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Abstract: Lowbush blueberry is a mass-flowering plant species complex that grows in both unman-
aged wild landscapes and managed agricultural fields in northeastern regions of both the USA and
Canada. During pollination, more than 120 native bee species are associated with lowbush blueberry
ecosystems in Maine, USA, in addition to three commercially managed bees. Over a 29-year period,
we sampled 209 lowbush blueberry fields using quadrat and transect sampling, recording both native
bee and honey bee densities, honey bee hive stocking density, and native bees as a proportion of
total bees. These data were used to simulate economic uncertainty in pollination. We developed a
novel algorithm, the Economic Pollinator Level (EPL), to estimate bee densities that economically
warrant pollination investments such as rented hives and planting bee pastures. Statistical modeling
indicated both native bee and honey bee activity density predicted proportion fruit set in fields.
Honey bee activity density was well predicted by hive stocking density. Proportion fruit set ade-
quately predicted yield. EPL was most sensitive to fruit set/m2/bee and less dependent on berry
weight, rented hive stocking density, hive rental cost, lowbush blueberry price, and the annual cost
of planting/maintaining pollinator pastures. EPL can be used to sustainably balance economical
pollination investments/decisions with bee conservation in lowbush blueberry crops and potentially
other pollinator-dependent crops.

Keywords: Apis mellifera (L.); Bombus spp.; cost benefit; economic pollinator level; economics; fruit
set; Maine; Monte Carlo; Vaccinium angustifolium Aiton; yield

1. Introduction
1.1. Bee Pollinator Decline—A Significant Concern

More than a decade ago, concern about the population decline of native bees and honey
bees was brought to public attention globally. This drop in bee numbers is currently a major
phenomenon affecting bee communities and subsequently, pollination worldwide [1–5].
Population decline is occurring in both managed bees such as the Western Honey Bee and
many species of native wild bees. A review of the literature suggests that bee population
decline is due to a lot of interacting factors such as an increase in incidence and/or virulence
of bee diseases due to pathogens and parasites, climate change, pesticide exposure, low
genetic diversity, limited access to forage plant resources due to declines in flowering
landscapes, and altered plant–pollinator networks [3–9].

Some bee population decline is characterized by species extirpations, both local and
regional [4,5,10–15]; although, regional extinctions have been difficult to document [16].
More commonly, there are reductions in the abundance of individual bees from a given
species within a locale or sometimes over a broad geographic region [4,5,7,10,11,14]. Even
the decline in abundance is difficult to prove due to the long-term oscillatory cycles that
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characterize the population dynamics of most bee species [17]. However, most bee experts
consider the decline of bee communities a worldwide phenomenon that has been occurring
over the past three to four decades [3,8,12,13,15]. This has been accompanied by concern
regarding the productivity of both agricultural and natural ecosystems [18,19].

1.2. Economics of Pollination—Not Thoroughly Studied

Given the concern over both commercially managed and wild bee population declines,
several studies have estimated the economic value of both bees and the ecosystem service
value of bee pollination [20–26]. These studies suggest that the economic value of bees
as pollinators often makes them the most significant input (either as a capital investment
or a natural resource) in production of bee-pollinated crops. As an example, in lowbush
blueberry, Asare et al. [26] found that honey bees can be the single most costly production
input. In addition, they estimated that if honey bee rental prices increase by three-fold, high-
input conventional production systems will break even with the currently less profitable
low-input conventional production systems.

Assessment of the economic value of pollinators is challenging because often there is a
mixture of native wild bees along with commercially managed bees, such as honey bees and
bumble bees. This is the case in the two bee-pollinated native crops in northeastern North
America, lowbush blueberry and cranberry [26,27]. In our study system, lowbush blueberry,
native wild bees are more efficient than honey bees [26]. A per bee density increase in native
wild bees results in an increase in fruit set of 14.9%, whereas a per bee increase in honey bee
density during bloom will result in a 6.1% increase in fruit set. However, because honey
bees are rented by blueberry growers, their numbers can be increased easily by increasing
the capital outlay for pollination in a given year. In Maine lowbush blueberry, Hoshide
et al. [27] found that the attributable net income for native wild bees is USD 613/ha, and
for honey bees it is USD 913/ha. These authors [27] also found that for cranberry growers
in Massachusetts, the attributable net income for native wild bees is USD 689/ha, and
for honey bees it is USD 1320/ha. Consumers of bee-pollinated produce also affect the
economics of bee-pollinated crops and are willing to pay 6.7 times more than growers for
native bee-pollinated cranberries. This is similar to a finding of consumer willingness to
pay for blueberries [27].

