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Abstract: Expert knowledge is a combination of prior information and subjective opinions 

based on long-experience; as such it is often not sufficiently objective to produce convincing 

results in animal habitat suitability index mapping. In this study, an animal habitat assessment 

method based on a learning neural network is proposed to reduce the level of subjectivity 

in animal habitat assessments. Based on two hypotheses, this method substitutes habitat 

suitability index with apparent density and has advantages over conventional ones such as 

those based on analytical hierarchy process or multivariate regression approaches. Besides, 

this method is integrated with a learning neural network and is suitable for building non-linear 

transferring functions to fit complex relationships between multiple factors influencing 

habitat suitability. Once the neural network is properly trained, new earth observation data 

can be integrated for rapid habitat suitability monitoring which could save time and resources 

needed for traditional data collecting approaches through extensive field surveys. Giant 
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panda (Ailuropoda melanoleuca) natural habitat in Ya’an prefecture and corresponding 

landsat images, DEM and ground observations are tested for validity of using the methodology 

reported. Results show that the method scores well in key efficiency and performance 

indicators and could be extended for habitat assessments, particularly of other large, rare 

and widely distributed animal species. 

Keywords: habitat assessment; artificial neural network; geographic information system; 

remote sensing; giant panda 

 

1. Introduction 

Habitat suitability index (HSI) mapping provides spatial quantitative values of habitat types, spatial 

interspersion of community and relationship between wildlife habitat types with other resource 

inventories as well as location of animal occurrence [1]. Considering these advantages, HSI mapping is 

widely used in wildlife management decision making [2], spatial habitat quality predictions [3] and 

impacts of significant emergency assessments [4,5]. It is a commonly used method adopted by many 

researchers including in Giant panda habitat studies [4,6–9]. 

Existing HSI related works of giant panda apply expert-knowledge-based analytical hierarchy 

process (AHP), correlation analysis or models involving expert knowledge [4,10–13]. However, as 

Vincenzi et al. [14] and Lu et al. [6] point out, criteria and weights determined by expert knowledge 

and weight estimations are often too subjective and may vary greatly from expert-to-expert. Liu [7–9] 

adopted traditional criteria based methods to generate HSI map as initial input data and used ANN  

to learn and remap the habitat suitability. Personal bias in criteria decided by expert opinion could  

be alleviated to some extent by integrating fuzzy logic into ANN models. However, these artificial 

intelligence methods still depend on expert knowledge to provide initial HSI input data and the criteria 

used may be different in other study areas. Ray [15] emphasizes that uncertainty in such models needs 

to be analyzed, wherever there are sufficient field data. To minimize subjectivity, other models use 

substitute indicators for objectively building relationship between habitat factors (independent variable) 

and HSI (dependent variable). Apparent density is one of the most useful indicators because field  

data are represented in the form of point features and can be easily transformed into density maps. 

However, apparent density map is reliable in regions that are accessible in most parts. Moreover,  

it should be noted that these and other statistical methods are data demanding [5,16]. 

As Liu [7] points out, there are no universally accepted standard methods or formulations for 

quantifying habitat quality because this depends very much on species as well as the population  

and study area. In conventional giant panda research, HSI values were calculated by AHP of several 

criteria defined through experience and statistical analysis. Aiming at minimizing levels of subjectivity 

of expert knowledge in HSI mapping, in this article we substitute the concept of HSI with apparent 

density and use artificial neural network (ANN) as a transferring function for the purpose of mapping  

the giant panda habitat with greater objectivity. Apart from ANN, statistical methods especially 

machine learning methods like boosted regression trees [17], generalized linear models [18], support 

vector machine [19] and Bayesian networks [20] have all been adopted to analyze HSI. In this study, 
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we choose commonly used ANN model because we only focus on the feasibility of this method in giant 

panda studies without discussing the comparative performance of each of the other black-box model. 

