of 
Trucks 

Underused 
Vol. (m3) 

(kg) 
% of 

Trucks 
Underused 
Vol. (m3) 

(kg) 

C1 T2 60 26.7 1228 40 27.5 845 

C2 
T1 63 6.63 2084 37 7.52 836 

T2 62 23.06 900 38 24.1 1913 

C3 T1 64 8.1 1711 36 10.73 828 

C4 
T1 70 7.83 2574 30 10.4 1447 

T2 100 21.2 3620 - - - 

C5 T1 50 8.38 5050 50 7.45 1020 

3.2. Solid/Bulk Volume Conversion Factor 

The Sitka spruce pulpwood stack/solid volume conversion factor presented an average of 0.66 ± 0.013 at 

95% confidence level. An overall factor of 0.66 means that 1 m3 of stacked volume in the trucks equals 

to 0.66 m3 of solid wood volume. In terms of the volume capacity of the trucks, T1 with 51.75 m3 represent 

34.16 m3 of solid volume capacity, and T2 with 69 m3 has a solid volume capacity of 45.54 m3. 

3.3. Density with MC Variation and Load Determination 

Moisture content in wood could be determined in field with the help of moisture meters. Becerra 

(2012) tested the accuracy on different moisture meter instruments on different products of varied 

species. He concluded that factors such as tool accuracy, precision, efficiency, and mechanical reliability 

are important factors that should be considered when determining which tool or combination of tool to 

use, and those improvements are still needed in the manufacturing of moisture meters [25]. 

Moisture content measurement can also be carried out in conjunction with the forest companies that 

can monitor the moisture content of the wood at roadside. The use of drying models like the one 
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developed by Murphy et al. (2012) shows how the air drying rates depend on the specie, season in which 

drying began, and storage system. This model is able to predict the number of days required for the wood 

to reach a specific MC at any off-forest location in Ireland [19]. 

The estimated basic density of Sitka spruce for this study presented a mean value of 377 ± 22 kg/m3 

(at 95% confidence level), providing the basis for calculating the density of wood at different MC and 

the weight of the load (Wmax) to fill the total solid volume capacity of the trucks (Table 5). 

Table 5. Amount of wood at different moisture contents to be loaded in the trucks. 

MC % Density (kg/m3) 
Wood in T1 (kg) 

at 34.16 m3 
Wood in T2 (kg) 

at 45.54 m3 

0 377 12,876 17,169 
30 539 18,395 24,527 
40 628 21,461 28,614 
50 754 25,753 34,337 
60 943 32,191 42,921 
70 1257 42,921 57,229 

3.4. Legal Maximum Payload 

The Legal Maximum Payload varied depending on the number of axles on the truck and on the 

materials used on the construction of the trucks which affect the tare weight. Trucks in C1, C3 and C5 

present a higher LMP than trucks from C2 and C4 due to the presence of crane on the truck which 

increases the tare weight on an average of 2800 kg. There are variations on the tare weight on trucks  

for each condition that can possibly be attributed to the weight of fuel on the truck at the  

weighbridge (Table 6). 

Table 6. Estimation of the Legal Maximum Payload for each condition with 95% confidence 

intervals of the mean. 

Condition Truck Type Tare Weight (kg) LMP (kg) 

C1 T2 19,496 24,504 (±0.99%) 

C2 
T1 15,247 28,753 (±1.46%) 

T2 16,033 27,967 (±0.95%) 

C3 T1 18,144 25,856 (±1.53%) 

C4 
T2 14,402 27,598 (±0.99%) 

T1 14,707 27,293 (±2.60%) 

C5 T1 17,185 24,815 (±1.62%) 

3.5. Volume Fraction 

The volume fraction indicates the optimal proportion of the truck to be loaded restricted by the LMP. 

As MC increases the load weight also increases, reaching the LMP at lower levels of the truck’s volume 

capacity and stanchion height (Figure 4).  
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Figure 4. Different volume capacities and stanchion heights at which trucks can be loaded 

for each condition. 

Table 7 presents details of the maximum volume percentage and related stanchion height at which 

trucks can be loaded efficiently for each condition. It depicts how the varying MC (dependent) is used 

to predict the stanchion heights of the timber trailer relative to the legal maximum payload restrictions 

for each particular truck combination and condition. The maximum MC% at which the trucks can be 

fully loaded varies from 25%–55%; loads exceeding these MC percent will make the truck overloaded, 

incurring penalties whilst on the other hand, loads under the maximum MC will result in lost revenue 

for that particular delivery which in turn implies more truck trips needed to deliver the required material 

and ultimately driving transportations costs higher.  