Therefore, the economics of bee pollination is dependent upon individual crops, mix-
tures of bee pollinator species in those crops, and the consumers that buy foods produced
from these crops. Some studies have focused on how to evaluate this economic metric,
as well as strategies that can be implemented to increase agricultural crop resilience and
robustness given trends of declining bee numbers [27–39]. These strategies involve plant-
ing flowering plant reservoirs, minimizing pesticide exposure to bees by relying on insect
pest management for crop protection, conserving bee habitat as non-fragmented areas,
constructing and/or protecting existing nesting habitat for bees, and reducing transmission
of bee diseases by limiting commercial production and use of exotic pollinators.

1.3. Sustainable Pollinator or Pollination Protection Policies—A Global Perspective

Along with the development of economic values of bees and their ecosystem service
of pollination, policies have been formulated to protect this economically valuable resource
and halt or even reverse the decline in both wild native bee and commercially managed bee
populations, such as the honey bee. Senapathi et al. [40] formulate a debate that should be
heeded. The authors suggest that before policy is formulated, it is important to determine
if policy should address conserving bee diversity or maintaining the ecosystem service of
pollination. They argue that the policies for each of these objectives may not be the same.
Because the ecosystem service of pollination is dependent upon conservation of species
diversity in all habitats, policies seeking to conserve bee biodiversity should focus on both
managed agricultural and natural habitats.

The development of public policies to prevent declines in both bee populations and
pollination is complex and needs participation by multiple stake holders and experts, in
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addition to educated government legislatures and regulators [41,42]. These policies also
should be designed to work on multiple scales: spatial, temporal, actor (stake holders),
social, and sector scales [43], with the involvement of beekeepers as policy formulators [44].
Additionally, urban landscapes are often ignored as bee habitats, and should be included
in public policy for conserving bee diversity [45]. From a global perspective, another
forgotten sector tends to be developing countries, which are often left out of policy think
tanks [46,47]. Successfully enhancing pollination security globally can address three out
of seventeen of the United Nation’s Sustainable Development Goals, namely ensuring
responsible consumption and production (Goal #12). This can balance decent work and
economic growth (Goal #8) in farming communities, while better conserving life on the
land (Goal #15) found in pollinator habitats [48].

Much discussion and policy formulation on conservation of bee biodiversity has
occurred in the European Union (EU) [49–54]. These policies are usually designed for
conservation over a large geographic area, often involving habitat conservation, protection
of wild bees on farms, reduction in pesticide use through farm adoption of integrated
pest management, banning of highly toxic pesticides, city planning, support of organic
agriculture, research on apicultural practices, enhancing crop diversity on farms, and
improving public awareness, just to name a few strategies. The United States of Amer-
ica (USA) has a much more incentive-driven approach with government programs that
subsidize both farmers for establishing pollinator plantings and state municipalities for
establishing roadside floral resource plantings, pesticide certification programs, and apiary
programs [55,56].

