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Abstract: Existing studies on electric bus (EB) scheduling mainly focus on the arrangement of bus
charging at the bus terminals, which may lead to inflexible charging plans, high scheduling costs,
and low utilization of electricity energy. To address these challenges, this paper proposes a dynamic
bus replacement strategy. When the power of an in-service EB is insufficient, a standby EB stationed
at nearby charging stations is dispatched in advance to replace this in-service EB at a designated
bus stop. Passengers then transfer to the standby bus to complete their journey. The replaced bus
proceeds to the charging station and transitions into a “standby bus” status after recharging. A
mixed-integer nonlinear programming (MINLP) model is established to determine the dispatching
plan for both standby and in-service EBs while also designing optimal charging schemes (i.e., the
charging time, location, and the amount of charged power) for electric bus systems. Additionally, this
study also incorporates the strategy of time-of-use electricity prices to mitigate the adverse impact on
the power grid. The proposed model is linearized to the mixed-integer linear programming (MILP)
model and efficiently solved by commercial solvers (e.g., GUROBI). The case study demonstrates
that EBs with different energy levels can be dynamically assigned to different bus lines using bus
replacement strategies, resulting in reduced electricity costs for EB systems without compromising
on scheduling efficiency.

Keywords: bus replacement; bus charging scheduling; time-of-use electricity policy; electricity
energy allocation

1. Introduction

The large-scale emissions of greenhouse gases and the diminishing reserves of natural
energy sources have prompted global authorities to adopt substantial measures to control
the usage of energy resources. A pivotal approach to addressing these challenges revolves
around minimizing dependence on non-renewable energy while maximizing the utilization
of renewable energy sources [1]. In the transportation sector, it is vital to accelerate the
electrification of transportation systems, considering its responsibility for approximately
one-fourth of global greenhouse gas emissions [2]. According to the report from the Inter-
national Energy Agency, the energy consumption of the transportation sector has recently
reached a historic high at 1251 Mtoe, marking its fourth consecutive yearly increase [2].
This trend not only affirms long-term patterns but also cements the sector’s position as
the foremost energy consumer. In particular, the electrification of large fleets of buses
plays a vital role in mitigating external emissions and improving traffic efficiency since the
electric bus (EB) constitutes an indispensable component of urban public transportation
systems [3–5].
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However, due to the limited on-board battery capacity, electric buses (EBs) require one
or more charging sessions during daily operation [6–9]. Conventional diesel bus scheduling
timetables are inapplicable to electric buses [10,11]. Therefore, it is imperative to optimize
the scheduling of electric bus fleets to facilitate the widespread adoption and implementa-
tion of EBs [12–14]. In recent years, many scholars have conducted extensive research on
the optimization of charging scheduling for EBs [15–19]. Existing literature can be divided
into two categories: post-route charging scheduling and en-route charging scheduling.

Post-route charging scheduling involves EBs charging at terminal bus stops, depots,
or charging stations after completing their scheduled trips. This method makes full use
of the idle time between two successive trips under a predetermined timetable and has
little interference with passengers [2,20–22]. As a result, numerous studies have been
conducted based on the post-route charging scheduling method. For example, the study
in [23] established a two-stage stochastic program for the planning of battery-swapping
stations, which are strategically located at bus terminals or depots to minimize the combined
costs of station construction and electric bus operation. Subsequently, the study in [24]
developed a stochastic integer program to jointly optimize the locations of terminal charging
stations and bus fleet size under random bus charging demand. The study in [12] studied
the multi-depot and multi-vehicle-type electric vehicle scheduling problem under the
partial mixed-route strategy and partial recharging policy. The study in [25] optimized the
charging schedule of EBs by using their idle time at the terminal stations for charging. They
also developed an energy consumption estimation model by considering the stochastic
volatilities in trip travel time and energy consumption.

In summary, post-route charging is a widely adopted practice that reduces the in-
terference of bus charging on bus operations. However, the limited charging time at
terminals may cause delays for EVs due to their extended recharge duration, impacting
departure schedules.

To maintain the punctuality of EBs, it becomes imperative to deploy additional standby
buses, resulting in an expanded fleet size and elevated scheduling costs for electric bus
operations [26]. Fortunately, recent advancements in fast-charging and dynamic wireless
charging (DWC) technology offer promising solutions to address these challenges. By
enabling “charging while driving” through fast-charging piles installed at bus stops or
conductive coils buried underground, the en-route charging method has garnered ex-
tensive attention as an innovative approach for enhancing the efficiency of electric bus
operations [27,28].

En-route charging scheduling facilitates the strategic deployment of pantograph fast
charging and wireless charging at scheduled bus stops to recharge EBs while passengers
load and unload. This approach provides the advantage of short and frequent power
supplements, enabling EBs to be equipped with low-capacity batteries while achieving
higher operational efficiency and reducing battery costs [29]. In this context, EBs can be
charged during their serving trip, thereby minimizing the need for deadheading trips
to nearby charging facilities, such as depots or battery-swapping charging stations. The
en-route charging scheduling method has shown promising potential in elevating the
operational efficiency of EBs [30]. However, it is important to acknowledge that this
approach also comes with certain drawbacks:

(i) The expenses linked to purchasing, installing, and maintaining a wireless charging
facility or pantograph fast charger are notably higher compared to a conventional plug-in
charger typically deployed at a bus depot or charging station [31,32].

(ii) EBs often require frequent charging during a single trip to maintain the battery at
a medium state of charge (SOC). This frequent charging could accelerate battery aging and
potentially compromise battery longevity [33,34].

