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Abstract: This paper evaluates the possible impacts of climate change and land use change 

and its combined effects on soil loss and net soil loss (erosion and deposition) in the Mae 

Nam Nan sub-catchment, Thailand. Future climate from two general circulation models 

(GCMs) and a regional circulation model (RCM) consisting of HadCM3, NCAR CSSM3 

and PRECIS RCM ware downscaled using a delta change approach. Cellular 

Automata/Markov (CA_Markov) model was used to characterize future land use. Soil loss 

modeling using Revised Universal Soil Loss Equation (RUSLE) and sedimentation 

modeling in Idrisi software were employed to estimate soil loss and net soil loss under 

direct impact (climate change), indirect impact (land use change) and full range of impact 

(climate and land use change) to generate results at a 10 year interval between 2020 and 

2040. Results indicate that soil erosion and deposition increase or decrease, depending on 

which climate and land use scenarios are considered. The potential for climate change to 

increase soil loss rate, soil erosion and deposition in future periods was established, 

whereas considerable decreases in erosion are projected when land use is increased from 

baseline periods. The combined climate and land use change analysis revealed that land use 
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planning could be adopted to mitigate soil erosion and deposition in the future, in 

conjunction with the projected direct impact of climate change.  

Keywords: soil erosion and deposition; climate change; land use change; RUSLE; 

GCM/RCM 

 

1. Introduction 

Soil erosion is a major environmental threat to the sustainability and productive capacity of 

agriculture [1,2]. It is considered as one of the major land degradation processes in the Upper Nan 

watershed, Thailand, which is also the main source of environmental deterioration [3]. Soil loss creates 

negative impacts on agricultural production [4] of crops such as corn and soybeans, infrastructure and 

water quality. The potential causes of increased soil erosion could be increased temperatures, altered 

precipitation patterns (strength, timing and altitude), changes in snow cover and seasonal snow melting 

caused by climate change [5]. Climate change is expected to affect soil erosion based on a variety of 

factors [6] including precipitation amount and intensity impacts on soil moisture and plant growth, and 

direct fertilization effects on plants due to greater CO2 concentrations among others. Many studies 

have shown that climate change could significantly affect soil erosion [7–11]. The most direct impact 

of climate change on soil erosion is the change in the erosive power of rainfall [9–13]. The 

contribution of water as an erosion agent can be represented by rainfall erosivity (R-factor). This factor 

may be the most important and dominant in the Universal Soil Loss Equation (USLE) [14] and the 

Revised Universal Soil Loss Equation (RUSLE) [15]. Both are sets of mathematical equations that 

estimate average annual soil loss from interrill and rill erosion [16]. Rainfall is the driving force 

affecting the energy balance of the soil erosion process [17]. The erosivity of rainfall and its 

consecutive overland runoff is recognized as a crucial factor for erosion processes [18]. Rainfall 

erosivity is described as the average annual sum of EI30 determined from rainfall records. 

Global changes in temperature and precipitation patterns will impact soil erosion through multiple 

pathways, including precipitation and rainfall erosivity changes [19]. Climate change is expected to affect 

soil erosion based on a variety of factors, including precipitation amounts and intensities, temperature 

impacts on soil moisture and plant growth [20]. The erosive power of rainfall has a direct impact on 

soil loss. Current general circulation models (GCMs) and regional climate models (RCMs) [20,21] 

cannot furnish detailed precipitation information that enables the computation of the rainfall erosivity 

directly as a function of rainfall kinetic energy and rainfall intensity. Hence, the precipitation and 

rainfall erosivity relationship was established on the basis of the GCMs/RCMs output [20,22]. 

Land use/land cover (LULC) is defined as the observed physical layer including natural and planted 

vegetation and human constructions. The reduction of vegetation cover can increase soil erosion. This 

relationship is the reason why vegetation cover and land use have been widely included in soil erosion 

studies [23–28]. Previous studies have found that land use can greatly affect the intensity of runoff and 

soil erosion [24,29,30]. Vegetation controls soil erosion by means of its canopy, roots and litter 

components. Erosion also influences vegetation in terms of the composition, structure and growth 
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pattern of the plant community [31]. Therefore, the modeling of land use change is important with 

respect to the prediction of soil erosion. 

Most previous studies concerning soil loss have been based on the USLE/RUSLE [14,15]. It is one 

of the most commonly applied models to estimate soil erosion [32–34], although RUSLE was 

developed to be applied to one dimensional hill slopes which do not examine the related process of 

deposition [15,35] and, thus, RUSLE’s conceptualization only permits soil loss to be estimated. One of 

the limitations of the RUSLE model is that it cannot estimate deposition. Thus, static assessments of 

soil losses were used as inputs into an algorithm of deposition in a sedimentation model that models 

the movement of sediment to the outlet. The sedimentation model is based on the results of the RUSLE 

model to calculate the balance of erosion in each elementary plot considered homogeneous. Some 

authors have asserted the possibility of identifying deposition zones using accurate DEMs [36,37]. 

Many studies [34,37,38] have extended RUSLE to also estimate sediment yield. The approach 

presented here directly integrates RUSLE’s output data into a flow model, which allows soil loss rate, 

erosion and deposition to be accessed within a GIS framework without additional data requirements. In 

addition, a number of studies have integrated geographic information system (GIS) analysis with soil 

erosion modeling for various geographic locations [39–43]. Remote sensing has proved to be a useful, 

inexpensive and effective tool in LULC mapping and LULC change detection. It can provide the data 

necessary for erosion modeling within a GIS. Given the complex nature of the erosion process, and the 

challenges of quantifying these processes, an integrated RS, GIS and modeling based approach is 

critical for the successful evaluation of the impact of land use change on land resources. 

The main objective of this paper is to evaluate the simulated impacts of possible future climate, land 

use change and full range of impacts (climate and land use change) on the soil erosion and deposition 

in the Mae Nam Nan sub-catchment in Thailand. 

2. Site Description 

2.1. Study Area  

The Upper Nan watershed is located in northern Thailand. More than 85% of the watershed is 

mountainous, and the rate of soil erosion in the area by average is higher than 200 Mg ha
−1

 yr
−1

 (Figure 1) 

which is the highest among watersheds in the north Thailand (LDD 2000). The study area, the Mae 

Nam Nan sub-catchment is located in the Upper Nan watershed, and the area is about 1532 km
2
.   

The topography of study area ranges from flat terrain to mountains, with an elevation of 120 to  

1900 meters above mean sea level (Figure 2), and the percentage of covered area is different for the 

slope categories as follow: horizontal (0%–2% slope) cover 19.51%; very flat (2%–5% slope) cover 

24.03%; flat slope (5%–10% slope) cover 22.04%; moderate (10%–25% slope) cover 25.99% and 

steep slope (>25% slope) cover 8.43% of area (Figure 2). The land use consists mainly of degraded 

forest and upland agriculture such as paddy field, orchard, upland crop, maize, and vegetables grown 

in both shifting and permanent cultivation patterns [44]. 
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2.2. Geology and Soil Type  

The geology of the Mae Nam Nan sub-catchment comprises various kinds of rocks and rock units 

ranging in age from the Carboniferous. The study area consists mainly of Paleozoic and Mesozoic 

sedimentary rocks and Mesozoic Igneous rocks. Paleozoic rocks ranging from Carboniferous rocks 

consist mainly of sandstone and shale, Permian rocks consist mainly of limestone sandstone and shale, 

Silurian Devonian rocks consist of Phyllite, Quartzite, Schist and greywacke locally, Mesozoic rocks 

consist of conglomerate, sandstone and siltstone. The soils formed on low-lying landscape are mostly 

young loamy soils and are classified as Alluvial soils. They are relatively fertile soils and mainly used 

for rice cultivation or upland and tree crops [44,45]. Soils formed in the area vary widely in depth, 

texture, color, fertility as well as in their agricultural potential depending largely upon the kind of 

parent rock of each soil. 