ANN possesses the capacity of adjusting its structures to fit the nonlinear and complex relationship 

of input and output data through a learning process [21]. Taking giant panda in Ya’an prefecture as  

an example, we first postulate two hypotheses for this model and deduce a method for acquiring target 

apparent density. ETM+ images, Digital Elevation Model (DEM) and field data recorded in the third 

giant panda survey report [22], which provide the most comprehensive information available on giant 

panda habitats to-date, were processed to obtain seven habitat factor maps covering the following 

parameters: elevation, slope, aspect, drainage system, vegetation type, food bamboo and topological 

position index. ANN has been used as the transferring function to fit the nonlinearity and complexity 

of habitat factors and habitat quality value. A similar ANN and remote sensing image based 

environmental monitoring method has been used by Nunes et al. [23] in daily detection of 

deforestation in Amazon Rainforest and the results obtained have been satisfactory. In this paper we 

substitute apparent density to conventional expert knowledge generated HSI value as habitat quality 

value to avoid personal bias. Besides, we adopt ANN as the transferring function for mapping the 

spatial distribution of habitat quality. The results of ANN regression and the apparent density map 

using giant panda in Ya’an prefecture are presented and discussed as a case study. Conclusions and 

prospects for future improvement of the methodology, including its broader application for other parts 

of the giant panda habitat of China, are described. 

2. Approach and Methodology 

2.1. Study Area 

To illustrate our methodology, we present a case study of giant panda (Ailuropoda melanoleuca) in 

part of Ya’an prefecture (29.47–30.95N, 103.19–103.26E). Lying in the western edge of Sichuan Basin 

and the eastern part of the Qionglai Mountains, Ya'an prefecture comprises of two districts and six 

counties. The two districts—Yucheng and Mingshan—comprise the Ya’an metropolitan area. The six 

counties are mountainous and are mostly wild. The research area covers four counties which have wild 

giant pandas: Baoxing, Tianquan, Lushan and Yingjing. Figure 1 is the composite true color image 

from landsat 7 (30 m resolution) taken in 18 September 2007. Ya’an prefecture is one of the most 

important giant panda natural habitats with 244 individuals (in captivity and in the wild). It is believed 

that the first wild giant panda in China in recent times was found in the Baoxing county of Ya’an 

prefecture in 1869 by the French missionary Armand David [24]. 

2.2. Research Methods 

2.2.1. Feasibility of Using Apparent Density Map as a Measure of Habitat Quality 

To rationalize the method used in this paper, two hypotheses were proposed: (1) Discovery of a 

higher number of animal signs means animals are more active in the region. Therefore, we surrogate 

HSI with apparent density as quantitative measure for habitat suitability quality; (2) Discoveries of 

homogeneous animal signs (bamboo stem fragment in this study) are events of equal detection 
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probability in all regions. Figure 2 is the general flow chart of the proposed animal habitat quality 

network building and mapping method. 

Figure 1. ETM+ True color images of study area and its related drainage system. Red dots 

are giant panda signs. 

 

Figure 2. Flow chart of large rare animal habitat quality mapping. 

 

The two hypotheses may not apply to some previous studies as the signs used and surveying methods 

vary. In our study, the signs and survey method meet the two hypotheses. In fact, previous studies have 

discovered close relationship of HSI and apparent density [25,26] and Tirpak et al. equate apparent 
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density with HSI and use HSI to deduce the spatial distribution of bird density [5]. For the giant panda 

previously, bamboo stem fragment, waste, food sign, footprint, caves and scratches have been used as 

signs. In the third giant panda survey, bamboo stem fragment is used to estimate both giant panda 

spatial distribution and total numbers [22]. In comparison to other signs, bamboo stem fragment, which 

is located at the surface of bamboo, is more stable and resistant and less likely to be influenced by 

environmental disturbances. Besides, previous studies also hold similar assumption that giant pandas 

have equal access to the different habitats [8]. For the second hypotheses, animal signs survey is 

carried out by adopting a commonly used method called grid-line transect [22]. Grid-line transect 

divides the study area into irregular grids (2 km2) by taking landscape, vegetation, bamboo distribution, 

elevation, giant panda habitat and accessibility to the area into consideration. In practice, divisions  

are partially set by length of routes, drainage systems, ridges and difficulties in surveying. When  

taking samples, signs are detected according to an intersecting line through the region. This method 

can mathematically guarantee the equal detection probability and objectivity of the sampling but is 

susceptible to environmental factors like sunlight on the slope or surrounding vegetation type which 

are discussed later in this paper. 

The core step is to build a nonlinear relationship between the chosen factors impacting habitat  

and the apparent density map. Maps of signs of presence of the species of large and rare animals are 

prepared from point features acquired in field work. It can be transformed into apparent density map 

that is considered to describe the spatial distribution of habitat quality. The key question is: how 

reliable is the apparent density map? In reality many regions cannot be accessed and investigated  

and for those areas the map is not reliable. However, in regions which are reachable and in accordance  

with hypotheses 2, the density values are reliable and of equal detection probability. Thus we selected 

several sign points as sampling points to extract input and output for ANN training (these points are 

within reachable area which is certainly reliable for sampling data extraction). To make the result more 

robust, different land types outside the area with no animal signs (i.e., the zero habitat quality points) 

are selected as complementary data for the ANN to learn which area is unsuitable for giant panda. 