Federal programs in the USA also fund research and demonstration projects conserv-
ing bee diversity [41,56]. Between 2000 and 2017, 109 USA state policy laws were developed
and written for pollinator conservation [57]. The objectives of these policies were to con-
serve bee habitat, provide integrated pest management in order to minimize the impact of
pesticides on pollinators, monitor bees, move at-risk commercial pollinators from stressful
environments, enhance pollination, improve pesticide standards, increase critical research
funding, and to improve public awareness of pollinators [42]. The strategies supported and
developed into policy objectives are similar for both the USA and the EU. Another focal
area when structuring policy is agricultural landscapes [49,52,53]. The advantage of this
approach is that many agricultural landscapes are concentrated within geographic regions
and are imbedded in specifically managed and natural ecosystems that are characterized
by unique regional pollinator complexes and specific stressors that might be impacting
the pollinator communities. Threats to pollinator communities may be well defined, and
thus can be more easily addressed with specific regional strategies. This approach has been
taken in our study of the Maine lowbush blueberry agroecosystem, where it is critical to
understand if the increase in lowbush blueberry yield and revenues from using particular
pollination strategies warrants the cost of investing in these strategies, using economic
risk analysis.

1.4. Lowbush Blueberry—A Unique Native North American Wild Crop

A brief description of the lowbush blueberry cropping system is described here to
provide background for those not familiar with this regional cropping system. Yarbor-
ough [58] has written a detailed description of lowbush blueberry production and the
overall industry which we have summarized. Lowbush blueberry describes several North
American native ericaceous plants in the genus Vaccinium, the most abundant being the
sweet lowbush blueberry, Vaccinium angustifolium Aiton. The crop has not been improved
through breeding and it is not planted. Lowbush blueberry plants are natural understory
plants in the Acadian and Boreal forests in Maine, Quebec, and the Canadian Maritime
provinces. To initiate a field, a forest is clear-cut harvested and the understory blueberry
plants are released from plant competition by periodic burning or the application of selec-
tive herbicides. Once established, fields are usually managed on a biennial cycle, the first
year of a two-year cycle is characterized by pruning through burning or mowing. In this
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first year, the plants grow vegetatively and produce flower buds. During the second year,
the plants bloom. After being pollinated mostly by bees, the plants produce fruit that is
harvested at the end of the summer. In the fall of this second year or during the spring of
the following year, the field is pruned again. Growers rely upon the native bee community
for pollination, but many producers supplement the native bee community with managed
bees, mostly honey bees, but sometimes commercially produced bumble bees (Bombus
impatiens Cresson). For more details about this native North American cropping system
and its pollination ecology and requirements, please see Bushmann and Drummond [59].

1.5. Goals and Objectives for Lowbush Blueberry Sustainable Pollination

We have been studying the bee community and pollination in Maine for more than
30 years, since before 1992 (see [59] for references). Between 1993 and 2021, we sampled
209 commercial lowbush blueberry fields and quantified the relative densities of managed
(Western Honey Bee) and native wild pollinators, as well as lowbush blueberry fruit set
and yield. Bee sampling methods have been developed, as well as both farm field-level
and landscape-level tools for bee conservation and pollination decision making. In this
study, we summarize the data collected during our farm surveys over a 29-year period.

Using these data, our goal was to conduct a risk assessment of the economics of
pollination in Maine lowbush blueberry along with the development of a tool that can
be used by growers, pollination researchers, economists, and policy makers to assess the
viability and robustness of novel pollination tactics. Our objectives are as follows:

(1) Determine that both native bees and managed honey bees contribute, in part, to fruit set;
(2) Determine the relationship between honey bee hive stocking density and honey bee

forager populations in the field;
(3) Estimate the relationship between fruit set and yield;
(4) Propose, formulate, and use an “Economic Pollinator Level” (EPL) metric for evaluat-

ing future conservation and pollination policies and strategies using case
study examples;

(5) Conduct Monte Carlo simulations on the economic uncertainty or risk in lowbush
blueberry pollination by way of using the EPL to test pollination tactics.

Change is occurring at a rapid rate in global markets, climate, pollinator community
diversity, and abundance. These changes are already beginning to impact lowbush blue-
berry production and economics. One of the critical inputs to the existence of lowbush
blueberry production is the continued sustainability of pollination. Long-term data of the
impact of pollinators on crop fruit set and yield, as well as metrics such as the EPL, can be
used help producers focus their limited resources more efficiently to optimize the impacts
of pollination strategies. This is extremely important, specifically in light of how climate
change may alter pollinator community diversity and abundance, as well as the yields and
economics of lowbush blueberry production, as is occurring in other cropping systems.