Figure 1. Land degradation by soil erosion in the Mea Nam Nan sub-catchment. (Picture 

by Pheerawat Plangoen in April 2013.)  

  

Figure 2. Location of study area, using images from Google maps. 
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2.3. Climate 

The general climate of the study area is tropical monsoon and characterized by winter, summer and 

rainy season, influenced by the northeast and southwest monsoons. The rainy season brought about by 

the southwest monsoon originating from the Indian Ocean lasts from mid-May until the end of 

October. July and August are usually months of intense rainfall. During the winter season, the weather 

is cold and dry due to the northeast monsoons beginning in November and ending in February.  

From mid-February until mid-May, the weather is rather warm. The annual rainfall is about 1,263 mm. 

More than 80 percent of the rainfall is concentrated in the wet season. 

3. Methodology 

3.1. Soil Loss Modeling  

The Revised Universal Soil Loss Equation (RUSLE) [15] module was integrated into the GIS Idrisi. 

This module not only calculates soil losses for each pixel of the grid but also for groups of pixels into 

homogeneous polygons, based on the slope criteria, orientation and slope length which can be adjusted 

by the user [46]. The RUSLE equation model is as follows: 

A = R K L S C P (1) 

Where: A is the computed soil loss per unit area, (Mg ha
−1

 y
−1

), R is the rainfall erosivity factor  

(MJ mm ha
−1

 y
−1

), K is the soil erodibility factor (tons ha MJ
−1

 mm
−1

), is the soil loss rate per erosion 

index unit for a specified soil as measured on a unit plot, L is the slope-length factor, S is the  

slope-steepness factor, C is the cover and management factor and P is the support practice factor. 

3.2. Sedimentation Modeling 

The sedimentation model is based on the results of the RUSLE model to determine the balance of 

erosion in each elementary patch and evaluate the net movement of soil (erosion or deposition) in sub 

catchment [39]. One of limitations of the RUSLE model is that its application to any land unit must 

result in soil loss but it cannot estimate deposition. However, within agricultural areas and river basins, 

deposition occurs. The down slope movement of soil loss from one field to another is not 

conceptualized within RUSLE. Net erosion or deposition for a given area is calculated in the following 

manner when applying the sedimentation model (Figure 3), determination of patch soil loss, 

establishment of direction of soil movement and calculation of relative soil loss for the higher patch is 

compared to the soil loss for the lower patch. The difference between the amounts of soil loss from the 

higher patch to the lower patch represents the net soil loss or deposition in the lower patch. For 

example in Figure 4, if in the initial state the proportional soil loss in Patch A (the higher patch) 

delivered to the lower patch B is 8 t/yr, and Patch B’s initial soil loss is 12 t/yr (RUSLE soil loss 

value), sedimentation then determines the difference between the amount of sediment coming into the 

patch and the patch’s RUSLE soil loss value.  
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3.3. Determination of RUSLE Input Parameters 

3.3.1. Soil Erodibility (K-factor) 

The soil erodibility (K-factor) estimation method recommended by Wischmeier et al. [14] is most 

frequently used [36]. The K factor (Table 1) values were determined by Land Development Department, 

LDD [44] using results from laboratory analyses of soil texture, soil structure, organic matter, content 

and soil permeability. In the slope complex areas where the soil texture data is unavailable the K-factor 

based on geological formations as identified by LDD [44] was applied in this study. 

Figure 3. Schematic chart of soil loss and net soil loss assessment. 

 

Figure 4. Principle model of deposition: Sedimentation [47]. 

 

3.3.2. Topographic Factors (LS-factor) 

To prepare the LS-factor layer, an L factor and S factor was generated from a digital elevation 

model and input the Digital Elevation Model (DEM) in the RUSLE module. The following procedures 

are taken in the calculation of the LS factors. The equation developed by Wischmeier and Smith [14] 

for this approach is as follows: 

LS = (l/22.13)
m

 (0.43 + 0.30s + 0.043s
2
)/6.574 

(2) 
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Where LS is the slope length and steepness factor, s is the field slope in percent, l is the slope length in 

meters, and m is the dimensionless exponential. 

Table 1. Attribute values of the soil erodibility (K factor, tons h MJ
−1

 mm
−1

). 

Textural class K-factor Geological formations K-factor 

Clay C(low)  0.015 Phu Kradung  Jpk  0.029 

 C(up)  0.024 Phra Wihan Form Jpw  0.029 

Clay CL(up)  0.024 Sao Khua Form Jsk  0.029 

Loam L(low)  0.026 Phu Phan Form Kpp  0.029 

 L(up)  0.024 Nam Duk Form., Pnd  0.013  

Loamy LS(low)  0.026 Pha Nok Khao Form Ppn  0.013  

 LS(up)  0.024 Huai Hin Lat Form TRhl  0.029 

Sandy Clay Loam SCL(low) 0.026 Nam Phong Form TRnp  0.024 

 SCL(up)  0.024 Urban area U 0 

Silty Clay SiC(low)  0.015 Water body W 0 

Silty Clay Loam SiCL(low)  0.035    

 SiCL(up)  0.025    

Silty Loam SiL(up)  0.025    

Sandy Loam SL(up)  0.024    

3.3.3. Rainfall Erosivity (R-factor)  

The concept of rainfall erosivity refers to the ability of any rainfall event to erode soil. The rainfall 

erosivity is defined as the average annual value of the rainfall erosion index [48]. The monthly rainfall 

erosivity value was computed by summing up EI30 values of storms that occurred during the month [49]. 

The RUSLE model uses the Brown and Foster [50] approach for calculating the average annual rainfall 

erosivity, R (MJ mm ha
−1

 h
−1

 y
−1

)  

 
 











n

j

m

k

kk IE
n

R
1 1

30 )(
1

 (3) 

where E is the total storm kinetic energy (MJ ha
−1

), I30 is the maximum 30 minute rainfall intensity 

(mm h
−1

), j is an index of the number of years used to produce the average, k is an index of the number 

of storms in each year, n is the number of years used to obtain the average R, and m is the number of 

storms in each year.  

The total storm kinetic energy (E) is determined using the relation,  





m

r

rr VeE
1

 (4) 

where re is the rainfall energy per unit depth of rainfall per unit area in megajoules per hectare per 

millimeter (MJ ha
−1

 mm
−1

), and rV  is the depth of rainfall in millimeters (mm) for the thr  increment 

of the storm hyetograph which is divided into m parts, in which each part has a constant rainfall value.  

Rainfall energy per unit depth of rainfall ( re ) can be calculated using the relation: 

 )05.0exp(72.0129.0 rr ie   (5) 
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where re  has units of megajoules per hectare per millimeter of rain (MJ ha
−1

 mm
−1

), and ri  is rainfall 

intensity (mm h
−1

). Rainfall intensity for a particular increment of a rainfall event ( ri ) is calculated 

using the relation. 

r

r

r
t

V
i




  (6) 

where rt  is the depth of rain falling (mm) during the increment. 

Estimation of the annual rainfall erosivity using the modified Fournier index (MFI) has been 

proposed when only monthly precipitation data are available [51]. 







12

1

2i

i

i

P

p
MFI  (7) 

where ip  is the mean monthly rainfall of the month i, P is the mean annual rainfall 

The relationship between MFI and the R factor showed better adjustment following an exponential 

distribution [52]. The R factor values can be estimated from the MFI using the following equation. 

 baMFIR  (8) 

where a and b are empirical parameters and   is a random, normally distributed error. 