Combining the species signs data expressed as apparent density maps and complementary data, the 

whole set of sampling points are used in further data extraction. 

After building the density map and sampling points, the input and output data for training the ANN 

are extracted from apparent density maps and habitat impact factor maps, respectively (see Figure 2). 

To avoid over-refinement which will lead to meaningless values, a 150 m moving circular window  

(to ensure equal distance) is used to build a 30 m resolution map. Considering the complex relationship 

between different habitat impact factors and habitat quality value, a nonlinear neural network is  

trained and validated, after which the network is used for mapping habitat quality distribution from new 

habitat impact factors. For example, satellites can provide near-real-time images for landuse change 

detection [27,28] especially with regard to changes in vegetation characteristics [29]. Disturbance in 

landuse types will lead to big difference in habitat quality maps which is of great value in comprehensive 

analysis of habitats of large and widely distributed animals. For example, when assessing the impact of 

2008 Wenchuan earthquake on giant panda habitat, many researchers focused on the impact of earthquake 

on elevation related habitat factors and vegetation types by patch-analysis [4,30], habitat suitability 

index (HSI) [31,32] and other statistical methods [33]. Land type, especially vegetation is closely 

linked to giant panda habitat suitability and food source; even though bamboo cannot be detected 
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through remote sensing data (they grow under the forest canopy), the conditions for their abundance 

and occurrence depend greatly on the sub-canopy environment. 

2.2.2. Neural Networks 

Originally developed to solve complex and non-linear problems like fitting, pattern recognition, 

clustering and time series predictions, neural network is designed by imitating brain processes. In this 

study we used ANN for the following reasons: (1) The HSI criteria is complex. Giant panda HSI 

criteria often consisted of a set of divided function [7,8,12,34] instead of linear formulae; (2) The 

thresholds are often set using expert knowledge or statistical analysis. In real situation, these distinctions 

are fuzzy and blurry; (3) Even in each section, the suitability may not be stable at all; many habitat 

factors may exert different influence at  a small scale not observed by researchers. Therefore, these 

thresholds based relationships are hard to be fitted by a linear function; using an ANN model which 

possesses the capacity of fitting nonlinear relationship is, in our view, better suited for this purpose [7]. 

In this study, the neural network is used as a transfer function between habitat factors and habitat 

quality value. A three layer (Input layer, hidden layer and Output layer) with feed forward neural 

network including back-propagation of error is used in this study. 

In our study the structure of ANN is made up of input layers and hidden layers. Number of input 

layers is determined by the number of input habitat factors. Hidden layers are set through experiment. 

The output of the network is habitat quality value simulated by the neural network with corresponding 
input habitat factors (F୧,	i = 1,2, … , n). In the hidden layer: 

Net୨ = fୱ୧୥(෍v୧୨F୧)୒
୧ୀ଴  (1)

where Netj represents the	jth node in the hidden layer and vij represents the activation function of a 

node, in this study we use a sigmoid function as follows: 

௦݂௜௚(ݔ) = 11 + exp (2) (ݔ−)

In the output layer, the habitat quality value is calculated through the function as follows: ݐܽݐܾ݅ܽܪ ݕݐ݈݅ܽݑܳ ଴݂(෍ ௝߱ܰ݁ݐ௝)௡
௝ୀ଴  (3)

where ω୨ is the corresponding weight for each hidden node and f0 is the activation function. In this 

study, we use the commonly used line function. Both ω୨  and vij are assigned with random values 

initially, and then modified by the delta rule traditionally derived from the learning samples. 

In order to get comparable and reliable results, all the habitat quality values were standardized 

between 1 and 10 by Equation (4). ݐܽݐܾ݅ܽܪ ݕݐ݈݅ܽݑܳ = ௜ܦ − ௠௔௫ܦ௠௜௡ܦ − ௠௜௡ܦ + 1 (4)
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where ܦ௠௔௫ and 	ܦ௠௜௡ are the maximum and minimum value of density and ܦ௜ is the corresponding 

value. The standardization of habitat quality is carried out in order to calculate MAPE (mean absolute 

percentage error). 