(iii) The short charging times at a bus stop may lead to situations where EBs experience
insufficient charging. Consequently, additional waiting times are required, potentially
causing delays at bus stops and reducing the overall passenger travel experience [35].
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Moreover, the incorporation of EBs into the power grid may potentially give rise
to negative effects on the electricity power system due to their unique characteristics
as a new type of large load. The uncoordinated charging of EBs may exacerbate load
peak–valley disparities, cause voltage drops in specific busbars, accelerate line losses, and
potentially lead to transformer overloads [36,37]. According to reports, uncoordinated
charging of electric vehicles will lead to an increase of 153 million kilowatts in peak load
for the State Grid by 2030, equivalent to around 11% of the regional peak load that year.
In local distribution networks, when the proportion of private vehicles electrified exceeds
50% and the simultaneous charging rate exceeds 20%, most distribution transformers will
face overload risks [38]. Furthermore, charging efficiency stands out as a continual and
significant concern for transit agencies due to the substantial portion of electricity costs
incurred in their operational expenses [39]. The implementation of suboptimal charging
scheduling can lead to avoidable financial burdens for bus companies. Reports suggest
that during peak hours of electricity energy utilization, electricity costs are projected to
rise by 75.2% due to the impact of excessive charging practices [40]. As a result, numerous
researchers have devoted their efforts to devising charging scheduling schemes under
time-of-use (TOU) electricity pricing to balance the grid side and transit agency side [40,41].
In these schemes, the day is partitioned into multiple periods, and electricity consumption
is billed differently for each period. Higher costs are incurred during on-peak load periods,
while lower costs are applied during off-peak load periods. The underlying intention is
to encourage EBs to charge during periods of low-priced electricity, effectively achieving
the objective of “peak shaving and valley filling” for the power grid [42,43]. Existing
research has validated the effectiveness of time-of-use (TOU) electricity pricing [44–46].
For instance, Zhang et al. [47] integrated TOU pricing into the EB scheduling optimization
and conducted field applications in Nanjing, China, and the results indicated that it was
possible to achieve a substantial reduction in operational costs, with savings of up to 22%.

This paper introduces a novel bus replacement strategy for electric bus charging
scheduling systems aimed at minimizing the overall costs associated with vehicle schedul-
ing and electricity energy usage. When an in-service electric bus (EB) faces power insuffi-
ciency, a standby EB stationed at the nearby charging station is dispatched to replace this
in-service bus at a designated bus stop. Passengers then transfer to the standby bus to
complete their journey. The replaced bus proceeds to the charging station and transitions
into the status of “standby bus” after recharging. It is worth noting that the bus substitution
strategy was first proposed by the Champaign-Urbana Mass Transit District (CUMTD), a
public transportation agency in the United States. They utilize this strategy to mitigate the
occurrence of “bus bunching” by dispatching a standby bus to take over the late buses’
driving tasks, and the late bus should continue the rest of its driving trip as well [48,49]. In
this study, we introduce a novel bus replacement management approach aimed at replacing
low-battery in-service buses with standby buses. Unlike the previously mentioned bus
substitution strategy, the replaced bus is directed to a charging station to be recharged
and then designated as another standby bus, instead of continuing to operate along its
initial bus route. Furthermore, this paper presents a more comprehensive model capable of
handling electric bus systems with multiple bus lines. The proposed model optimizes bus
charging schedules by leveraging a time-of-use electricity pricing policy, effectively miti-
gating the adverse impact on the electrical grid caused by energy consumption. A fleet of
standby buses, equipped with varying power levels, is dynamically dispatched to different
bus lines, thereby further reducing the demand for electricity during peak periods. This
approach contributes to more efficient and cost-effective electric bus operations, providing
a practical solution for integrated multi-line electric bus systems within the grid.

The remainder of this paper is organized as follows. In Section 2, we present an
overview of the problem and provide an intuitive explanation of the key aspects inves-
tigated in this study. Section 3 presents the formulation of an electric bus charging and
scheduling model under bus replacement management considering the time-of-use elec-
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tricity pricing policy. Section 4 solves the model. Section 5 verifies and analyzes the
effectiveness of the model. Section 6 concludes this paper.

2. Problem Description

Figure 1 illustrates the dynamic bus fleet allocation and scheduling plan under the
replacement strategy. We divide the daytime operation horizon into multiple homogeneous
slots. Let T = {t : t = t1, t2, · · · , tmax} denote the set of all time slots. Electric bus fleets can be
dynamically utilized to provide regular service or serve as standby buses. In each time slot, t,
electric bus fleets can be dispatched flexibly among a set of bus lines and available charging
stations/depots. The bus line set is denoted by N = {n : n = 1, 2, · · · , N}, and the charging
station set is denoted by P = {p : p = p1, p2, · · · , Pmax}. Let I = {i : i = 1, 2, · · · , In} denote
operating buses driving on bus line n ∈ N. Let K = {k : k = 1, 2, · · · , Kmax} denote the set
of all standby EBs, where Kmax is the total number of available standby buses.

Figure 1. The bus replacement management.

In Figure 1, a spatiotemporal three-dimensional graph illustrates the trajectory of EBs.
The in-service bus with insufficient power and the charging stations are represented by
red circles and blue rectangles, respectively. The driving trajectory of the standby bus,
k ∈ K, is denoted by solid lines with arrows. For example, the standby bus k departs from
the charging station p2 and advances to a designated bus stop on line A to take over the
in-service bus during a time slot t1. Then, the replaced bus will substitute standby bus k
and drive to the nearby charging station p1 to replenish energy. In the next time slot, t2,
recharged bus k continues to take over another in-service bus on line B.

The bus replacement management depicted in Figure 1 primarily focuses on the
scheduling cost of EBs while ignoring their charging costs. The charging system of EBs is
illustrated in Figure 2. As depicted in Figure 2, the omission of electricity costs can lead
to disorderly charging in the electric bus system, resulting in avoidable and expensive
electricity expenditures. In the scenario of disordered charging, a higher number of vehicles
tend to charge during peak hours, leading to instances of “buses waiting for electricity”.
Conversely, during off-peak hours, there are fewer charging vehicles, leading to instances
of “electricity waiting for buses”. To address this issue, we propose the implementation of
a time-of-use policy that incentivizes buses to charge during low-priced electricity periods,
specifically during off-peak hours, through well-considered charging scheduling decisions.
The optimization goal is to achieve “peak shaving and valley filling” for the power company,
thereby reducing electricity costs for electric bus (EB) systems.
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Figure 2. The charging system of EBs.

The primary theoretical challenges in the electric bus charging scheduling system
under dynamic replacement strategies can be summarized as follows:

(i) Optimizing the charging plan involves considering the TOU policy to minimize the
total electricity cost while promoting peak shaving and valley filling for the power grid.
This involves deciding when, where, and how long each bus should be charged [50,51].

(ii) Making appropriate bus replacement decisions and replaced bus repositioning
decisions to minimize the total scheduling cost [48,49].

(iii) Dynamically allocating buses with different electricity power levels to multiple
bus lines to minimize the overall system cost [28,29].

3. Model Formulation

This paper establishes an electric bus scheduling optimization model under the bus
replacement strategy by considering TOU electricity prices. The objectives of the model are
to minimize the weighted sum of total scheduling and electricity costs. The decision vari-
ables include the dispatch plan of standby buses (i.e., determining the routes from charging
stations to specific bus stops), the charging schedule of in-service buses (i.e., identifying the
routes from bus stops to charging stations), and the charging plans of each bus at charging
stations (i.e., specifying when, where, and how long each bus should be charged).