Estimation of future climate change provided by Global Circulation Models (GCMs) and RCM do 

not provide the type of detailed storm information needed to directly calculate predicted R factor 

changes. Therefore, statistical relationships between monthly precipitation and modified Fournier 

index (MFI), and MFI versus rainfall erosivity were used to analyze the GCMs/RCMs outputs relative 

to R factor changes [53] in order to analyze the spatial distribution of rainfall erosivity under future 

climate. R factor values were calculated using the method described by Renard (1997) [15]. For the 

study, the commonly used HadCM3, CCSM3 and PRECIS RCM were chosen to generate the future 

precipitation scenarios.  

3.3.4. General Circulation Models  

For this study two GCMs were selected on the basis of their performance in the simulation of 

precipitation. (1) The NCAR’s Community Climate System Model (CCSM3) was one of the global climate 

models included in the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate 

Change (IPCC). NCAR’s GIS program provides GIS-compatible user access to CCSM3 AR4 global 

(1.4 degree or 155 km). The selected GCMs were downloaded from the NCAR community climate 

system model (CCSM) projections in GIS format, available at [54]. (2) HadCM3 was used to generate 

the future precipitation scenarios. HadCM3 is a coupled atmospheric-ocean GCM developed at the 

Hadley Centre of the United Kingdom National Meteorological Service that studies climate variability 

and change. The atmospheric component of the model has 19 levels with a horizontal resolution of 

2.5° latitude and 3.75° longitude. The ocean component of the model has 20 levels with horizontal 

resolution 1.25° latitude 1.25° longitude. 
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3.3.5. Regional Climate Model 

The RCM used in this study was PRECIS, developed by the Hadley Centre of the UK Meteorological 

Office. The PRECIS RCM is based on the atmospheric components of the ECHAM4 GCM from the 

Max Planck Institute for Meteorology, Germany. The PRECIS data are produced by the Southeast 

Asian System for Analysis, Research and Training (SEA START) Regional Center for 2225 grid cells 

covering the entire Mae Nam Nan Sub-Catchment with the resolution of 0.2 × 0.2 degree 

(approximately 22 × 22 km
2
). These data comprise two data sets for ECHAM4 SRES A2 and B2, daily 

precipitation. The PRECIS RCM data over the periods of 1971–2000 (present) and 2011–2098 

(future), for both A2 and B2 scenarios, were obtained from the Southeast Asian START Regional 

Center [55].  

Several statistical downscaling techniques have been developed to translate large-scale GCM/RCM 

output into finer resolution [56]. In this study, the simplest method change factor or delta change 

approach was applied. The change factor or delta change method has been used in many earlier climate 

change impact studies [57–61]. Basically, this approach modifies the observed historical time series of 

precipitation and is modified by multiplying the ratio of the monthly future and historic precipitations 

simulated by NCAR CCSM3 (A2, A1b and B1 scenarios), HadCM3 and PRECIS RCM (A2 and  

B2 scenarios) for each time period. The observational database used for this approach covers the 

period of 1981–2000.  

3.3.6. Cover Management Factor (C factor) 

The cover management (C factor) reflects the effect of cropping on the soil erosion rate [15].  

The crop and management factors (C-factor) corresponding to each crop/vegetation condition were 

estimated from the RUSLE guide. In this study, the LULC maps were derived from the satellite images 

and served as a guiding tool in the allocation of C factor for different land use classes, and the values 

set by LDD [62] for the various vegetation cover types as show in Table 2. The C factor in future was 

converted from LULC as the result of CA_Markov model.  

Table 2. Attribute values of vegetative cover (C factor) [62]. 

Land cover class C Value 

Paddy field 0.28 

Upland crop 0.6 

Orchard 0.15 

Forest  

Dry evergreen forest 0.019 

Deciduous Dipterocarp Forest 0.048  

Mixed Deciduous Forest 0.048 

Forest plantation 0.088  

Urban 0 

Water body 0 

The CA_Markov model [63] was used to perform land use change analysis between 1990 and  

2000, 2000 and 2010 LULC. CA_Markov is a combined Cellular Automata, Markov Chain and  

Multi-Criteria/Multi-Objective Land Allocation (MOLA) land cover prediction procedure that adds an 
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element of spatial contiguity as well as knowledge of the likely spatial distribution of transitions to 

Markov chain analysis. Therefore, the predicting land use/land cover in 2010 (based on land cover data 

in 1990 and 2000) and 2020, 2030 and 2040 (based on land cover data in 2000 and 2010).  

3.3.7. Conservation Practice Factor (P-factor) 

The support practice factor is the soil loss ratio with a specific support practice to the corresponding 

soil loss with up-and-down slope tillage. Table 3 shows the P factor values for three major support 

practices in cultivated lands as given by Wischmeier and Smith (1978) [14]. Conservation practices are 

not common in Thailand, the values for the P-factor have not been fully established for all vegetation 

cover types, the exception being for paddy fields. Thus, values of ―0.1‖ and ―1‖ are assigned to paddy 

fields and other land cover types, respectively [36]. 

Table 3. Support practice factor P for cultivated lands [14]. 

Land slope % Contouring 
Contour, strip cropping, 

and irrigated furrows 
Terracing 

1–2 0.60 0.30 0.12 

3–8 0.50 0.25 0.10 

9–12 0.60 0.30 0.12 

13–16 0.17 0.35 0.14 

17–20 0.80 0.40 0.16 

21–25 0.90 0.45 0.18 

3.3.8. Validation of the RUSLE to Study Area. 

The RUSLE is validated for the study area using experimental plots located in the Upper Nan 

watershed at Nan Watershed Research Station, Nan Province and was carried out in 1992. There are a 

total of 14 experimental plots in the previous study [64] having various types of land use. Experimental 

plots have a length of 20 m and width of 4 m [65] with a 17.5 percent slope at an elevation of 500 m  

above mean sea level. Other parameters such as soil erodibiltiy factor from nomograph including soil 

erodibility factor from up and down hill continuous fallow on bare soil plots were also computed. 

Measured soil loss data of 36 rainfall events from April to October 1992 were collected from testing 

and validating plots. The descriptive statistics testing includes average error (AE), relative error (RE), 

and standard error (SE), and can be calculated by the following equations [65–67]: 

a 



n

i

aimi nCCAE
1

,, /)(  (9) 

100
,
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where Ci,m is the soil loss (ton ha
−1

) from the model estimation rainfall event i, Ci,a is the soil loss  

(ton ha
−1

) from the actual experimental plot rainfall event i, n is the total amount of rainfall event on 

the sample, and Cmean,a is the mean soil loss (ton ha
−1

) from the experimental plot. 

4. Results  

4.1. Image Classification and Accuracy Assessment 

The result of accuracy of land cover classification will be discussed based on an Error/Confusion 

matrix. Table 4 shows an overall classification accuracy of 86% and the overall Kappa statistics of 

0.83, which is on the border of a good classification performance. High and low producer accuracies 

were observed in water body and forest (100% and 77%). High and low user’s accuracies were 

observed in upland crop and urban area (92% and 76%). For Tables 5 and 6, overall accuracies for the 

maps of 2000 and 2010 were 81% and 83% with an overall kappa statistics of 0.77 and 0.79, 

respectively. It is noted that a minimum accuracy value of 80% [30] is required for effective and 

reliable land cover change analysis and modeling. The classification achieved in this study produced 

an overall accuracy that fulfils the minimum accuracy threshold. 

Table 4. Error matrix of land use/land cover (LULC) map obtained using 1990’s TM images. 