2. Materials and Methods
2.1. Lowbush Blueberry Sites Sampled

Two hundred and nine commercial lowbush blueberry fields were sampled between
1993 and 2021 (more details regarding these sites can be found in [26,31,59]). These fields
were located in the major lowbush blueberry growing regions in Hancock, Knox, Penobscot,
Sagadahoc, Waldo, and Washington counties in Maine, USA. In each field during bloom,
bee densities and fruit set were assessed. Prior to harvest, yield was estimated either by
manually raking or obtaining yield estimates from cooperating growers.

Bee sampling in these 209 fields measured bee population activity densities expressed
as bees/m2/min. This metric of bee density was estimated for each field two to three times
during lowbush blueberry floral bloom. At each sample date from 1993 to 2021, 10–20 m2

quadrats of blooming crop were arbitrarily selected. Each sampled quadrat represented
10–20 clones, where each clone is a unique plant. For 1 min, the number of honey bees
(Western Honey Bee, Apis mellifera (L.)) and wild native bees foraging on the lowbush
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blueberry bloom were counted and recorded. Bee abundance for each of the 10–20 m2

sampling quadrats was averaged for each visit and over all the visits for each field.
In 1993, for the first sampling period, five to seven 100 m by 1 m belt transects were

used to estimate native bee and honey bee relative density. Bees were counted and the
time taken to survey the transect length was recorded. The abundance of bees from these
transects were converted to bees/m2/min, so that they could be averaged with square
quadrat counts. Both quadrat and belt transect sampling of bee abundance were only
conducted between 0900 and 1500 h and when the weather was at least partly sunny and
warmer than 10 ◦C, with average wind speed of less than 30 km/hr.

Bees were only identified as honey bees or wild native bees, although separate hand col-
lections and bowl trapping enabled species to be identified by family and species [26,31,59,60].
There are over 90 species of wild native bees associated with lowbush blueberry [59,60]
ranging from 5 to 42 species per field [58]. The relative abundances of the major bee taxa
groups found in Maine lowbush blueberry fields during this study are bumble bee (Bom-
bus spp.) queens (8–22%), digger bees or Andrenidae (15–45%), sweat bees or Halictidae
(12–24%), leafcutting and mason bees or Megachilidae (2–5%), and cellophane or yellow-
faced bees or Colletidae (1–3%) [26,59]. During bee sampling, the number and stocking
density (hives/hectare) of honey bee hives in a field were recorded.

Fruit set was estimated during bloom in the same 209 fields that bee relative density
was measured. In early- to mid-May of each year, six to nine representative clones (ge-
netically distinct plants) were selected in each field. Clones typically range in size from
<1 m2 to >500 m2, with a mean of 43.3 m2 [61]. Two to three clones were selected near the
field center, two to three about halfway between the edge and center, and two to three near
the field edge. To compensate for micro-regional growth differences, clones were selected
throughout the field. Clones were not selected directly near honey bee hives.

Four to six stems were arbitrarily chosen and tagged for each clone. Stems were
visited two to three times. The first visit involved a count and recording of the number of
flowers per stem. A second visit, in early June, involved counting and recording set fruit
as a measure of fruit set, which we refer to as early fruit set. In late June, a final count of
developing fruit was conducted and recorded. The proportion of fruit at the final count that
developed from the initial flowers is a measure of late fruit set, after some of the premature
fruit drop has occurred. Late fruit set is a good measure of pollination intensity, but not
necessarily a measure of harvestable fruit as harvest typically occurs 3 to 6 weeks later, a
time period during which environmental conditions can further reduce fruit number. In all
cases, the proportion fruit set/stem was calculated, and the stem estimates were averaged
to provide a clone estimate of proportion fruit set. Clone estimates were subsequently
averaged to provide a field-level estimate of proportion fruit set.