2.3. Pre-Processing of Date 

In giant panda studies, AHP estimates weights or criteria for input habitat factor maps subjectively, 

whereas, our study builds a black box model to link the input habitat factor maps to apparent density 

map in the study area. Based on previous studies [35,36], the following seven habitat factors closely 

related to habitat quality are chosen for training data: DEM, drainage system, vegetation type, food 

bamboos, slope, aspect and topographic position index. Thirty-meter resolution DEM and ETM+ 

images are downloaded from the United States Geological Survey website. DEM (I) and its derivation 

slope (II), aspect (III) and topographic position index (IV) generated from Jeff Jenness’ topographic 

position index toolbox (ArcView Extensions) [37] are added as the four topographic habitat factors. 

Several studies have stated that terrain related habitat factors like elevation, slope and aspect affect the 

vegetation and water availability in giant panda habitats [4–6,35,36,38]. Considering the surveying 

time span of the third giant panda survey report (May 2000 to November 2001) and frequent, heavy 

cloud cover in Ya’an region, we selected ETM+ data from 13 June 2001. Pre-processing has been done 

to de-stripe the ETM+ data using ENVI 4.7. Atmospheric correction is performed by Fast Line-of-Sight 

Atmospheric Analysis of Spectral Hypercubes (FLAASH) software package also in ENVI 4.7.  

To ensure precision of other two habitat factors, i.e., drainage system (V) and vegetation type (VI), the 

landuse classification is first carried out by supervised classification and then revised manually.  

A raster distance map is generated from the drainage system polylines by calculating the Euclidean 

distance of each cell to their nearest rivers. 

Vegetation types include broad-leaved forest, coniferous forest, broad-leaved and coniferous  

mixed forest, meadows and bushes. According to the third giant panda survey report [22], the chance 

of finding giant panda in coniferous forest and broad-leaved coniferous mixed forest is 70%; while the 

chance of finding the giant panda in broad-leaved forest, meadows and bushes is 30%. Based on these 

facts, the coniferous forest and broad-leaved coniferous mixed forest and their corresponding buffer 

zone (1000 m) are assigned as the most suitable area (score 5) while the other vegetation areas are 

assigned as moderately suitable area (score 3). The rest of the territory is assigned as unsuitable area 

(score 1). The last habitat factor, i.e., preferred species of food bamboo (VII) is mapped according to 

the third giant panda survey report [22] and areas with known presence of Bashania faberi, Yushania 

brevipaniculata and Fargesia robusta and their corresponding buffer zone are treated as the main 

feeding areas (score 5) and areas with other species of bamboos as of moderate importance (score 3). 

All the input habitat factor maps are unified to 30 m resolution with a 300 m moving window. These  

seven habitat factor maps are utilized as the input for the neural network. Figure 3a shows the flow 

chart of the seven habitat impact factors generation. 

Output giant panda density maps are generated from the sign points digitized from the third  

giant panda survey report [22]. Sampling data consists of two parts: (1) The giant panda signs points 

themselves (183 points). Based on the hypothesis described above, these points are those that were 

accessible during field work with equal signs detection probability. We assume that these sampling 
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points are of the same precision for density distribution as well; (2) Other points that are apparently  

not suitable for giant pandas (233 points). These points (Figure 3b) are used to avoid detection of false 

giant panda signs that may lead to false training results and thereby increase the reliability of the model. 

Unsuitable points are marked from different habitat factor types to cover different existing situations. 

These points are generated randomly in non-forest region using the random point generator in Hawth’s 

Tool s for ArcGIS 9.x [39]. With a total of 416 records covering most of the habitat factor combinations, 

training and validating of the neural network was confidently carried out. In Liu’s research [7,8,12], 

she had 160 survey points and 1425 non-overlapping radio tracking points and she randomly chose  

700 points for 15 trials. The aim of her random sampling point selection is to minimize the effect of 

sample errors influencing the accuracy of the ANN model. In our study, we specifically chose all the 

field data and complement other zero habitat quality value data for testing the correlation between the 

broadened habitat quality value and the seven habitat factor maps. 

Figure 3. Pre-processing of data. (a) Flow chart of large giant panda habitat quality 

mapping. (b) Training sampling points. Red points denote the giant panda sign. Black points 

denote the complimentary points chosen with regard to land type (Urban, snow and bareland).  

(a) (b) 

3. Results and Discussion 

3.1. ANN Structure 

The total dataset (416) was divided into three groups: the training data (291), the validation  

data (62) and the testing data (63). Levenberg-Marquardt approximation method was used to minimize 

errors for 15 trials. 