 
Land Use Type 

Land use by Ground truth Total 

area 

User’s  

Accuracy (%) 

Land use 

1990 

A B C D E F 

A. Paddy field 335 54 0 0 0 0 389 86 

B. Upland crop 0 434 0 21 18 0 473 92 

C. Orchard 0 0 242 51 0 0 293 83 

D. Forest 0 0 53 317 0 0 370 86 

E. Urban 26 50 0 0 247 0 323 76 

F. Water body 0 0 0 25 0 221 246 90 

Total area 361 538 295 414 265 221 2094  

Producer’s  

Accuracy (%) 
93 81 82 77 93 100   

Overall accuracy = 86%, Overall Kappa = 0.83 

Table 5. Error matrix of LULC map obtained using 2000’s TM images. 

 
Land Use Type 

Land use by Ground truth Total 

area 

User’s 

Accuracy (%) 

Land use 

2000 

A B C D E F 

A. Paddy field 435 62 0 22 11 16 546 80 

B. Upland crop 0 418 0 23 0 29 470 89 

C. Orchard 26 61 448 19 0 0 554 81 

D. Forest 52 0 0 499 62 92 705 71 

E. Urban 0 0 0 26 267 46 339 79 

F. Water body 0 34 0 0 0 439 473 93 

Total area 513 575 448 589 340 622 3087  

Producer’s Accuracy (%) 85 73 100 85 79 71   

Overall accuracy = 81%, Overall Kappa = 0.77 
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Table 6. Error matrix of LULC map obtained using 2010’s TM images. 

 

Land Use Type 

Land use by Ground truth 
Total 

area 

User’s 

Accuracy (%) 

Land use 

2010 

A B C D E F 

A. Paddy field 476 15 0 49 0 0 540 88 

B. Upland crop 57 428 45 41 0 0 571 75 

C. Orchard 51 0 548 53 10 0 662 83 

D. Forest 29 0 0 422 76 0 547 80 

E. Urban 0 66 0 24 296 0 386 77 

F. Water body 0 0 0 0 23 464 487 95 

Total area 613 509 593 609 405 464 3193  

Producer’s  

Accuracy (%) 
78 84 92 72 73 100   

Overall accuracy = 83%, Overall Kappa = 0.79 

The result of LULC pattern classification from land sat images in 1990, 2000 and 2010 is shown in 

Figure 5. It was found that the LULC pattern in 1990 was mainly classified as 68% forest (1034 km
2
), 

followed by crops, orchards, urban, water body and paddy fields (376, 89, 17, 8 and 7 km
2
 

respectively). The LULC pattern in 2000 was mainly classified as forest with an area of 638 km
2
 or 

47%. Meanwhile the other included upland crops, orchards, paddy, urban areas, and water body with 

the areas of 452, 270, 95, 62 and 14 km
2
, respectively. The LULC pattern in 2010 was mainly 

classified as forest with an area of 724 km
2
 or 42% of total area. Other land use classes included 

upland crops, orchard, paddy, urban areas, and water body with areas of 439, 168, 119, 68 and  

15 km
2
, respectively. 

Figure 5. LULC classification maps of the Mae Nam Nan Sub-Catchment. 

 

4.2. The Predicted LULC in the Future Based on the Data in 2000 and 2010 

The LULC data in 1990 and 2000 were operated by the Markov chain model in order to identify the 

probability of changing and transition areas. Such probability transition values were applied to predict 

the LULC for the year 2010 with a CA_Markov model. The result was the LULC map for 2010 as 

shown in Figure 6. The accuracy of the simulated LULC maps in the year 2010 was analyzed by 
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comparing the LULC map with the LULC map in the year 2010 derived from the segmentation 

classification technique. Table 7 shows that high and low user’s accuracies of 94% and 31%, 

respectively, were observed in forest and water bodies. Similarly, high and low producer’s accuracy 

was observed in water body (87%) and upland crop (53%). The overall accuracy and overall kappa 

values were of 68% and 0.60, respectively. The Kappa coefficient is a measure of agreement and can 

be used to assess classification accuracy [45]. It is not uncommon that the kappa coefficient is low [68], 

giving the impression that the coefficient takes into account not only the actual agreement in the error 

matrix, but also the agreement of change. Table 8 and Figure 7 illustrate projected LULC for 2020, 

2030 and 2040 showing that there was a dramatic decrease in forest from a base line of approximately 

37%–46% in 2020–2040. However, urban areas increase significantly by 75%–78% from past to the 

future from 2020 to 2040. 

Figure 6. Simulated and actual land use/land cover maps for the year 2010. 

  

Table 7. Error matrix between simulation results and actual land use/land cover in 2010. 

 
Land Use Type 

Actual LULC 2010 Total 

area 

User’s 

Accuracy (%) 

S
im

u
la

ti
o

n
 L

U
L

C
 2

0
1

0
 

A B C D E F 

A. Paddy field 2517 2036 37 0 222 0 4812 52 

B. Upland crop 0 5811 18 4936 0 14 10,779 54 

C. Orchard 0 2891 2670 0 0 1 5562 48 

D. Forest 0 43 803 13,213 0 0 14,056 94 

E. Urban 0 228 555 0 1482 54 2319 64 

F. Water body 460 0 139 0 0 271 870 31 

Total area 2977 11,009 4222 18,149 1704 340 38,401  

Producter’s  

Accuracy (%) 
85 53 63 73 87 80   

Overall accuracy = 67.61%, Overall Kappa = 0.6 
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Table 8. Land use area (km
2
) and land use change (%) for 1990 and 2020, 2030 and 2040. 

Land use 
Area (km

2
) Land use change from 1990 (%) 

1990 2020 2030 2040 2020 2030 2040 

Paddy field 7 132 129 124 95 95 94 

Upland crop 377 433 446 464 13 15 19 

Orchard 89 130 132 143 32 33 38 

Forest 1033 754 739 709 −37 −40 −46 

Urban 17 68 71 76 75 76 78 

Water body 8 14 14 15 43 43 47 

Total 1531 1531 1531 1531    

Figure 7. Simulated LULC maps for the years 2020, 2030 and 2040. 

 

4.3. Rainfall Erosivity (R factor) under Future Climate 

Table 9 shows the modified Fournier Index (MFI) versus monthly rainfall and MFI versus rainfall 

erosivity (R factor) values of each station around the Mea Nam Nan sub-catchment. The MFI values of 

each station as well as the mathematical formula that relates the MFI value and R factor values have 

been developed. These mathematical models, which were developed based on historical rainfall data, 

are ready for use to estimate rainfall erosivity values of each station based on available monthly 

rainfall data. A power function gives the highest coefficient of determination when compared with 

seven station simple regression analysis of the monthly rainfall versus the MFI and the R factor versus 

the MFI. The regression equation has a 0.99 and 0.92 coefficient of statistical determination for data 

from all stations around the catchment (Figure 8). Figure 9 illustrates the validation between measured 

and estimated monthly rainfall erosivity (R factor) in the study area and the coefficient determinant 

(R
2
), which reflects strength of correlation between the Rmeasured and Rpredicted values of 0.87; this model 

indicates a good correlation between the variables.  

The modified Fournier Index (MFI) values were calculated based on the historical precipitation data 

and precipitation output from GCM/RCM outputs. Rainfall erosivity is not provided by the current 

GCM/RCM outputs. The relationship between MFI and the R factor can be used to estimate the 

monthly and annual rainfall erosivity (R factor) values [12,22]. Therefore, the purpose of this process 

was to estimate rainfall erosivity under future climate based on GCM/RCM outputs, which consist of 
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HadCM3 and PRECIS RCM under A2 and B2 scenarios and NCAR CCSM3 under A2, A1b and B1. 

Raw GCM output has been used in many previous studies [9,12,13] of soil erosion under future 

climate change to disturb erosion models in order to represent future conditions.  