Table 7. Different volume capacities and height of the stanchions to be filled at maximum 

MC% for each Condition. 

Truck Volume (%)  100% 90% 80% 70% 60% 55% 45% 

Condition LMP (kg) 

Stanchion Height (m) 

2.5 2.25 2.00 1.75 1.5 1.38 1.30 

Maximum MC (%) 

C1-T2 24,504 25 36 43 50 57 61 68 
C2-T1 28,753 55 59 64 68 72   
C2-T2 27,967 38 44 50 56 63 66 72 
C3-T1 25,856 50 55 60 65 70 - - 
C4-T1 27,598 53 58 62 67 72   
C4-T2 27,293 37 43 49 55 62 65 71 
C5-T1 24,815 48 53 58 63 68 71 - 
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4. Discussion and Conclusions 

In terms of weight and volume utilization on trucks, it is natural that loads from the 100 trucks 

entering the weighbridge varied depending on factors as the loader operator, MC, loading area 

conditions, etc. The variation of underutilization on volume (6.63 m3 to 27.5 m3) and on weight  

(828 kg to 1913 kg) affect the transportation costs; the smaller the load, the higher hauling costs per unit 

of product supplied.  

The Legal Maximum Payload (LMP) varied for each condition, with articulated trucks in C2-T1 and 

C2-T2 presenting the highest load weight capacity; this is mostly influenced by having 6 axles which 

sets the maximum legal GVW in Ireland (44,000 kg) combined with a low tare weight, and the absence 

of crane. On the contrary, the high tare weight in rigid + trailer trucks translates into low LMP.  

Šušnjar et al. (2011) studied the weights and wheel pressure on articulated and rigid + trailer trucks 

obtaining similar results, and envisaging a bigger use of articulated trucks in Croatia [26]. 

Improving loading efficiency improves hauling productivity (kg/day); to make as many trips as 

possible with the maximum legal weight will depend upon to a certain extent on the tare weight of the 

truck and trailer [27]. The heavier the truck’s tare the lower the payload and this points out the 

importance of construction materials when choosing a truck, considering also that a crane increases the 

tare weight by an average of 2800 kg. 

Studies in United States present how weight reduction methods can increase payloads by  

1–4 tonnes [28]. Some strategies consist on the installation of a more modern and lighter crane of the  

same capabilities [26], the use of more modern materials for the construction of trailers/using lightweight 

components [29], using a fold-up pole trailer [30], and even, when possible, eliminating the  

sleeper-cab [31]. 

Another strategy to increase payload is by reducing gross vehicle weight (GVW) variability,  

Hamsley et al. (2007) stated that 1% decrease in GVW variability yielded 0.22 to 0.73 ton increase in 

payload weight. A suggested potential savings of $100 million annually in the southern United States 

by fully loading trucks more consistently; so determine the load weight before arriving at the mill  

is important [15].  

Weighing in-forest through an on-board system generally reduces the variability of GVW, and 

increases the payload by minimizing the light payloads and reducing the possibilities of financial 

penalties due to overweight trucks [16,28]. On the other hand, implementing on-board weighing systems 

constitute initial capital investment to install such a system together with the increase in managerial 

duties in order to effectively use the information it provides to the benefit of the haulage company [32]. 

In Ireland, most of the truckloads are weighed at the processing plant or weigh stations at fixed 

locations along the road network. Weighing devices on trucks are not common in Ireland, with only few 

hauliers installing basic systems based on pressure gauges to give an indication of payload weight. The 

UK Code of Practice on timber transport requires all timber haulage vehicles to operate with weighing 

devices [33]. Load weighing devices were initially trialled experimentally in Ireland some 10 years ago, 

without any appreciable uptake, mainly as result of cost. In more recent years, individual hauliers have 

been experimenting with less expensive units. A more recent study that tested a new air weigh system 

fitted to the middle axle airbags of the trailer and back axle of the truck that gave a digital in-cab reading 

for the driver suggests an average accuracy to within 568 kg [34]. 
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The aim of this study was to control and improve the truck’s loading efficiency by developing a 

methodology where the maximum loading volume can be determined under legal weight restrictions 

through managing the moisture content of the wood in the field. A possible scenario for this method 

consists on truck hauliers determining the moisture content before loading the trucks. The Load Volume 

Fraction (LVF) for specific species and products at different moisture content could be tabulated with 

the purpose of helping the haulier to determine the percentage (or side bar heights) of their trucks to  

be loaded, thus providing confidence to the hauliers that their load is under the maximum legal  

weight restrictions. 