To get best performance, best hidden layer node was chosen by testing each value ranging from 2  

to 10. Figure 4 shows that the best node number is 8. To test the performance of the neural network, 

expected data (63 applied data) are confronted with the real sampling results.The R2 of  

the testing data and total data are 0.8042 and 0.828 (node 8). The average MAPE (mean absolute 
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percentage error) for all the data is 19.39% with only 10 data exceeding 30%, 4 exceeding 40% and  

1 exceeding 50% error, respectively. 

Figure 4. Performances of each node and corresponding coefficient. 

 

3.2. ANN Simulation Results 

Figure 5 shows the seven one-factor habitat suitability maps, neural network retrieved habitat 

quality map and original density map. The one-factor HSI maps show the fact which has been 

consolidated in previous studies that the seven factors chosen in this study are closely relevant to giant 

panda habitat. ANN retrieved degree map is classified into five classes using natural breaks [40] with 

the hope of discovering big gaps between different habitat quality levels. However, as the degree map 

is a fuzzy map, any reasonable classification method is acceptable. The original map is classified 

accordingly. Comparing the two maps, two conclusions can be drawn: (1) The spatial trends of the 

neural network map and the original density map are similar especially in the areas where signs are 

clustered. This indicates that neural network has extracted and learned the information of the training 

data to a considerable degree; (2) High habitat quality values do occur in areas free of signs—the two 

shades of green which indicate the highest apparent density and habitat quality values are much more 

widespread in the ANN output in comparison to that shown by presence of signs. There are a lot of 

hard-to-access areas in giant panda habitat which leads to signs rarely being discovered. Giant panda 

habitat in Ya’an region is a place full of high mountains, complex landforms and limited access and 

greatly suffers from geological hazards which make field surveys difficult and at times dangerous. 

Successive recent earthquakes occurred in neighboring regions (2008 Wenchuan earthquake and 2013 

Lushan earthquake). Therefore, these areas may not be accessible to humans but possibly be used by 

giant pandas. Note that the inaccessible area does not mean the slope of this place is high; instead it 

can be due to the lack of an access path, dense vegetation or the point being surrounded by steep 

mountains. Figure 5i clearly shows some high habitat quality values in the gap between groups of 

signs. Taking the good performance of neural network training and validation into consideration, these 

areas are probably those that are inaccessible to -humans but yet are used by the giant panda. 
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Figure 5. (a) Elevation map. (b) Distance to main drainage map. (c) Vegetation map.  

(d) Bamboo map. (e) Slope map. (f) Aspect map. (g) Topological positioning index map. 

(h) Artificial neural network (ANN) retrieved habitat quality map. (i) Original density map. 

All the maps are in 30 m resolution. 

(a) (b) 

(c) (d) 
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Figure 5. Cont. 

(e) (f) 

(g) (h) 

(i) 
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It should be noted that some isolated areas in the Figure 5h are attributable to error results of neural 

network caused by insufficient complementary data. For those adjacent to the habitat area, these errors 

cannot be corrected unless a more advanced fitting tool is implemented. For those isolated in other 

places, they can be corrected by merging small patches into the background. 

Univariate preference frequency is used in this study to show the allocation of different habitat 

impact factors in contributing to giant panda habitat preference. Figure 6 shows the corresponding giant 

panda signs presence histograms of the seven habitat factor maps and ANN retrieved result of Figure 

5. The habitat use and preference are calculated from map to indices that range from 1 to 0 (high value 

means high occurrence frequency and vice versa). Figure 6a agrees with previous study [41] that giant 

panda is mainly distributed in the area where elevation ranges from 2000 to 3500 m. Studies also show 

that pandas prefer foraging on the sunny aspect (Figure 6f), due to its body biological structure and 

food availability [38,42]. However, giant panda rarely appear at gentle slope lower than 30 (Figure 6e); 

this may partly be due to the scale chosen for slope map generation. ANN results show that 86.95% of  

total signs are within moderate suitable or suitable regions which suggest the good performance of 

ANN-apparent density based method. 

Figure 6. (a–g) Seven habitat quality impact factors and habitat use graphs. (h) ANN 

retrieved habitat quality graph. 

(a) (b) 

(c) (d) 
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Figure 6. Cont. 