3.1. Model Constraints

This paper discusses different constraints for establishing this model, as follows.

3.1.1. The Bus Replacement Strategy

This paper divides the EB’s operating time horizon [ts, te] into multiple time slots of
equal length. The set of time slots is denoted by T = {t : t = t1, t2, · · · , tmax}. Equation (1)
determines the number of all time slots according to the start time and end time of the
operating hours. During the operation period, each bus departs strictly according to its
predetermined departure timetable. The set of operating trips for a bus (n, i) is represented
by {l : l = 1, 2, · · · , Ln,i}, where Ln,i represents its last trip during daytime operation. The
set of bus stops along the line i is denoted by {j : j = 1, 2, · · · , Jn}, where Jn represents
the maximum number of bus stops on line i. Under bus replacement management, the
bus company needs to dispatch standby buses to designated stops to take over in-service
buses with insufficient electricity power. If the standby bus arrives too early, it will cause
unnecessary waste of vehicle resources; if it arrives too late, passengers will have to wait
too long and have a bad ride experience. A penalty factor, c2, is introduced to ensure
standby buses arrive as “on time” as possible. The time penalty for bus arrival is shown in
Equation (2), where kn,i,l,j represents the period when the bus arrives at different bus stops,
and it can be computed by Equation (3). After replacement, in-service buses are required to
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return to nearby charging stations for recharging, as defined by Equation (4). Equation (5)
represents the service radius constraint for the charging stations.

|T| = int⌈(te − ts)/∆⌉, (1)

ω
p,k,t
n,i,l,j =

∣∣∣[t − (kn,i,l,j − 1)]
∣∣∣αp,k,t

n,i,l,j, ∀n ∈ N, i ∈ {1, 2, · · · , In}, l ∈ {1, 2, · · · , Ln,i}, j ∈ {1, 2, · · · , Jn}, p ∈ P, k ∈ K, t ∈ T (2)

kn,i,l,j = int
⌈
tn,i,l + ln,j/v

⌉
, ∀n ∈ N, i ∈ {1, 2, · · · , In}, l ∈ {1, 2, · · · , Ln,i}, j ∈ {1, 2, · · · , Jn} (3)

∑
p∈P

β
p,k,t+1
n,i,l,j = ∑

p∈P
α

p,k,t
n,i,l,j, ∀n ∈ N, i ∈ {1, 2, · · · , In}, l ∈ {1, 2, · · · , Ln,i}, j ∈ {1, 2, · · · , Jn}, t ∈ {1, 2, · · · , Tmax − 1} (4)

lp
i,jβ

p,k,t
n,i,l,j ≤ β

p,k,t
n,i,l,jRp, ∀n ∈ N, i ∈ {1, 2, · · · , In}, l ∈ {1, 2, · · · , Ln,i}, j ∈ {1, 2, · · · , Jn}, p ∈ P, k ∈ K, t ∈ T (5)

In Equation (1), int⌈·⌉ represents the ceiling function, ts and te represent the start
and end times of daytime operation, respectively, and ∆ denotes the length of each time
slot/window. In Equation (2), ω

p,k,t
n,i,l,j represents the delay/advance time of standby bus k

leaving from the charging station p and arriving at bus stop j to take over the in-service bus
(n, i, l). α

p,k,t
n,i,l,j is a binary variable, and α

p,k,t
n,i,l,j = 1 indicates that standby bus k driving from

station p will replace bus (n, i, l) in time slot t; otherwise, α
p,k,t
n,i,l,j = 0. Please note that the

notation bus (n, i, l) refers to the ith bus on line n, which is currently executing its lth driving
task. In Equation (3), tn,i,l represents the departure time of bus (n, i, l), ln,j represents the
distance from the starting bus stop to the jth stop on line n, and v is the average driving
speed of EBs. In Equation (4), β

p,k,t
n,i,l,j is a binary variable, and β

p,k,t
n,i,l,j = 1 indicates that the

in-service bus (n, i, l) will proceed to charging station p after being replaced by the kth

standby bus in time slot t; otherwise, β
p,k,t
n,i,l,j = 0. In Equation (5), lp

n,j represents the distance

between the jth stop on line i and the charging station p, and Rp denotes the service radius
of the charging station p.

3.1.2. Scheduling Optimization for Standby Buses

Based on the aforementioned bus replacement management approach, standby buses
are dynamically assigned between multiple charging stations and scheduled bus stops on
different routes. The dispatching scheme for standby buses is formulated as
Equations (8) and (9). We enforce the regulation that the replaced bus must return to
a nearby charging station within the current time window after completing the replace-
ment task, as specified by Equations (6) and (7). Standby buses that are not engaged in
replacement tasks will remain at the current charging station, ready for deployment, as
shown in Equation (10). Equation (11) imposes the constraint that each standby bus can
only serve one in-service charging bus during a given time slot.

∑p∈P τp,k,t = 1, ∀k ∈ K, t ∈ T, (6)

∑
p∈P

∑
t∈T

τp,k,t = Kmax, ∀k ∈ K (7)

τp,k,t = τp,k,t−1, i f ∑
n∈N

In

∑
i=1

Ln,i

∑
l=1

Jn

∑
j=1

α
p,k,t
n,i,l,j + ∑

n∈N

In

∑
i=1

Ln,i

∑
l=1

Jn

∑
j=1

β
p,k,t
n,i,l,j = 0, ∀p ∈ P, k ∈ K, t ∈ {2, 3, · · · , Tmax} (8)

∑
n∈N

In

∑
i=1

Ln,i

∑
l=1

Jn

∑
j=1

α
p,k,t
n,i,l,j ≤ τp,k,t, ∀p ∈ P, k ∈ K, t ∈ T (9)
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∑
n∈N

In

∑
i=1

Ln,i

∑
l=1

Jn

∑
j=1

β
p,k,t
n,i,l,j ≤ τp,k,t, ∀p ∈ P, k ∈ K, t ∈ T (10)

∑
n∈N

In

∑
i=1

Ln,i

∑
l=1

Jn

∑
j=1

α
p,k,t
n,i,l,j + ∑

n∈N

In

∑
i=1

Ln,i

∑
l=1

Jn

∑
j=1

β
p,k,t
n,i,l,j ≤ 1, ∀p ∈ P, k ∈ K, t ∈ T (11)

In Equation (6), τp,k,t is a binary variable, and τp,k,t = 1 denotes that standby bus k is
located at charging station p during time window t; otherwise, τp,k,t = 0. In Equation (7),
Kmax represents the number of available standby buses.