Table 9. The developed modified Fournier index (MFI) and rainfall erosivity (R) 

predictive model based on observed rainfall. 

Weather 

station 
MFI 

R-factor  

(MJ.mm.ha
−1

.h
−1

) 

Weather 

station 
MFI 

R-factor  

(MJ.mm.ha
−1

.h
−1

) 

Thung Chang MFI = 0.0006Pm
1.98  

r² = 0.98 

R = 111MFI0.69  

r² = 0.93  

Maung Nan MFI = 0.0008Pm
1.99  

r² = 0.99  

R = 78MFI0.71  

r² = 0.91  

Pou MFI = 0.0008Pm
1.98  

r² = 0.99  

R = 96MFI0.70  

r² = 0.94  

Viang Sa MFI = 0.0009Pm
1.97  

r² = 0.98  

R = 74MFI0.70  

r² = 0.93 

Tavang pa MFI = 0.0007Pm
1.99  

r² = 0.98 

R = 87MFI0.70  

r² = 0.91  

Na Noi MFI = 0.0009Pm
1.98  

r² = 0.98  

R = 77MFI0.69  

r² = 0.92 

Agriculture MFI = 0.0008Pm
1.98  

r² = 0.99  

R = 81MFI0.71  

r² = 0.93  

Average MFI = 0.0009Pm
1.96

  

r² = 0.99 

R = 85MFI
0.71

  

r² = 0.92 

Figure 8. Relation between MFI and monthly rainfall, rainfall erosivity (R factor) and MFI 

based on obsereved data. 

  

Figure 9. Scatter plot between measurement and predicted R factor at the validation station. 
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The Figure 10a–c presents the average monthly precipitation cycle for all climate projections in the 

three periods and baseline period between 1981 and 2000. Generally, there was a dramatic rise in the 

precipitation from January until a peak in August was reached. After this, precipitation fell 

significantly until December. It is clear that there is less monthly average precipitation from PRECIS 

CCSM3 under A2 and B2 scenarios output than in the base period and other GCMs from March to 

May, whereas it is equal in comparison with the baseline period from September to December. The 

precipitation peak range in August of all climate projections is 198–238 mm in 2016–2025,  

188–237 mm in 2026–2035 and 196–242 mm in 2036–2045. For annual precipitation the changes 

range from (Table 11) −13%–9% in 2016–2025, −16%–10% in 2026–2035 and −10%–14% in  

2036–2045 depending on the emission scenarios and climate models.  

Figure 10. Average monthly precipitation (a–c) and rainfall erosivity (d–f) for all climate 

projections for the 2016–2025, 2026–2035, 2035–2046 periods and baseline period  

1981–2000 for the Mae Nam Nan sub-catchment. 

 
  

 
 

 

 

Unlike precipitation, the changes in monthly rainfall erosivity are not unidirectional for all emission 

scenarios, climate models and time periods. The intra-annual patterns of rainfall erosivity change from 

the unimodal. For example, there was a decrease in rainfall erosivity from November to February and 

an increase in the periods from March to October for all three time periods. Future change of rainfall 

erosivity (Table 11) in comparison with a base period (5999 MJ mm ha
−1

 h
−1

) was between  

−12%–12% in 2016–2025, −15%–11% in 2026–2035 and −5%–19% in 2036–2045 depending on the 

emission scenarios and climate models. 
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4.4. Validation of the RUSLE 

For validation of the RUSLE, it is significant to know the measured soil loss in the experimental 

plots. Figure 11a shows the validation of RUSLE in the study area with R
2
 = 0.85 which indicates a 

good amount of balance between measured and estimated soil loss. The mean difference values 

between the actual and predicted soil loss, or average error (AE) value, was 0.02 t ha
−1

. Relative error 

(RE) and standard error (SE) values were 4.20% and 0.38 t ha
−1

 respectively. The results indicate that 

the RUSLE model simulates the soil loss in the Mea Nam Nan sub-catchment with reasonable 

accuracy. Figure 11b illustrates that the variation of measured and estimated soil loss in the 

experimental plots that predict soil loss is not able to capture peak soil loss events. A soil loss model 

can be affected by an uncertainty due to the underestimation of soil loss. RUSLE is developed to 

predict soil loss from agricultural areas. Likewise, the LS factor derived from the digital elevation 

model (DEM) may not be accurate due to inaccuracies in DEM [69]. In addition, the studied area is 

located in a tropical climate zone with extreme rainfall and heavy rainstorms which has more potential 

to erode surface soil [67]. 

Figure 11. (a) Validation of Revised Universal Soil Loss Equation (RUSLE) in the study 

area. (b) Variation of measured and estimated soil loss in the experimental plots. 

  

(a) (b) 

4.5. Impacts of Climate Change on Soil Loss and Net Soil Loss  

Table 10 shows the impact of climate change (precipitation) on future net soil loss at the Mae Nam 

Nan Sub-catchment. Output from two GCMs (HadCM3 andCCSM3) and a RCM under four emission 

scenarios (A2, A1b, A2 and B1) were used to downscale precipitation in order to represent changed 

climatic conditions for soil loss modeling. Use of multiple GCMs and emission scenarios helps to 

address uncertainties inherent to climate models [44]. The average of the three ensembles reveals that 

soil erosion decreases from a baseline rate of 0.160 Mg/ha by −4% (0.153 Mg ha
−1

 y
−1

) for the period 

between 2016–2025 and 2036–2045 and by −6 (0.151 Mg ha
−1

 y
−1

) for the 2026–2035 period. In 

addition a decrease in the net soil loss from a baseline of 24,037 Mg y
−1

 was found to be  

−4% (23,075 Mg y
−1

) for the period of 2026–2035 and −5% (22,835 Mg y
−1

) for the period of  

2016–2025. The magnitude of soil erosion change varies depending on the GCM (HadCM3, NCAR 

CCSM3 and PRECIS RCM) and emission scenario (A2, A1b, A2 and B1). Precipitation decreases and 
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increases of −14% (1078 mm) in the NCAR CCSM3-B1 scenario for the period of 2026–2035s and 

16% (1450 mm) in NCAR CCSM3-A2 for the period of 2036–2045 illustrate the predominant factor 

responsible for increasing and reducing soil erosion rates and net soil loss. Critically, however, it is the 

timing of precipitation and the amount of daily precipitation intensity rather than merely the average 

annual precipitation amount that generally controls the response of erosion to climate change.  

Table 10. Change in average annual precipitation net soil loss and net soil loss rate 

estimated by the sedimentation model for all climate projections under climate change 

compared to the base period (1981–2000).  

Climate models 
Precipitation 

(mm) 

Change 

(%) 

Total 

erosion  

(Mg y
−1

) 

Total  

deposition  

(Mg y
−1

) 

Net  

soil loss  

(Mg y
−1

) 

Change 

(%) 

Net  

Soil loss rate  

(Mg ha
−1

 y
−1

) 

Change 

(%) 