(e) (f) 

(g) (h) 

Another significant aspect of the resolution of the HSI model needs to be mentioned here. Previous 

giant panda habitat studies seldom discuss scale issues. Only Vina et al. [34] mentioned that they 

“resample the finer resolution images to coarser one” and they resampled all the images to 80 × 80 m 

in accordance with the most coarse image of the first generation of landsat image (MSS). Their resolution 

setting was for technical purposes. The resolution of the study area not only needs to be technically 

right but also should be biologically and ecologically sensible. Even though the resolution of our 

image and DEM is 30 × 30, we use a 150 × 150 moving window due to the following reasons: (1) The 

home ranges of male and female giant panda are 6–7 km2 and 4–5 km2 [42], respectively. Resolution 

that is too fine will lead to meaningless results. As Chen et al. [43] have pointed out Giant Panda habitats 

are extremely fragmented. Small suitable patches surrounded by unsuitable pixels are still unsuitable 

because an island of suitable habitat separated from other such islands cannot provide enough area for 

regular giant panda activity; (2) Giant panda habitats are located in mountainous regions with fragmented 

landscape which also leads to the slope and aspect generated from DEM to be fragmented. see Figure 7, if 

we use 30 × 30 pixel, the output map of the small mountain will consist of hundreds of pixels with 

very suitable and very unsuitable patches (the slope and aspect of pixels vary greatly). If we use 150 × 

150 pixel window, the small mountain will be expressed by several pixels and that agrees with 
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practice. Therefore, a 150 × 150 m moving window can not only preserve high resolution, but also take 

into account biological and ecological specificities of the giant panda home-range. 

Figure 7. Photo taken in Ya’an region in May 2013 showing a fragmented landscape 

located within the giant panda habitat. The electricity pylon (Reference) is about 30 m tall. 

 

Further earth observation data, including new vegetation classification data from remote sensing 

images, DEM from SAR satellite or bamboo species data from ground surveys, can be used for giant 

panda habitat monitoring dynamically using this trained network. The performance of ANN can be 

significantly improved with the use of more detailed and precise field and ground data. In this manner, 

this neural network can meet the goal of near-real-time habitat monitoring for the giant panda in China. 

4. Conclusions 

We have proposed a different adaptation of the ANN method for increasing objectivity for habitat 

quality mapping that could have significance particularly for study of giant panda and in situ actions 

where the two hypotheses that we have based our study on are applicable. ANN is used as a 

transferring function to fit the nonlinear and complex relationship of the input habitat factors and 

output habitat quality map. This article takes giant panda in Ya’an prefecture as an example and results 

show that the method has good performance in mapping habitat quality and mining the training data 

with a coefficient reaching 0.822 and an average MAPE 19.39%. After further refining the training 

process, new habitat factor maps can be integrated into the system to yield the latest habitat quality 

map to support future panda surveys, planning and management. The Report of the Third Survey of the 

Giant Panda has density distribution maps for the entire giant panda habitats extending across Sichuan, 
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Shanxi and Gansu Provinces of China. It could be interesting to further test the validity of the ANN 

used here in other districts or counties where similar data can be retrieved from the Third Survey Report. 

However, future work needs to address the following: 

(1) Compared with traditional HSI mapping method, this method avoids dependence on subjective 

views and interpretations of expert knowledge and uses ANN to extract information. However, 

expert knowledge and field experience would still be of great value to HSI mapping. Their 

knowledge should not be used in deciding weights for densities in different parts of the  

habitat or other such abstract purposes; it should be used for clearly defined purposes such as 

identifying high animal activity areas. For example, our first hypothesis assumes “discoveries 

of animal signs are events of equal detection probability in all regions”. In reality, grid-line 

transect method tries to meet that goal but there are still many errors introduced by differences 

in forest type, elevation or angle of the sun. Experts may add accuracies or weights to each sign 

and original density map may take them into consideration for providing more accurate training 

data to ANN. Besides, expert knowledge may be applied to deciding the resolution of the model 

by taking biological and ecological information into consideration. 

(2) One of the hypotheses assumes the equal detection probability of finding animal signs. In field 

work, few efforts have been made to test this hypothesis like building grids for sampling [44]. 

A more rigorous approach to dedicate equal searching time for signs in all areas may be welcome 

but may well be prohibitively expensive from the point of view of designing and conducting 

field work. 

(3) As our method provides a more objective way of assessing the habitat suitability of giant 

panda, future work may focus on incorporating near-real-time ground observation and remote 

sensing data to dynamically adjust the ANN model for better results. A dynamic data driven 

application system or data assimilation method [45] may be used to improve the performance 

of the ANN model. 
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