3.1.3. Updating the Remaining Battery Energy for In-Service Buses

Equation (12) is utilized to compute the remaining power of buses at the initiation
of their first trip after departing from depots. Subsequently, Equation (13) updates the
remaining power of buses when they embark on the next service trip. For an electric bus
(EB), a service trip encompasses the process of departing from the initial stop, travelling
to the terminal, and returning to the departure stop. Notably, the battery power of in-
service buses is influenced by the bus replacement strategy. Equation (14) calculates the
remaining power of an in-service bus in situations where no replacement occurs during its
current trip. Conversely, if replacement does take place, its remaining power is exchanged
with that of the corresponding standby bus, as described in Equation (15). The power
fluctuation of the on-board battery during operation is represented by the state of charge
(SOC), which is computed according to the method presented in Equation (16). To mitigate
battery depreciation and prevent over-discharge, a safety threshold [Smin, Smax] is defined
for battery SOC during scheduling, as expressed in Equation (17). The upper and lower
bounds of SOC (%) are denoted by Smin and Smax, respectively.

En,i,1,1 = E0 − Fn,i, ∀n ∈ N, i ∈ {1, 2, · · · , In}, (12)

En,i,l+1,1 = En,i,l,Ji
, ∀n ∈ N, i ∈ {1, 2, · · · , In}, l ∈ {1, 2, · · · , Ln,i − 1} (13)

τp,k,t = τp,k,t−1, i f ∑
n∈N

In

∑
i=1

Ln,i

∑
l=1

Jn

∑
j=1

α
p,k,t
n,i,l,j + ∑

n∈N

In

∑
i=1

Ln,i

∑
l=1

Jn

∑
j=1

β
p,k,t
n,i,l,j = 0, ∀p ∈ P, k ∈ K, t ∈ {2, 3, · · · , Tmax} (14)

En,i,l,j = Gp,k,t − ρlp
n,j, i f α

p,k,t
n,i,l,j = 1, ∀n ∈ N, i ∈ {1, 2, · · · , In}, l ∈ {1, 2, · · · , Ln,i}, j ∈ {1, 2, · · · , Jn}, p ∈ P, k ∈ K, t ∈ T (15)

Sn,i,l,j = En,i,l,j/E0 × 100%, ∀n ∈ N, i ∈ {1, 2, · · · , In}, l ∈ {1, 2, · · · , Ln,i}, j ∈ {1, 2, · · · , Jn} (16)

Smin ≤ Sn,i,l,j ≤ Smax, ∀n ∈ N, i ∈ {1, 2, · · · , In}, l ∈ {1, 2, · · · , Ln,i}, j ∈ {1, 2, · · · , Jn} (17)

In Equation (12), E0 denotes the battery capacity, Fn,i represents the average energy
consumption for bus (n, i) driving from the depot to its starting bus stop, and En,i,1,1 repre-
sents the initial power of bus (n, i) when it begins to perform the first trip. In Equation (13),
En,i,l,1 represents the initial power of bus (n, i) when it begins to perform the lth trip. In
Equation (14), En,i,l,j represents the remaining power of bus (n, i, l) when it arrives at the
jth bus stop, and en,j represents the average energy consumption for a bus driving from
the starting stop to the jth stop. In Equation (15), Gp,k,t represents the remaining power of
standby bus k that stayed at charging station p in time window t. ρ denotes the energy
consumption rate of EBs per unit distance. In Equation (16), Sn,i,l,j represents the state of
charge (SOC value) of bus (n, i, l) when it arrives at the jth bus stop.

3.1.4. Updating the Remaining Battery Energy for Standby Buses

When a standby bus remains at a charging station without replacing other buses, its re-
maining power is updated based on the duration of charging, as presented in Equation (18).
However, if the standby bus does execute a replacement task, its remaining power will
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be exchanged with that of the in-service bus being replaced, as indicated in Equation (19).
Similarly, the state of charge (SOC) value of standby buses should also be maintained
within a specific safe threshold, as depicted in Equations (20) and (21).

Gp,k,t = En,i,l,j−1 − en,j − ρlp
n,j, i f β

p,k,t
n,i,l,j = 1, ∀n ∈ N, i ∈ {1, 2, · · · , In}, l ∈ {1, 2, · · · , Ln,i}, j ∈ {1, 2, · · · , Jn}, p ∈ P, k ∈ K, t ∈ T (18)

Gp,k,t = Gp,k,t−1 + qp,k,t, i f ∑
n∈N

In

∑
i=1

Ln,i

∑
l=1

Jn

∑
j=1

β
p,k,t
n,i,l,j = 0, ∀p ∈ P, k ∈ K, t ∈ {2, 3, · · · , Tmax} (19)

Sp,k,t = Gp,k,t/E0 × 100%, ∀p ∈ P, k ∈ K, t ∈ T (20)

Smin ≤ Sp,k,t ≤ Smax, ∀p ∈ P, k ∈ K, t ∈ T (21)

In Equation (19), qp,k,t denotes the energy replenished by standby bus k at charging
station p within the time slot t. In Equation (20), Sp,k,t represents the SOC value of standby
bus k at charging station p within the time slot t.

3.1.5. Charging Behaviors of Standby Buses under Time-of-Use Electricity Price Policy

The study specifies that the unit charging time of standby vehicles is equivalent to
the duration of a time window. Standby buses can charge continuously in multiple time
windows to attain the required amount of electricity. Equation (22) represents the energy
acquired by a standby bus during a single charging time slot. Importantly, vehicles can
only commence charging upon arrival at a charging station, as presented in Equation (23).
Equations (24) and (25) impose restrictions on standby buses, prohibiting them from charg-
ing while entering or leaving the charging station. Additionally, Equation (26) indicates
that standby buses have the option of being fully charged overnight.

qp,k,t = D·P+·η·Zp,k,t, ∀p ∈ P, k ∈ K, t ∈ T (22)

Zp,k,t ≤ τp,k,t, ∀p ∈ P, k ∈ K, t ∈ T (23)

Zp,k,t ≤ 1 − ∑
n∈N

In

∑
i=1

Ln,i

∑
l=1

Jn

∑
j=1

β
p,k,t
n,i,l,j, ∀p ∈ P, k ∈ K, t ∈ T (24)

Zp,k,t ≤ 1 − ∑
n∈N

In

∑
i=1

Ln,i

∑
l=1

Jn

∑
j=1

α
p,k,t
n,i,l,j, ∀p ∈ P, k ∈ K, t ∈ T (25)

Gp,k,1 = E0τp,k,1, ∀p ∈ P, k ∈ K (26)

In Equation (22), ∆ denotes the length of each time slot, P+ denotes the charging
power of each charger, and η represents the energy conversion rate of each charger. Zp,k,t is
a binary variable, and Zp,k,t = 1 means that the standby bus k at charging station p will be
recharged during the time slot t; otherwise, Zp,k,t = 0.