By optimizing the load efficiency using the LVF, an aspect to consider is to choose the proper loading 

technique to help constitute a more uniform load. In Ireland it is common practice to load logs top to tail 

to ensure an even balance of the load. This loading method was observed to increase the payload for 

pulpwood loads by 3% and facilitate unloading without having the load fall apart [16]. 

Shaffer and Stuart (2009) consider that while it is always desirable to maximize payload, there may 

be times when under loading is a more efficient strategy. The extra ton on a truck may actually be costing 

money if it required that the truck be pushed out of the woods by a skidder, run on lower range gears to 

make it over a mountain, use more fuel, and take longer to complete the trip [31]. 

In conclusion, getting a better understanding of truck configurations and the volume and weight 

capacities is crucial to assessing the adequate type of truck to use. The use of articulated trucks without 

crane allow higher payload, followed by articulated trucks with crane, and ultimately rigid-trailer trucks 

presented the lowest LMP. Nevertheless, it has to be considered that rigid-trailer truck combinations give 

more accessibility to forest areas than the articulated counterparts. The authors acknowledge that further 

studies may be required to test and relate the variability of basic density for Sitka spruce in Ireland and 

is ultimately one of the factors that will affect the LMP in Ireland.  

Acknowledgments 

This study was funded by CoFoRD Forest Energy Programme 2008/RD (National Council for Forest 

Research and Development in Ireland) and under the Charles Parsons Energy Research Program (Grant 

Number 6C/CP/E001) of Science Foundation Ireland (www.sfi.ie). 

Author Contributions 

Ger Devlin, Amanda Sosa and Radomir Klvac collected the data and wrote the manuscript.  

Enda Coates and Tom Kent contributed with the concept development and access to the study area. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Department of the Environment Heritage and Local Government. Ireland: National Climate 

Change Strategy 2007–2012; Department of the Environment, Heritage and Local Government: 

Dublin, Ireland, 2007; p. 60. 



Sustainability 2015, 7 3029 

 

2. Phillips, J.; Redmond, J.; Mac Siurtain, M.; Nemesova, A. Roundwood Production from Private 

Sector Forests 2009–2028. A Geospatial Forecast; COFORD (National Council for Forest 

Research and Development): Dublin, Ireland, 2009. 

3. ECMT (European Conference of Ministers of Transport). Regulatory Reform in Road Freight 

Transport. In Proceedings of the International Seminar, Paris, France, 29–30 March 2001; p. 84. 

4. Devlin, G.; McDonnell, K.; Ward, S. Timber haulage routing in Ireland: An analysis using GIS and 

GPS. J. Transp. Geogr. 2008, 16, 63–72. 

5. Devlin, G.; Klvac, R.; McDonnell, K. Fuel efficiency and CO2 emissions of biomass based haulage 

in Ireland—A case study. Energy 2013, 54, 55–62. 

6. Road Traffic (Construction, Use of Vehicles). Guidelines on Maximum Weight and Dimensions of 

Mechanically Propelled Vehicles and Trailers; Department of Transport: Dublin, Ireland, 2003. 

7. Yang, S.; Liu, T.; Cheng, Y. Automatic measurement of payload for heavy vehicles using strain 

gages. Measurement 2008, 41, 491–502. 

8. Martin, A.; Owende, P.; Holden, N.; Ward, S.; O’Mahony, M. Designation of timber extraction 

routes in a GIS using road maintenance cost data. For. Product J. 2001, 51, 32–38. 

9. U.S. Environmental Protection Agency. Smart Way Weight Reduction: A Glance at Clean Freight 

Strategies; U.S. Environmental Protection Agency: Washington, DC, USA, 2009. 

10. Angus-Hankin, C.; Stokes, B.; Twaddle, A. The transportation of fuelwood from forest to facility. 

Biomass Bioenerg. 1995, 9, 191–203. 

11. Talbot, B.; Suadicani, K. Road transport of forest chips: Containers vs. bulk trailers. For. 

Stud./Metsanduslikud Uurim. 2006, 45, 11–22. 

12. Johansson, J.; Liss, J.; Gullberg, T.; Björheden, T. Transport and handling of forest energy 
bundles—advantages and problems. Biomass Bioenerg. 2006, 30, 334–341. 

13. Beardsell, M. Decreasing the Cost of Hauling Timber through Increasing Payload. Ph.D. Thesis, 

Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 1986. 

14. Bustos, O.; Bussenius, W. Optimization of load distribution on forest trucks. In Seminar on 

Environmentally Sound Forest Roads and Wood Transport; FAO: Sinaia, Romania, 1996; p. 424. 