Yields were obtained from the same fields in which bee density and fruit set were
measured. Most yields were obtained from lowbush blueberry producers immediately
after harvest. In 1993, a few fields were sampled with a hand rake using ten 1 m2 quadrats
or using two to three 10 m2 quadrats. All yields were converted to kilograms of fruit
harvested per hectare. Yields were obtained for 199 of the 209 fields sampled.

2.2. Statistical, Theoretical, and Monte Carlo Analyses

All statistical and probability modeling was conducted using the statistical software
JMP Pro version 17 [62]. Economic Monte Carlo simulations were conducted using the
@Risk software version 7.6 from Palisade [63]. Monte Carlo simulations compared different
pollination systems (e.g., honey bee versus native bee pollination for lowbush blueberries
in Maine) by contrasting the distribution of outcomes of an agricultural metric (e.g., EPL)
and determining factor(s) that have a great impact on outcomes such as input quantities
and prices [64].



Sustainability 2024, 16, 3242 6 of 27

2.2.1. Modeling Relationships between Bee Activity Density, Hive Stocking Density,
Proportion Fruit Set, and Yield

General mixed linear models were used to estimate bee-to-bee and bee-to-pollination
relationships. Use of these models can directly model correlations between and within
predictors, account for unbalanced designs, and often does not require transformations
upon the dependent variable [65]. These models have also been shown to have power in
complex systems with much noise and interacting factors, such as field and pollination
ecology [66]. Random effects were study and year within study. A study represents a series
of years in which fields were sampled for a specific project. The data consisted of 209 fields
sampled over 29 years, represented by 4 studies. The fixed effects were the hypothesized
causal or predictor variables of interest. Fixed effects were tested with the Satterthwaite
adjusted error degrees of freedom [62]. Random effects were tested with the Wald test [62].
The coefficient of determination calculated was the conditional r2. These models were used
to determine that the fixed effects or predictors do indeed determine the average trend
in the dependent variable. They were not used to predict individual year data in fruit set
or yield.

Least squares linear regression [62] was used to determine the relationship between
grower investment in rental of honey bee hives on a per hectare basis and the monetary
value of the blueberry crop yield (kg/ha). The cost of renting hives was set at USD 100/hive
and the value of the harvested berries was set at USD 2.50/kg blueberries. Both values are
on the high end of costs and values witnessed by one of the authors (F.A. Drummond) over
the past two decades. The cost of hives was square root transformed so that the pattern of
residuals was homogeneously distributed. Another regression model was constructed to
determine the relationship between honey bee stocking density (hives/ha) and the ratio
of blueberry crop value (USD) to the dollar value (USD) invested in honey bee hives by
growers. The honey bee hive stocking density was transformed to the power of stocking
density (Xa) in order to improve the pattern of residuals around the regression line.

To estimate long-term trends in relative abundance of native bees in lowbush blueberry
fields from 1992 to 2021, a least squares linear regression was compared to a smooth
spline fit of the square root transformed native bee activity density. In both models, we
used the square root transformation of the data to construct a data set that demonstrated
homogeneity of variance and a reduction in temporal autocorrelation (rt = 0.367, p < 0.05)
across the time series. Because we did not sample bee activity density in every year and
there were several years with missing data, time series analysis was not used for modeling
these data [67].

2.2.2. Development of an Economic Pollinator Level

The economic threshold for pest decision making was developed by Stern et al. [68].
These authors conceptualized the economic threshold as “The lowest population density
of a pest that will cause economic damage; or the amount of pest injury which will justify
the cost of control”. With pollinators, one could also ask the question, what is the bee
population or community-level activity density that will increase economic gain such that
this gain justifies the cost of pollination management. Pollination management costs can
include the rental fee paid for importing honey bee or bumble bee hives to a farm, the cost
of establishing pollinator reservoirs (plantings) to enhance forage and build up native bee
community densities, the cost of least toxic pesticides to conserve native bee numbers, or
the cost of providing nests or nest habitat for soil- or twig-nesting bees.