3.2. Objective Function

The objective function of this model aims to minimize the weighted sum of four costs,
as expressed in Equation (27). The first term represents the electricity energy usage cost,
encompassing the electricity expenditure during daytime opportunity charging and night
top-up charging, as depicted in Equation (28). The second term signifies the dispatching
cost of EBs, as given by Equation (29). The third term represents the passenger costs, the
time penalty cost incurred when standby buses arrive unpunctually at designated bus
stops, as shown in Equation (30). Under the bus replacement strategy, passengers may need
to transfer to another bus to complete their journey. Therefore, the fourth cost represents the
inconvenience imposed on passengers, resulting in transfer costs. It can also be considered
as the subsidy cost borne by the public transportation company for transferring passengers
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due to schedule inconvenience. This subsidy can be implemented by offering discounts on
the next fare for these transfer passengers. Note that the transfer/subsidy cost is quantified
using Equation (31). The remaining battery energy of standby buses and in-service buses
at the end of the daytime operation is denoted by Equations (32) and (33), respectively.
Furthermore, under the time-of-use electricity pricing policy, the unit electricity price is
fixed for each time slot, as specified by the local government, as shown in Equation (34).
Equations (35) and (36) represent the electricity costs for charging buses during daytime
operation and throughout the night, respectively.

min (D + O + U + H) (27)

D = D1 + D2 (28)

O = c1 ∑
n∈N

In

∑
i=1

Ln,i

∑
l=1

Jn

∑
j=1

∑
p∈P

∑
k∈K

∑
t∈T

lp
n,j(α

p,k,t
n,i,l,j + β

p,k,t
n,i,l,j) (29)

U =


c2,1 ∑

n∈N

In

∑
i=1

Ln,i

∑
l=1

Jn

∑
j=1

∑
p∈P

∑
k∈K

∑
t∈T

ω
p,k,t
n,i,l,j , if t ≥ (kn,i,l,j − 1)

c2,2 ∑
n∈N

In

∑
i=1

Ln,i

∑
l=1

Jn

∑
j=1

∑
p∈P

∑
k∈K

∑
t∈T

ω
p,k,t
n,i,l,j, if t < (kn,i,l,j − 1)

(30)

H = c3 ∑
n∈N

In

∑
i=1

Ln,i

∑
l=1

Jn

∑
j=1

∑
p∈P

∑
k∈K

∑
t∈T

α
p,k,t
n,i,l,j hn,i,l,j (31)

Dk = ∑
p∈P

Gp,k,Tmax τp,k,Tmax , k ∈ K (32)

Dn,i = En,i,Ln,i ,Jn − Un,i, ∀n ∈ N, i ∈ {1, 2, · · · , In} (33)

θt =


θl , t ∈ velley hours
θg, t ∈ peak hours
θp, t ∈ f lat hours

(34)

D1 = ∑
p∈P

∑
k∈K

∑
t∈T

θtqp,k,t (35)

D2 = θl(∑
k∈K

Dk + ∑
n∈N

In

∑
i=1

Dn,i) (36)

In Equation (29), c1 represents the dispatch cost per unit distance for EBs. In
Equation (30), c2,1 and c2,2 represent the penalty cost per unit of time for buses arriv-
ing late and early at the takeover locations, respectively. In Equation (31), c3 denotes
the unit transfer/subsidy cost per transferred passenger, and hn,i,l,j denotes the average
onboard passengers at the jth stop. In Equation (32), Dk denotes the remaining energy of
the standby bus at the end of daytime operation. In Equation (33), En,i,Ln,i ,Jn represents
the remaining power of the EB after completing all driving tasks, and Un,i represents the
average energy consumption of an EB (n, i) on the trip from the ending bus stop to the
depot. In Equation (34), θl , θg, and θp represent the unit electricity prices during valley
hours, peak hours, and flat hours, respectively, and θt is the unit electricity prices within
time window t.

4. Model Linearization and Solution

The proposed model poses a mixed-integer nonlinear problem (MINLP). The non-
linear constraints primarily include: (i) Equation (2) contains the absolute-value function,



Sustainability 2024, 16, 3334 10 of 19

while Equations (8), (14), (15), (18), and (19) comprise “if” statements, and (ii) Equation (32)
represents the product of multiple binary variables. However, the remaining constraints
and objective functions are linear formulas. In this section, we aim to linearize the afore-
mentioned nonlinear formulas while preserving the original equations’ logic and meaning.

Equation (2) contains the absolute-value function that can be linearized by introducing
binary variables θ

p,k,t
n,i,l,j and ϑ

p,k,t
n,i,l,j, as shown in Equations (37)–(39). Here, θ

p,k,t
n,i,l,j is a binary

variable, and θ
p,k,t
n,i,l,j = 1 means that the in-service bus (n, i, l) arrives at the designated stop

j first and waits to be replaced by standby bus k departing from charging station p in time
slot t; otherwise, θ

p,k,t
n,i,l,j = 0. ϑ

p,k,t
n,i,l,j is a binary variable, and ϑ

p,k,t
n,i,l,j = 1 means that standby

bus k departing from charging station p arrives at the designated stop j in advance to take
over the in-service bus (n, i, l) in time slot t.