Base line 1250  40,547 16,510 24,037 0 0.160 0 

2016–2025         

HadCM3-A2 1277 2 44,873 17,689 27,184 13 0.180 13 

HadCM3-B2 1275 2 42,945 17,172 25,774 7 0.170 6 

NCAR CCSM3-A2  1282 3 38,993 15,443 23,551 −2 0.160 0 

NCAR CCSM3-A1B 1369 10 40,753 16,042 24,711 3 0.160 0 

NCAR CCSM3-B1 1327 6 42,191 16,617 25,574 6 0.170 6 

PRECIS RCM-A2 1109 −11 23,543 9052 14,492 −40 0.100 −38 

PRECIS RCM-B2 1113 −11 31,364 12,372 18,992 −21 0.130 −19 

Average 1250 0 37,809 14,912 22,897 −5 0.153 −4 

2026–2035         

HadCM3-A2 1279 2 42,574 17,819 24,755 3 0.160 0 

HadCM3-B2 1327 6 42,438 16,866 25,572 6 0.170 6 

NCAR CCSM3-A2  1372 10 37,426 15,255 22,171 −8 0.160 0 

NCAR CCSM3-A1B 1386 11 39,829 15,747 24,083 0 0.150 −6 

NCAR CCSM3-B1 1078 −14 41,856 16,254 25,602 7 0.170 6 

PRECIS RCM-A2 1131 −10 31,483 12,787 18,696 −22 0.120 −25 

PRECIS RCM-B2 1164 −7 33,760 13,694 20,065 −17 0.130 −19 

Average 1248 0 38,481 15,489 22,992 −4 0.151 −6 

2036–2045         

HadCM3-A2 1275 2 41,517 16,488 25,029 4 0.170 6 

HadCM3-B2 1285 3 44,837 17,507 27,330 14 0.180 13 

NCAR CCSM3-A2  1450 16 42,292 16,349 25,944 8 0.170 6 

NCAR CCSM3-A1B 1278 2 39,415 15,503 23,911 −1 0.160 0 

NCAR CCSM3-B1 1140 −9 39,198 15,646 23,552 −2 0.160 0 

PRECIS RCM-A2 1197 −4 28,539 11,886 16,653 −31 0.110 −31 

PRECIS RCM-B2 1165 −7 30,919 12,468 18,451 −23 0.120 −25 

Average 1256 0 38,102 15,121 22,981 −4 0.153 −4 

The soil loss and mean soil loss (Figure 12a) were determined by RUSLE to be between  

0–340 Mg ha
−1

 yr
−1

 (mean 37 Mg ha
−1

 yr
−1

) for 2016–2025, 0–423 Mg ha
−1

 yr
−1

 (mean  

42 Mg ha
−1

 yr
−1

) for 2026–2035 and range of soil loss of 0–414 Mg ha
−1

 yr
−1

 (mean 39 Mg ha
−1

 yr
−1

) 

for 2036–2045 under climate change (average rainfall erosivity from HadCM3, NCAR CCSM3, and 
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PRECIS RCM). The net soil loss (erosion and deposition) values estimated by the sedimentation 

model for 2016–2025, 2026–2035 and 2036–2045 under climate change (Figure 12b) were reclassified 

into seven classes based on degree of severity [68]. The deposition and erosion risk areas of the 

different climate change (precipitation) are shown in Figure 13 which illustrates that the percentage of 

area under erosion risk is stable for the average three future time periods, 55% (83,727 ha) for  

the period of 2026–2035 and 58% (88,904) for the period of 2016–2025, and that there is a high 

erosion of 2% (37,766 ha) for the period of 2026–2035 and 3% (4037) for the period of 2036–2045.  

Figure 12. Maps of soil loss and net soil loss under climate change (Average rainfall 

erosivity from HadCM3, NCAR CCSM3, and PRECIS RCM). 

(a) Predicted soil loss determined by the RUSLE model under climate change. 

 

(b) Predicted net soil loss determined by a sedimentation model under climate change. 
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Figure 13. Average monthly erosion and deposition risk areas for all climate projections 

and for three future time periods. 

  
 

 

Table 11 shows that there is an increase in the area of stable class (−0.02 to 0.02 Mg ha
−1

 y
−1

) from 

the base period, and then the number of areas decreases moderately from 2016–2015 to  

2036–2045. The annual net soil loss increases from the baseline amount of 240,37 Mg y
−1

 by 32%  

(317,28 Mg y
−1

) for the period of 2026–2035 and by 44% (34,613 Mg y
−1

) for the period of  

2016–2025. Similarly, annual rates of soil loss for all three future time slices, ranging from increases 

from the baseline rates of 0.16 Mg ha
−1

 y
−1

 by 31% (0.21 Mg ha
−1

 y
−1

) for the periods of 2026–2035 

and 2036–2045 and by 44% (0.23 Mg ha
−1

 y
−1

) for the period of 2016–2025. 

Table 11. Predicted erosion and deposition risk areas and net soil loss under climate 

change projections from a combination of HadCM3, CCSM3 and PRECIS RCM with A2, 

A1b, B2 and B1 emissions scenarios for three future time periods. 

Classification Base line 2016–2025 2026–2035 2036–2045 

Mg ha
−1

 y
−1

 
Area  

(ha) 

Soil loss  

(Mg y
−1

) 

Area  

(ha) 

Soil loss  

(Mg y
−1

) 

Area  

(ha) 

Soil loss  

(Mg y
−1

) 

Area  

(ha) 

Soil loss  

(Mg y
−1

) 

High deposition (<−5) 255 −3080 483 −5016 566 −6102 614 −6681 

Medium (−5–−1) 1795 −3269 4754 −8752 4136 −7418 5045 −10,228 

Low (−1–−0.02) 68,459 −10,059 40,284 −12,209 46,254 −13,163 42,250 −12,747 

Stable (−0.02–0.02) 72,284 −101 88,904 10 83,727 −15 85,797 −9 

Low (0.02–1) 5320 1436 10,541 2461 11,048 2417 10,725 2219 

Medium (1–5) 2445 6580 4339 10,985 3777 10,092 4806 11,939 

High erosion (>5) 2716 32,520 3969 47,071 3766 45,843 4037 47,810 

Net soil loss (Mg y−1)  24,037  34,548  31,654  32,304 

Change (%)  0  44  32  34 

Rate annual  

soil loss (Mg ha−1 y−1) 
 0.16  0.23  0.21  0.21 

Change (%)  0  44  31  31 
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4.6. Impacts of Land Use Change on Soil Loss and Net Soil Loss 

Future soil erosion and deposition at Mae Nam Nan sub-catchment under a changed land use are 

displayed in Table 12. Figure 14 illustrates the percentage of LULC that has changed between the base 

period and future land use. Three major increases in the LULC from the base period are found in water 

bodies in urban areas, and paddy fields amounting to 44%, 76% and 96%, respectively, in three 

periods. On the other hand, there is a decrease in the percent of LULC change from −37% in 2020 to 

−47% in 2040. Thus, these LULC have a major effect on soil loss under future land use. Figure 15a 

shows the impacts of land use change on soil loss to predict by RUSLE. Figure 15a shows the mean 

soil loss between 157 Mg ha
−1

 yr
−1

 in 2020 and 195 Mg ha
−1

 yr
−1

 in 2030 under future land use.  

Table 12. Predicted erosion and deposition risk areas and net soil loss under land use 

change in 2020, 2030 and 2040. 

Classification Base line LULC 2020 LULC 2030 LULC 2040 

Mg ha
−1

 y
−1

 
Area  

(ha) 

Soil loss  

(Mg y
−1

) 

Area 

(ha) 

Soil loss  

(Mg y
−1

) 

Area 

(ha) 

Soil loss  

(Mg y
−1

) 

Area  

(ha) 

Soil loss  

(Mg y
−1

) 

High deposition (<−5) 255 −3080 167 −1186 95 −1010 171 −1936 

Medium (−5–−1) 1795 −3269 1249 −2306 1718 −2756 2291 −3647 

Low (−1–−0.02) 68,459 −10,059 48,088 −8228 53,239 −10,942 65,973 −14,226 

Stable (−0.02–0.02) 72,284 −101 94,054 −168 86,127 −193 70,489 −104 

Low (0.02–1) 5320 1436 4824 1330 6264 1784 7278 2609 

Medium (1–5) 2445 6580 4236 8802 4749 9346 5679 12,151 

High erosion (>5) 2716 32,520 656 6395 1082 9960 1392 12,885 

Net soil loss (Mg y−1)  24,037  4639  6189  7733 

Change (%)  0  −81  −74  −68 

Rate annual soil loss  

(Mg ha−1 y−1)  0.16  0.03  0.04  0.05 

Change (%)  0  −81  −75  −69 

Figure 14. Land use change between the base period and 2020, 2030 and 2040. 
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Figure 15. Maps of soil loss and net soil loss under land use change. 