The economic injury level, a term first proposed by Pedigo et al. [69] defines a threshold
that provides a buffer. It is the pest level where the cost of pest control is greater than its
benefits. This is lower than the economic threshold or “action threshold” where the benefits
of control are greater than its cost.

The simplest model of the economic injury level is represented in Equation (1):

EIL =
C

(V × L)
(1)
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where C is the cost of pest control, V is the monetary value of the crop per unit measure,
and L is the monetary value of the loss due to an individual pest per unit measure. In a
similar manner we can design an operational model for the “Economic Pollinator Level” or
EPL. One formulation of the model is Equation (2):

EPL =
C

(V × P × B)
(2)

where C is the monetary cost of pollination management on a per m2 or per hectare unit
basis; V is the monetary crop value per unit (for example, per kg of fruit); P is the number
of flowers set by an “individual bee” during bloom that will become harvestable fruit; and
B is the weight of a single set flower as a fruit, the unit of benefit from pollination.

The monetary value of C can be actual dollars that are spent either renting hives
or planting bee forage, discounted on an annual basis. The value of C can also be the
intrinsic conservation value of wild native bees. Arriving at the monetary crop value is
fairly straight-forward. It can be a forecasted value for the future or derived from the
previous year or a past long-term average.

The next two variables, P and B, are more difficult to estimate and averages or “back of
the envelope estimates” might be the best and only measure available for such a complicated
system as crop pollination. The number of flowers set (P) by an individual bee is generally
dependent upon bee species in the lowbush blueberry system. In the laboratory, Javorek
et al. [70] show that honey bees are much less efficient than several species of wild native
bees in placing pollen tetrads on lowbush blueberry stigma. This has been confirmed in
the field by Asare et al. [26]. In one of the following examples, we use an average for
“native bees.” An average can also be obtained for a commercial bee such as the Western
Honey Bee. If one assumes independence and no co-linearity among bee activity density
predictors, then the slope coefficient (b) from estimating a linear relationship between bee
activity density (Dba) and proportion fruit set (FSp) can be used, where the intercept (a) is
the FSp without any bees. Here, the default value for Dba = 1, prior to adjustment by b:

FSp = a + b(Dba) (3)

Depending upon the crop, one needs to assume or have previously determined the
proportion of set flowers that results in a known number of harvestable and marketable
fruit [71]. So in essence, fruit set is used as a proxy for harvestable fruit. This is usually a
more direct estimate of harvestable fruit than an indirect relationship between pollinator
density and marketable yield due to weather stress conditions, pests and weed competition,
and various harvesting and packing losses.

The last variable, B, is highly consistent and standard for some fruit, but for other
fruit it may be quite variable. Lowbush blueberry fruit mass is dependent upon plant
genotype, soil moisture, air temperature, soil fertility, pollination efficacy (number of ovules
fertilized), compensatory growth as a function of fruit density per stem due to fruit drop,
and/or pest attack. In the case studies presented in the results section, we used the average
mass of 0.4 g per single berry for harvested ripe lowbush blueberries [60,61].

2.2.3. Probability Modeling—Fitting Probability Density Functions to Observed
Frequency Distributions

Probability density functions were used for input by the Monte Carlo software,
@Risk version 7.6 (Palisades software). Frequency distributions of six measures recorded
in each field were constructed: (1) the observed activity density of native wild bees
(bees/m2/min/field), (2) activity density of honey bees (bees/m2/min/field), (3) pro-
portion of native bees (native bees/total bees) per field, (4) honey bee hive stocking den-
sity (hives/ha) per field, (5) mean proportion fruit set/field, and (6) yield (kilograms of
berries/ha/field). A diversity of probability density functions were fit to and selected
as models for the observed frequency distributions, when goodness of fit tests provided
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evidence that there was no significant difference (p > 0.05) between observed and model fre-
quency distributions. The goodness of fit tests utilized were the Cramer–von Mises W test,
Shapiro–Wilk W test, Kolmogorov D test, and Anderson–Darling test [62], depending upon
the probability density function being evaluated. Probability modeling was conducted
with JMP [62].