ω
p,k,t
n,i,l,j ≥ 0, ∀n ∈ N, i ∈ {1, 2, · · · , In}, l ∈ {1, 2, · · · , Ln,i}, j ∈ {1, 2, · · · , Jn}, p ∈ P, k ∈ K, t ∈ T (37)

θ
p,k,t
n,i,l,j + ϑ

p,k,t
n,i,l,j = α

p,k,t
n,i,l,j, ∀n ∈ N, i ∈ {1, 2, · · · , In}, l ∈ {1, 2, · · · , Ln,i}, j ∈ {1, 2, · · · , Jn}, p ∈ P, k ∈ K, t ∈ T (38)

ω
p,k,t
n,i,l,j = [t − (kn,i,l,j − 1)]θp,k,t

n,i,l,j + [(kn,i,l,j − 1)− t](1 − ϑ
p,k,t
n,i,l,j), ∀n ∈ N, i

∈ {1, 2, · · · , In}, l ∈ {1, 2, · · · , Ln,i}, j ∈ {1, 2, · · · , Jn}, p ∈ P, k ∈ K, t
∈ T

(39)

Equation (8) contains the “if” statement, which is nonlinear. To linearize this equa-
tion, we can introduce a large positive number to relax the constraint, as shown in
Equations (40) and (41):

τp,k,t − τp,k,t−1 ≤ M ∑
n∈N

In

∑
i=1

Ln,i

∑
l=1

Jn

∑
j=1

α
p,k,t
n,i,l,j + M ∑

n∈N

In

∑
i=1

Ln,i

∑
l=1

Jn

∑
j=1

β
p,k,t
n,i,l,j, ∀p ∈ P, k ∈ K, t ∈ {2, 3, · · · , Tmax} (40)

−M ∑
n∈N

In

∑
i=1

Ln,i

∑
l=1

Jn

∑
j=1

α
p,k,t
n,i,l,j − M ∑

n∈N

In

∑
i=1

Ln,i

∑
l=1

Jn

∑
j=1

β
p,k,t
n,i,l,j ≤ τp,k,t − τp,k,t−1, ∀p ∈ P, k ∈ K, t ∈ {2, 3, · · · , Tmax} (41)

Similarly, Equations (14), (15), (18), and (19) can be linearized as Equations (42)–(43),
(44)–(45), (46)–(47), and (48)–(49), respectively:

En,i,l,j − (En,i,l,j−1 − ei,j) ≤ M ∑
p∈P

∑
k∈K

∑
t∈T

α
p,k,t
n,i,l,j, ∀n ∈ N, i ∈ {1, 2, · · · , In}, l ∈ {1, 2, · · · , Ln,i}, j ∈ {1, 2, · · · , Jn} (42)

−M ∑
p∈P

∑
k∈K

∑
t∈T

α
p,k,t
n,i,l,j ≤ En,i,l,j − (En,i,l,j−1 − ei,j), ∀n ∈ N, i ∈ {1, 2, · · · , In}, l ∈ {1, 2, · · · , Ln,i}, j ∈ {1, 2, · · · , Jn} (43)

En,i,l,j − (Gp,k,t − ρlp
n,j) ≤ M(1 − α

p,k,t
n,i,l,j), ∀n ∈ N, i ∈ {1, 2, · · · , In}, l ∈ {1, 2, · · · , Ln,i}, j ∈ {1, 2, · · · , Jn}, ∀p ∈ P, k ∈ K, t ∈ T (44)

M(1 − α
p,k,t
n,i,l,j) ≤ En,i,l,j − (Gp,k,t − ρlp

n,j), ∀n ∈ N, i ∈ {1, 2, · · · , In}, l ∈ {1, 2, · · · , Ln,i}, j ∈ {1, 2, · · · , Jn}, ∀p ∈ P, k ∈ K, t ∈ T (45)

Gp,k,t − (En,i,l,j−1 − en,j − ρlp
n,j) ≤ M(1 − β

p,k,t
n,i,l,j), ∀n ∈ N, i ∈ {1, 2, · · · , In}, l

∈ {1, 2, · · · , Ln,i}, j ∈ {1, 2, · · · , Jn}, p ∈ P, k ∈ K, t ∈ T
(46)

−M(1 − β
p,k,t
n,i,l,j) ≤ Gp,k,t − (En,i,l,j−1 − en,j − ρlp

n,j), ∀n ∈ N, i ∈ {1, 2, · · · , In}, l
∈ {1, 2, · · · , Ln,i}, j ∈ {1, 2, · · · , Jn}, p ∈ P, k ∈ K, t ∈ T

(47)

Gp,k,t − (Gp,k,t−1 + qp,k,t) ≤ M ∑
n∈N

In

∑
i=1

Ln,i

∑
l=1

Jn

∑
j=1

β
p,k,t
n,i,l,j, ∀p ∈ P, k ∈ K, t ∈ {2, 3, · · · , Tmax} (48)
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−M ∑
n∈N

In

∑
i=1

Ln,i

∑
l=1

Jn

∑
j=1

β
p,k,t
n,i,l,j ≤ Gp,k,t − (Gp,k,t−1 + qp,k,t), ∀p ∈ P, k ∈ K, t ∈ {2, 3, · · · , Tmax} (49)

In constraint (32), Gp,k,Tmax and τp,k,Tmax are binary variables. The multiplication of
two variables is nonlinear, and to linearize it, we can introduce the real variable Qp,k,Tmax

and the large positive number M, as presented in Equations (50)–(53). When τp,k,Tmax = 1,
Qp,k,Tmax = Gp,k,Tmax holds true; otherwise, Qp,k,Tmax = 0 is satisfied. This representation is
equivalent to Equation (32). Here, Qp,k,Tmax denotes the remaining battery power of standby
bus k at charging station p when daytime operation ends, i.e., at time t = Tmax.

Qp,k,Tmax ≤ Gp,k,Tmax + M(1 − τp,k,Tmax ), ∀p ∈ P, k ∈ K (50)

Gp,k,Tmax − M(1 − τp,k,Tmax ) ≤ Qp,k,Tmax , ∀p ∈ P, k ∈ K (51)

0 ≤ Qp,k,Tmax ≤ Mτp,k,Tmax , ∀p ∈ P, k ∈ K (52)

Dk = ∑
p∈P

Qp,k,Tmax , ∀k ∈ K (53)

After the linearization process, the proposed model is transformed into a standard
mixed-integer linear programming problem (MILP), formulated as follows:

The objective function: min (D + O + U).
Decision variables: α

p,k,t
n,i,l,j, β

p,k,t
n,i,l,j, Zp,k,t.

Constraints: Equations (3)–(7), (16), (17), (20)–(31), and (33)–(53).
For the case study, we implement the model using a mathematical programming

language (AMPL) and utilize the GUROBI MILP solver to obtain the optimal solution.

5. Model Validation
5.1. Parameter Inputs

A case study was conducted in Changsha, China, which focused on four bus lines:
Line 134, Line 105, Line 107, and Line 23, referred to as “Line A” to “Line D”, respectively.
The study period was during the peak hour from 6:00 to 7:00. According to the predeter-
mined timetable, each line will have a total of five buses departing during the study period.
Each bus is numbered based on its departure order. In this context, a service trip is defined
as a process that begins from the departure station, travels to the terminal, and then returns
to the departure station. Therefore, we define Ji(i ∈ I) as the sum of all stops along a loop
trip, where JA = 102, JB = 82, JC = 74, and JD = 68. To ensure that standby vehicles arrive
on time during the optimal period, we set the penalty coefficients for early and late arrivals
to very large positive integers. It is worth noting that for further investigation into the
impact of standby vehicle arrival times on the charging schedule, the values of the unit
time costs for early and late arrivals can be referenced from [52,53]. The parameter inputs
for this case study are summarized in Table 1. The distribution of charging stations and
bus lines is illustrated in Figure 3.