(a) Predicted soil loss determined by the RUSLE model under land use change. 

 

(b) Predicted net soil loss determined by the sedimentation model under land use change. 

 

Table 12 shows that the present base period net soil loss is 24,037 Mg y
−1

, and that the rate of soil 

loss is 0.16 Mg ha
−1

 y
−1

. There is a decrease in net soil loss for all three LULC time periods, from  

−68% for the LULC 2040 to −81 for the LULC 2020, and an annual soil loss rate from −69% for the 

LULC 2040 to −81% for the LULC 2020. These decreases reflect the protection provided to the soil by 

urban and water body areas. Generally, erosion rates dominate the deposition rate for all periods. For  

intra-deposition and erosion risk areas over 47% (72,284 ha) of the catchment area is stable in the base 

period, but there is an increase of from 56% (86,127 ha) in 2030 to 61% (94,054 ha) in 2020 in the 

catchment area in the stable class in the future. It is noticeable that a high stable area is located in the 

forest area (Figure 15b).  

4.7. Impacts of Land Use and Climate Change on Soil Loss and Net Soil Loss (Full Range of Impacts) 

Table 13 shows the response of net soil erosion at the Mae Nam Nan sub-catchment under climate 

and land use change (full range of impacts). Drastic decreases in soil loss rate and net soil erosion are 

evident under all scenarios, with soil erosion decreasing from the baseline rate of 0.16 Mg ha
−1

 y
−1

 to 

the lowest decrease of 0.06 Mg ha
−1

 y
−1

 under the NCAR CCSM3-A1B and B1 scenarios for the 
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2036–2045 period and up to the highest increase of 0.02 Mg ha
−1

 y
−1

 under the PRECIS RCM-A2 

scenario for the 2016–2025 period. Similarly, there was a decrease in net soil loss from the base line of 

24,037 Mg y
−1

 of between 8412 Mg y
−1

 under NCAR CCSM3-B1 (2036–2045) and 3125 Mg y
−1

 

under PRECIS RCM-A2 for the (2016–2025).  

Table 13. Changes in average annual rainfall erosivity, net soil loss estimated by the 

sedimentation model under full range of impact (climate and land use change) compared to 

the base period.  

Climate models 
Rainfall erosivity  

(MJ mm ha
−1

 h
−1

) 

Change 

(%) 

Total  

erosion 

(Mg/y) 

Total  

deposition  

(Mg/y) 

Net  

soil loss 

(Mg/y) 

Change 

(%) 

Net  

Soil loss rate  

(Mg /ha) 

Change 

(%) 

Base line 5999 0 40,547 16,510 24,037 0 0.16 0 

2016–2025         

HadCM3-A2 5808 −3 16,287 12,017 4270 −82 0.03 −81 

HadCM3-B2 5800 −3 15,589 11,381 4208 −82 0.03 −81 

NCAR CCSM3-A2  5868 −2 17,405 12,649 4756 −80 0.03 −81 

NCAR CCSM3-A1B 6384 6 17,258 12,678 4580 −81 0.03 −81 

NCAR CCSM3-B1 6144 2 17,106 12,368 4738 −80 0.03 −81 

PRECIS RCM-A2 5015 −16 11,025 7986 3039 −87 0.02 −88 

PRECIS RCM-B2 5244 −13 15,432 10,679 4753 −80 0.03 −81 

Average 5752 −4 15,729 11,394 4335 −82 0.03 −81 

2026–2035         

HadCM3-A2 5838 −3 20,620 14,165 6455 −73 0.04 −75 

HadCM3-B2 5822 −3 21,203 15,272 5931 −75 0.04 −75 

NCAR CCSM3-A2  5917 −1 22,693 16,226 6467 −73 0.05 −69 

NCAR CCSM3-A1B 6152 3 22,598 16,218 6380 −73 0.04 −75 

NCAR CCSM3-B1 6322 5 21,715 15,538 6177 −74 0.04 −75 

PRECIS RCM-A2 4866 −19 19,476 13,472 6004 −75 0.04 −75 

PRECIS RCM-B2 5231 −13 20,039 13,944 6095 −75 0.04 −75 

Average 5735 −4 21,192 14,976 6216 −74 0.04 −75 

2036–2045         

HadCM3-A2 5820 −3 29,010 21,657 7353 −69 0.05 −69 

HadCM3-B2 5784 −4 27,809 20,326 7483 −69 0.05 −69 

NCAR CCSM3-A2  5915 −1 28,785 21,099 7686 −68 0.05 −69 

NCAR CCSM3-A1B 6917 15 29,801 21,865 7936 −67 0.06 −63 

NCAR CCSM3-B1 5897 −2 31,321 22,949 8372 −65 0.06 −63 

PRECIS RCM-A2 5321 −11 22,509 16,512 5997 −75 0.04 −75 

PRECIS RCM-B2 5646 −6 24,745 18,304 6441 −73 0.04 −75 

Average 5900 −2 27,711 20,387 7324 −70 0.05 −69 

It is noticeable that the significant decrease in soil loss rates and net soil erosion reflects a 

combination of all the factors discussed with respect to the aforementioned scenarios. The key factor is 

the land-use change since there was an increase in urban and water body areas, which are affected by 

crop and management factors. The highest decrease in soil loss under the full range of impacts occurs 

because of change in land use. Figure 16a illustrates the spatial distribution patterns of the different 

soil losses. It was estimated by RUSLE for impacts of land use and climate change (full range of 

impact) based on future land use and combinations of two general circulation models (HadCM3 and 

NCAR CCSM3) and a regional climate model (PRECIS RCM). There was an increase in mean soil 

loss from 114 Mg ha
−1

 y
−1

 for 2016–2025) to 130 Mg ha
−1

 y
−1

 for the period of 2036–2045. 
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Figure 16. Maps of soil loss and net soil loss under land use and climate change  

(full range of impacts).  

(a) Predicted soil loss determined by the RUSLE model under full range of impacts. 

 

(b) Predicted net soil loss determined by the sedimentation model under land use change. 

 

Figure 16b illustrates the spatial distribution of net soil loss risk (erosion and deposition) estimated 

by the sedimentation model under the impacts of land use and climate change projections from a 

combination of HadCM3, CCSM3 and PRECIS RCM with A2, A1b, B2 and B1 emission scenarios for 

three future time periods. The dramatic decreases in erosion rates and net soil loss reflect a 

combination of all the factors. Table 14 shows future erosion rates, which are displayed as total and 

percentage changes with GCM/RCM emission scenario combinations. There was a dramatic decrease 

in net soil loss from the baseline of 240,37 Mg y
−1

 of between 17,306 Mg y
−1

 for 2036–2045 and  

11,778 Mg y
−1

 for 2016–2025. Similarly, the rate of soil loss decreased significantly from the base line 

of 0.16 Mg/ha, ranging from 0.08 Mg ha
−1

 y
−1

 for 2016–2025 to 0.12 Mg ha
−1

 y
−1

 for 2036–2045. 

Therefore, the full ranges of impacts have two factors, which consist of LULC conversion towards 

decreased tillage (indirect impact) and the increased precipitation (direct impact), the combined result 

of which is a large decrease in soil erosion at the Mea Nam Nan sub-catchment.  
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Table 14. Predicted soil loss rates and soil erosion/deposition risk areas under climate and 

land use change projections (full range of impacts) from a combination of HadCM3, 

CCSM3 and PRECIS RCM with A2, A1b, B2 and B1 emission scenarios for three future 

time periods. 