2.2.4. Monte Carlo Simulation of Economic Uncertainty or Risk of Lowbush Blueberry
Pollination and Yield

Economic uncertainty or risk of the Economic Pollinator Level (EPL) for both honey
bees and native bees can be modeled by stochastically changing key variables used to calcu-
late EPL when there is historical time series data available for these variables. This Monte
Carlo approach to assessing economic pollination risk determines not only the probability
distributions of EPL outcomes, but also the sensitivity of EPL to specific variables (for
sensitivity analysis in lowbush blueberry, see [61]). Tornado diagrams can be generated
that indicate this sensitivity of the EPL to various impact factors or the range of the EPL
given stochastic variation in each variable. The largest range of variable variation is at the
top of the tornado diagram followed by ranges that become narrower toward the bottom of
the diagram [63]. The variables with the largest EPL range denote those variables to which
the EPL is most sensitive.

Variables used to calculate EPL for honey bees and native bees that had available
times series data included the monetary cost of pollination (C), the value (V) of lowbush
blueberries (USD/kg) in Maine, the number of flowers set per m2 per bee (P), and B which
is the weight of one marketable individual lowbush blueberry in kg (equation 2). In order
to run stochastic Monte Carlo simulations in @Risk [63], historical data for C, V, P, and B
were fitted to functional forms for probability distributions (Table 1). The values of C and
V were calculated in U.S. dollars (USD).

For Monte Carlo simulations of EPL, the variable C for native bees was based on
pollinator pasture cost budgets developed for the University of New Hampshire (UNH)
in 2016 (see Appendix A, Table A1). Variable costs such as labor, fuel, and seed, as well
as fixed costs such as depreciation on equipment used were stochastically varied using
historical time series data for these input costs (see Appendix A, Table A1). These nominal
values were then adjusted for inflation to derive real values using appropriate producer
price indexes (PPI’s) from the U.S. Bureau of Labor Statistics (BLS) [72]. The PPIs are
unitless indexes that track the changes in input prices exclusively due to monetary inflation
over time [73].

For honey bees, the variable C equals the number of hives used per hectare multiplied
by the cost per hive (USD/hive). The number of hives used per hectare was based on a past
socio-demographic survey of lowbush blueberry producer practices conducted from 2012
to 2013, using honey bee stocking densities from 21 of 38 surveyed producers [26]. The cost
per hive from 2003 to 2022 was provided by a cooperating lowbush blueberry producer.
Costs per hive over this time period were adjusted with the PPI for lumber and plywood
used to make Langstroth box hives, since BLS does not keep a PPI for rented honey bee
hives [72].

The variable V for Maine lowbush blueberries (2002 to 2021) was obtained from the
U.S. Department of Agriculture (USDA), National Agriculture Statistics Service (NASS) [74].
As shown in Table 1, all monetary costs and values were converted from nominal values to
real (inflation adjusted) values (2022 USD) using PPI’s similar to inflation adjustments made
for C for honey bees [72]. Using nominal monetary values over multiple years without
adjusting for inflation can cause distortion because variation in short-term rates of inflation
for agricultural inputs can be highly variable [75].
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Table 1. Data sources for Economic Pollinator Level variables used for honey bees and native bees in
Maine, USA.

Economic
Pollinator Level
Variables

Pollination
System Years Data Source

Producer Price
Index Adjust for
Inflation [73]

Function Form for
Probability
Distribution Fit

(1) Monetary cost of
pollination (C) Native Bee Pasture 2002–2023 Various

(Table A2)
Various
(Table A2)

Various
(Table A2)

Rented Honey
Bees 2003–2022 Cooperating

producer [26]
Lumber and
plywood Uniform

(2) Value of wild
blueberries (V)

(a) Frozen
Native Bee Pasture
and Rented Honey
Bees

2002–2021 USDA,
NASS [74]

Frozen
fruits/vegis Extreme value

(b) Freshpack Same as above Same Same Fresh
blueberries Laplace

(3) Number of flowers
set per m2 per bee (P)