The proposed model was implemented using AMPL and comprised 4423 variables
and 9850 constraints. The laptop used for solving the model has the Win10 64-bit operating
system, an 11th Gen Intel(R) Core(TM) i5-11300H @3.10 GHz 2.61 GHz processor, and
16 GB memory. The optimization results were obtained in approximately 3 h and 43 min.
Considering the static nature of the problem under investigation in this paper, the authors
assumed that longer solution times are deemed acceptable in pursuit of achieving the
optimal solution. However, if there arises a requirement to expedite the solution process,
one could opt for obtaining suboptimal solutions by imposing a predefined time limit on
the optimization procedure. Moreover, intelligent algorithms, such as genetic algorithms
or particle swarm optimization, can be harnessed to acquire feasible solutions.
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Table 1. The parameter inputs.

The average driving speed of EBs, v/[km/h] 25 Starting time of bus operation hours, ts 6:00
The dispatch cost per unit distance for EBs, c1/[yuan/km] 1 Ending time of bus operation hours, te 22:30
The upper bounds of SOC, Smin 0.2 The length of unit time window, ∆/[h] 1
The lower bounds of SOC, Smax 1 Battery capacity, E0/[kW·h] 200
The penalty cost per unit time for buses arriving early (or late) at the
takeover locations, c2,1 (or c2,2)/[yuan/h] 250/500 Service radius of charging station,

Rp/[km] 1.5

Unit transfer/subsidy cost, c3/[yuan/passenger] 0.5
The energy consumption rate per unit distance, ρ/[kW·h/km] 1.2 A large position, M 100,000

The energy conversion rate of each charger, η/[%] 90 The charging power of each charger,
P+/[kW·h] 70

Peak hours 6:00~12:00, 6:00~21:00
Flat hours 12:00~17:00
Valley hours 21:00~24:00, 0:00~6:00
Unit electricity prices during peak hours, θg/[yuan/kW·h] 1
Unit electricity prices during flat hours, θp/[yuan/kW·h] 0.6
Unit electricity prices during valley hours, θl/[yaun/kW·h] 0.3

Figure 3. The distribution of charging stations and bus lines.

5.2. Results’ Analysis and Evaluation

The results of various costs based on the aforementioned parameters are summarized
in Table 2. Additionally, Figure 4 presents the scheduling distance for standby buses while
travelling between charging stations and designated bus stops, and Figure 5 displays the
number of bus replacements and the charging times of standby buses.

Table 2. The results of various costs.

Bus
Line

Total Scheduling
Distance (km)

Punishment for
Unpunctual Arrival
(Yuan)

Electricity
Cost in Peak
Hours (Yuan)

Electricity
Cost in Flat
Hours (Yuan)

Electricity
Cost in Valley
Hours (Yuan)

Total Electricity
Cost
(Yuan)

Transfer/
Subsidy
Cost (Yuan)

Total
Cost
(Yuan)

A 8.16 0 0 0 279.64 279.64 35.5 323.3
B 4.653 0 0 0 266.31 266.31 40.12 311.07
C 11.263 0 0 37.8 229.60 267.40 41.53 320.21
D 12.736 0 0 0 323.96 323.96 35.86 372.57
Total 36.812 0 0 37.8 1099.53 1137.33 153.01 1327.16
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Figure 4. The scheduling distance of standby buses.

Figure 5. The number of bus replacements and charging times of standby buses.

From Table 2, several key observations can be summarized:
(i) The electricity cost for charging buses constituted over 90% of the total cost. During

peak hours, flat hours, and valley hours, the electricity costs amounted to 0 yuan, 37.8 yuan,
and 1099.53 yuan, respectively, accounting for 0%, 3.32%, and 96.68% of the total electricity
cost. This highlights the model’s effectiveness in achieving cost-efficient charging practices.

(ii) The timely arrival of standby vehicles at designated bus stops is ensured due to
the high penalties associated with early or late arrivals per unit time. This ensures the
turnover efficiency of standby buses and the operational reliability, particularly punctuality,
of in-service buses.

(iii) The transfer/subsidy cost associated with passengers’ transfers constituted ap-
proximately 11.53% of the total expenditure. The forthcoming model comparison will
further investigate the transfer/subsidy costs incurred under the bus replacement strategy
and the concurrent reduction in electricity costs resulting from the implementation of
TOU policies.

(iv) The total scheduling cost of standby vehicles was minimal, representing only
3.14% of the total cost. Constrained by the service radius of the charging station, standby
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vehicles undergo short dispatching distances, ranging from 377 m to 1196 m, and arrive at
designated bus stops within brief durations, as depicted in Figure 4.

As depicted in Figure 5, the analysis revealed the following observations:
(i) The total number of bus replacements reached 23 occurrences, with a peak uti-

lization rate of 4 vehicles per hour for standby buses. On average, each of the 4 standby
buses provided service for 5.7 instances per vehicle, accounting for 40.7% of the maximum
daily service capacity. These findings highlight the remarkable utilization rates of standby
buses, suggesting that a modest number of such buses can efficiently meet the considerable
demands for replacements.

(ii) It was observed that only one standby bus was involved in a charging event,
indicating that standby buses can be utilized as energy storage to provide power for
operating buses during daytime hours.

According to bus company regulations, each bus route is normally equipped with
1–2 standby buses, intended to address contingencies, such as power failures during bus
operations or adverse weather conditions, including heavy rain or snow. Based on the
case study findings, all replacement assignments were efficiently handled by deploying
the existing standby buses across lines A, B, C, and D, rendering additional investments in
standby buses unnecessary.

5.3. Model Comparison

In this study, we evaluated the charging scheduling efficiency of the proposed deci-
sion methods, which included bus charging scheduling under bus replacement strategies
considering the TOU electricity policy, denoted as BRS-TOU, and bus charging scheduling
under bus replacement strategies without the TOU policy, denoted as BRS. For comparison
purposes, we also considered two additional methods: regular charging scheduling consid-
ering the TOU policy, denoted as RCS-TOU, and regular charging scheduling without the
TOU policy, denoted as RCS.