15. Hamsley, A.; Greene, W.G.; Siry, J.; Mendell, B. Improving timber trucking performance by 

reducing variability of log truck weights. South. J. Appl. For. 2007, 31, 12–16. 

16. Gallagher, T.; Mc Donald, M.; Smidt, M.; Tufts, R. Let’s Talk Trucking: Weights and Loading 

Methods, Technical Paper; Forest Resources Association Inc.: Rockville, MD, USA, 2004. 

17. Acuna, M.; Anttila, P.; Sikanen, L.; Prinz, R.; Asikainen, A. Predicting and Controlling Moisture 

Content to Optimise Forest Biomass Logistics. Croat. J. For. Eng. 2012, 33, 225–238. 

18. Coillte. Coillte Annual Report 2012. Available online: http://annualreport2012.coillte.ie/ 

index.php?id=47 (accessed on 10 March 2015). 

19. Murphy, G.; Kofman, P.; Kent, T. Modeling air drying of Sitka spruce (Picea sitchensis ) biomass 

in off-forest storage yards in Ireland. For. Prod. J. 2012, 62, 443–449. 

20. Adobe Systems. Using Adobe Photoshop CS5: Help and Tutorials; Adobe Systems Inc.: San Jose, 

CA, USA, 2011. 

21. Chen, B.; Fu, Z.; Pan, Y.; Wang, J.; Zeng, Z. Single Leaf Area Measurement Using Digital  

Camera Image. In Computer and Computing Technologies in Agriculture IV SE-64; Li, D., Liu, Y., 

Chen, Y., Eds.; Springer: Berlin, Germary, 2011; Volume 345, pp. 525–530. 



Sustainability 2015, 7 3030 

 

22. James, R.R.; Newcombe, G. Defoliation patterns and genetics of insect resistance in cottonwoods. 

Canad. J. For. Res. 2000, 30, 85–90. 

23. Kofman, P.D.; Kent, T. Storage and seasoning of conifer roundwood in the forest. Available online: 

http://www.coford.ie/media/coford/content/publications/projectreports/cofordconnects/ccn09-

ht17.pdf (accessed on 10 March 2015). 

24. Wood Handbook—Wood as an Engineering Material; General Technical Report FPL-GTR-190; 

U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI,  

USA, 2010. 

25. Becerra, F. Evaluation of Six Tools for Estimating Woody Biomass Moisture Content.  

Master’s Thesis, Oregon State University, Corvallis, OR, USA, 2012; p. 146. 

26. Šušnjar, M.; Horvat, D.; Zorić, M.; Pandur, Z.; Vusić, D. Comparison of Real Axle Loads and  

Wheel Pressure of Truck Units for Wood Transportation with Legal Restrictions. In Proceedings of 

FORMEC 2011: Pushing the Boundaries with Research and Innovation in Forest Engineering, Graz, 

Austria, 9–13 October 2011. 

27. Tufts, R.; Gallagher, T.; McDonald, T.; Smidt, M. Let’s Talk Trucking: Truck Performance and 

Fuel Consumption; Tech. Pap.05-P-3; Forest Resources Association Inc.: Rockville, MD, USA, 2004. 

28. Lang, A.H.; Mendell, B.C. Sustainable Wood Procurement: What the Literature Tells Us. J. For. 

2012, 110, 157–163. 

29. Gallagher, T.; Smidt, M.; Tufts, R.; McDonald, T. Increasing Truck Payloads and Performance. 

For. Oper. Rev. 2005, 7, 18–19. 

30. Tufts, R.; Gallagher, T.; McDonald, T.; Smidt, M. Trucks and Trailers in the South; Forest 

Resources Association Inc.: Rockville, MD, USA, 2005. 

31. Shaffer, R.; Stuart, W. A checklist for efficient log trucking. In Virginia Cooperative Extension 

Publication 420–094; Virginia Tech.: Blacksburg, VA, USA, 2009; p. 5. 

32. Pletts, T. The Feasibility of Automatic on-Board Weighing Systems in the South African Sugarcane 

Transport Industry. Master’s Thesis, University of KwaZulu-Natal, Dublin, Ireland, 2009; p. 104. 

33. Round Haulage of Round Timber: Code of Practice. Available online: http://www.forestry.gov.uk/ 

pdf/TimberHaulageCodeofPractice.pdf/$file/TimberHaulageCodeofPractice.pdf (accessed on 10 

March 2015). 

34. Devlin, G. Assessing the Accuracy of New Innovative on Board Weighing Devices for Timber 

Haulage. In Proceedings of the Forest Industry Transport Group Conference, Port Laoise, UK,  

6 September 2013. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