Classification Base line 2016-2025 2026-2035 2036-2045 

Mg ha
−1

 y
−1

 
Area  

(ha) 

Soil loss  

(Mg y
−1

) 

Area  

(ha) 

Soil loss  

(Mg y
−1

) 

Area  

(ha) 

Soil loss  

(Mg y
−1

) 

Area  

(ha) 

Soil loss  

(Mg y
−1

) 

High deposition (<−5) 255 −3080 598 −4958 750 −7598 610 −6964 

Medium (−5–−1) 1795 −3269 4850 −8975 4706 −9454 8566 −15,969 

Low (−1–−0.02) 68,459 −10,059 42,637 −11,971 51,000 −14,815 48,084 −13,622 

Stable (−0.02–0.02) 72,284 −101 86,848 −46 76,494 −32 72,385 −21 

Low (0.02–1) 5320 1436 10,281 3347 11,047 3236 12,132 3968 

Medium (1–5) 2445 6580 5962 12,966 6836 17,020 8606 21,026 

High erosion (>5) 2716 32,520 2098 21,439 2441 25,437 2891 28,824 

Net soil loss (Mg y−1)  24,037  11,802  13,794  17,242 

Change (%)  0  −51  −43  −28 

Rate annual  

soil loss (Mg ha−1 y−1) 
 

0.16  0.08  0.1  0.12 

Change (%)  0  −50  −38  −25 

5. Discussion  

The impacts of climate change on soil loss and net soil loss (erosion and deposition) may increase 

or decrease at the Mae Nam Nan sub-catchment depending on the interacting effects of the factors 

considered. It can be seen that the mean soil loss determined by the RUSLE model (Figure 12a) under 

climate change projections from a combination of HadCM3, CCSM3 and PRECIS RCM with A2, 

A1b, B2 and B1 emission scenarios for three future time slices are between 37 Mg ha
−1

 y
−1

 for  

2016–2025 and 42 Mg ha
−1

 y
−1

 for 2026–2035. Table 11 shows that there is a increase in net soil loss 

estimated by sedimentation model, ranging in increases from the base line of 24,037 Mg y
−1

 of 

between 31,654 Mg y
−1

 for 2026–2035 and 34,548 Mg y
−1

 for 2016–2025. If downscaled climate 

change projections are considered in isolation, then future rates of soil erosion and deposition are 

generally projected to rise due to increases in precipitation and rainfall erosivity in the future. This is in 

accordance with similar studies [7,8,10,12] on soil erosion, which suggest that increased precipitation 

amounts and intensities will lead to greater rates of erosion. The expected increase in precipitation may 

have significant effects on soil loss.  

The mean soil loss was determined by the RUSLE model under a land use change between  

157 Mg ha
−1

 y
−1

 in 2020 and 195 Mg ha
−1

 y
−1

 in 2030 (Figure 15a–b). Similarly, net soil losses 

estimated by the sedimentation model for all three future time periods decrease dramatically from a 

base line of 24,037 Mg y
−1

 to 4,639 Mg y
−1

 for 2020 and 7,733 Mg y
−1

 for 2040. Land use is the most 

crucial element in the soil erosion model. Land use change factors are practically the most difficult to 

predict with confidence. Soil loss and net soil loss potential maps were generated based on the past 

(1990) and future land use (2020, 2030 and 2040) and other spatially derived parameters using the 

RUSLE and sedimentation models. When land use change and management are added to the modeling 
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process, however, then soil loss rate, soil erosion and deposition are projected to decrease significantly 

from the baseline period, depending on the specific land use scenarios. Areas of high erosion can be 

rapidly identified, and management efforts can be directed at these high priority areas. In this study, 

high erosion and deposition zones indentified areas along the Nan River. Thus, improved vegetation 

conditions such as vetiveria grass should be recommended to the farmers in order to reduce soil loss in 

slope areas. For example, it should be recommended to plant vetiveria grass against the slope and 

along the riverside to capture sedimentation and to grow it on check-dams, which helps to protect 

against soil erosion. 

It can be seen that there was a decrease in net soil loss estimated by sedimentation (Table 14) under 

climate change projections from a combination of HadCM3, CCSM3 and PRECIS RCM with A2, 

A1b, B2 and B1 emission scenarios for three future time periods from a baseline of 24,037 Mg y
−1

 of 

between 11,802 Mg y
−1

 for 2020 and 17,733 Mg y
−1

 for 2040. When an additional R factor (climate 

change) and C factor (land use change) are included in the modeling process, soil erosion rates and net 

soil loss are projected to decrease dramatically. However, the increase in rainfall can be expected 

through the increase in the number of rain days and the increase in rainfall intensity. The study 

conducted by Pruski and Nearing [13] indicates that changes in rainfall that occur due to changes in 

storm intensity can be expected to have a greater impact on erosion rates than those due to changes in 

the number of rain days alone. Further studies are necessary to consider the impact of rainfall intensity 

on potential changes in rainfall erosivity and soil erosion and deposition in the Mea Nam  

Nan sub-catchment.  

6. Limitations of This Study 

There are several limitations in this paper. A major one is that uncertainties of a range of possible 

climate change consist of uncertainty surrounding future climate change projections (emissions and 

GCMs/RCMs) and downscaling methods. The downscaling method (delta change method) also creates 

uncertainties in downscaled climate data sets in part because GCMs are optimized to forecast climate 

change at their native resolutions [70]. The delta change method is a simple way to implement and 

acquire information from just a GCMs/RCM monthly time scale. On the other hand, many statistical 

downscaling methods need data from just GCMs on a daily time scale. Daily scale data from GCMs 

are considered less accurate by many [71,72]. Also, bias correction and variance adjustment is often 

needed to obtain adequate results, whereas with the change factor method, bias correction is implicitly 

built into the approach [59]. Another limitation of this study is that the CA_Markov mode was the time 

duration used for the LULC change prediction, although it should be the same time period for the 

database used in the study. However, this paper studies land use change in the year 2010 derived from 

the CA_Markov model compared with the results from LULC classification in 2010 by the 

segmentation classification. Hence the result from the prediction is different from the time duration for 

the LULC prediction in the years 2020, 2030 and 2040 estimated by the CA_Markov mode (for which 

the time duration change was 20, 30 and 40 years) and was derived from LULC change for the period 

of 10 years (from 1990 to 2000).  
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7. Conclusions  

This study simulates the impacts of climate change, land use change and their combined effects on 

soil loss and net soil loss in the Mae Nam Nan sub-catchment, Thailand. In this study, a multi-climate 

model and a multi-emission scenario approach for the estimation of climate change impacts are used. 

The delta change method is used as a downscaling technique to generate future precipitation. The soil 

loss model using Revised Universal Soil Loss Equation (RUSLE) and sedimentation model in Idrisi 

software are used to simulate the present and future changes in soil erosion and deposition in the study 

area. Results indicate that soil erosion and deposition changes are not unidirectional and vary 

depending on the greenhouse gas emission scenarios and land use scenarios. The potential for climate 

change to increase soil loss rate, soil erosion and deposition in future periods are established, whereas 

considerable decreases in soil erosion and deposition are projected when land use is increased (paddy 

fields, urban areas and water body) from baseline periods. The combined climate and land use change 

analysis reveals that land use planning can be adopted to mitigate soil erosion and deposition in the 

future, in conjunction with the projected direct impact of climate change. The results of this study may 

be helpful to development planners and decision makers when planning and implemented suitable soil 

erosion control and sediment management plans to adapt to land use and climate change.  
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