It is important to note that regular charging scheduling refers to the practice of vehicles
driving into a nearby charging station for recharging, as long as they are not serving
passengers. The four methods mentioned above were compared to assess their effectiveness
in optimizing the charging schedules for EBs in the context of bus replacement strategies
and the TOU electricity pricing policy.

Figure 6 presents a schematic diagram illustrating the charging power and the corre-
sponding time-of-use electricity prices under the four schemes. The charging plans under
these methods demonstrated notable differences. The proposed scheme, BRS-TOU, exhib-
ited the most favorable charging benefits, as only one standby bus was charged during
the daytime flat period. This implies that standby buses effectively balanced the charging
requirements of vehicles on different lines through dynamic bus replacement, thereby
reducing the overall daytime charging load.

Figure 6. Cont.
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Figure 6. The charging power and the corresponding time-of-use electricity price.

Conversely, in the absence of considering the time-of-use electricity price, the proba-
bility of buses charging randomly during the day increased, resulting in a higher charging
demand and significant fluctuations in charging power during peak periods. This highlights
the importance of incorporating the TOU policy in the charging scheduling optimization to
achieve more efficient and cost-effective charging plans for EBs.

Figure 7 presents the electricity cost of charging buses and the amount of recharged
power under different methods. The results show that the proposed BRS-TOU method
achieved the lowest electricity cost, with 98% of the charging process concentrated dur-
ing the night valley period. When compared to the BRS method, the BRS-TOU method
increased the amount of recharged power during the night valley period by 11%, while
reducing it by 2% and 9% during the daytime peak and flat periods, respectively. Under
TOU electricity pricing, the standby bus tended to charge during periods of low electricity
demand, whereas the in-service bus preferred to maintain vehicles at a low level of SOC
when finishing daytime operations. This optimization led to a total decrease of 13% in
electricity costs, indicating the high economic efficiency of the optimized charging schemes
under the time-of-use electricity pricing strategy.

Figure 7. The electricity cost and the amount of recharged power.

Furthermore, compared with the RCS-TOU method, the bus replacement strategy
effectively utilized standby buses as energy storage devices to supplement the energy
power of in-service buses, resulting in a 21% reduction in daytime electricity demand
and a total electricity cost reduction of 25.27%. This highlights the effectiveness of the
bus replacement strategy proposed in this paper. In comparison to the RCS method, the
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BRS-TOU method achieved a remarkable 33.29% reduction in total electricity costs. This
demonstrates the synergistic effect of the bus replacement strategy and time-of-use policy
in dynamically allocating electricity power to operating buses on multiple lines, jointly
reducing the overall system cost. Specifically, standby buses, acting as energy storage
devices, can respond to the time-of-use (TOU) pricing strategies by storing energy during
off-peak periods. Then, through the bus replacement strategy, standby buses can serve
as mobile power sources, flexibly scheduled across multiple routes, thereby utilizing the
energy stored during off-peak periods for charging needs during peak periods.

Additionally, in comparison to the RCS-TOU strategy, the proposed model resulted in
a transfer/subsidy cost of 153.01 yuan, coupled with a substantial reduction in electricity
expenses amounting to 348.61 yuan. These findings indicate that the considerable savings
achieved in electricity costs effectively offset the potential transfer/subsidy costs incurred
for transferred passengers.

6. Conclusions

This paper presented an innovative bus replacement strategy to address the challenges
in electric bus charging scheduling. The strategy involves the dynamic dispatch of standby
EBs from nearby charging stations to replace in-service buses with insufficient power at
designated bus stops. Passengers transfer to the standby buses to complete their journeys,
while the replaced buses proceed to the charging station and become “standby buses”
after being recharged. This proposed model is capable of dynamically assigning standby
buses to different bus lines using bus replacement strategies, resulting in peak shaving and
valley filling of the electrical system without compromising on vehicle scheduling efficiency.
Although this strategy increases the cost for standby buses and passengers, its effects on
reducing the system’s charging costs, improving scheduling efficiency, and balancing the
electrical load are more significant, which is sustainable in the long term.

To address this problem effectively, this study first established a model to describe the
state of electric bus operations. Then, an electric bus scheduling optimization model was
developed under the bus replacement strategy, considering constraints such as time-of-use
electricity prices, remaining battery power, and the number of available standby buses.
The objective was to minimize the weighted sum of total scheduling and electricity costs.
The optimization variables included the dispatch plan of standby buses (i.e., determining
the routes from charging stations to specific bus stops), the charging schedule of in-service
buses (i.e., identifying the routes from bus stops to charging stations), and the charging
plans of each bus at charging stations (i.e., specifying when, where, and how long each bus
should be charged).

In the case study, it was revealed that (i) bus replacement strategies can dynamically
allocate EBs with different power levels to multiple bus lines, resulting in a substantial
25.27% reduction in charging costs. (ii) When considering the time-of-use pricing policy, the
electricity costs were reduced by 33.29% by utilizing standby buses as mobile power sources
during daytime hours. Furthermore, it revealed that the substantial savings attained in
electricity costs can effectively offset the potential transfer/subsidy costs incurred for
transferred passengers. (iii) A modest number of standby buses can efficiently meet the
demands for replacements. For example, based on the case study findings, all replacement
assignments were efficiently handled by deploying the existing standby buses across lines
A, B, C, and D, rendering additional investments in standby buses unnecessary.

During the electrification process of public transportation, the proposed bus replace-
ment strategies offer enhanced flexibility in meeting charging demands across various
periods. This approach not only improved the vehicle charging efficiency but also lowered
the system’s charging costs, which is crucial for promoting the sustainable development of
electric transportation. This paper can be extended in several ways. First, the proposed
model solely quantifies the inconvenience of bus replacement to passengers through the
time cost associated with transferring, without analyzing the degree of user acceptance of
the replacement strategy from the perspective of passenger perception. Therefore, in the
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next step of our research, we will model users’ travel perceptions from the perspective of
user experiences to validate the social application value of the bus replacement strategy.
Second, this study aimed to optimize bus charging schedules within the framework of
TOU electricity pricing and bus replacement strategies. Building on existing research, we
simplified bus scheduling optimization by assuming constant vehicle speeds and energy
consumption rates [22,54]. In the next step, by including more bus lines and conducting
extensive simulations, the robustness and applicability of the proposed model can be
thoroughly tested under various real-world scenarios. Furthermore, this paper utilized a
centralized solving algorithm capable of identifying global optimal solutions but at the
expense of computational speed [55,56]. Moving forward, we aim to explore advanced
optimization algorithms, including decentralized and distributed approaches, to address
the optimization challenges more efficiently [57,58].
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