Native Bee Pasture
and Rented Honey
Bees

2005, 2013,
and 2015 [26,59,61] Not used Gamma

Gamma

(4) Lowbush blueberry
single berry
weight (B)

Native Bee Pasture
and Rented Honey
Bees

2006, 2007,
and 2011 [59,61,71] Not used Weibull

EPL for honey bees and native bees used the same data sources for stochastic simu-
lations for both the variables P and B. Calculations for the variable P (flowers set per m2)
used 388 field observations of flowers/m2 for Maine lowbush blueberries collected dur-
ing 2005, 2013, and 2015 in the blueberry production regions of Midcoast and Downeast
Maine [26,59,61]. These observations of flowers/m2 were multiplied by assumed percent-
ages of flowers that result in set fruit for native bees (10%) and honey bees (1%) [61], and
then were adjusted for the distribution of lowbush blueberry flowers that are available
daily for bee visitation and thus pollination, where flowers are viable for 5 days once a
flower is open [71]. The distribution of berry weight (B) relied on 714 observations from
studies conducted in Downeast Maine [61,71].

The @Risk software from Palisade [63] also graphs the sensitivity of input parame-
ters to variables (e.g., EPL, cost of pollinator pasture) using tornado diagrams. Tornado
diagrams are composed of horizontal bars indicating the minimum to maximum range of
values of a variable subject to stochastic changes in input parameters. The input parameter
resulting in the widest range is at the top of tornado diagrams with subsequent input pa-
rameter ranges that become narrower toward the bottom of the diagram. This arrangement
makes the diagram look like a tornado. Tornado diagrams were evaluated for EPL for both
managed honey bee and wild native bee pollination of lowbush blueberries, as well as for
the cost of installing pollinator pasture for native bees.

3. Results
3.1. Frequency Distributions of Sampled Bee and Crop Pollination and Production Metrics

The frequency of native bee activity densities (bees/m2/minute) in lowbush blue-
berry (Vaccinium angustifolium Aiton) fields (n = 209) is depicted in Figure 1A. Native
bees were from the genera Bombus, Andrenidae, Halictidae, Megachilidae, and Colleti-
dae. The mean activity density was 0.57 ± 0.03 (se) bees/m2/min. This translates to
5686 ± 335 native bees/hectare (ha)/min. The range was 0 to 3.25 bees/m2/min which is
0 to 32,500 bees/ha/min. The Gamma probability density function described the observed
data (Cramer–von Mises W test, W2 = 0.177, p > 0.25). The parameters of the Gamma
function are α = 2.065 (shape), σ = 0.275 (scale), and θ = 0.0 (threshold parameter).
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Figure 1. Observed frequency distributions (blue bars) and best fitting probability density func-
tions (green bars) to bee community measures in 209 lowbush blueberry fields, activity density of
(A) native bees, activity density of (B) honey bees, (C) hives/ha, and (D) proportion of native bee
activity density to total bee activity density in Maine, USA.

The frequency of honey bee (Apis mellifera (L.)) activity densities between fields
(n = 209, not all fields had hives deployed) is depicted in Figure 1B. The mean activity
density was 3.46 ± 0.45 bees/m2/min. This translates to 34,600 native bees/ha/min. The
range was 0 to 34.85 bees/m2/min, equivalent to 0 to 348,500 bees/hectare/min. The
Johnson SL probability density function fit the observed data well (Shapiro–Wilk W test,
W = 0.989, p = 0.172). The Johnson SL function parameters are γ = −0.165 (shape), δ = 0.691
(dispersion), θ = −0.027 (location), and σ = 1.000 (scale parameter). Both native bee and
honey bee distributions are highly skewed, with the distribution for honey bees being more
skewed than that for native bees (Fisher’s G1 statistic, HB = 3.18, NB = 2.71).

The frequency of honey bee hives/ha between fields (n = 209) is depicted in Figure 1C.
The mean hive density was 4.40 ± 0.32 hives/ha. The range was 0 to 22.5 hives/ha. The
Gamma probability density function marginally fit the observed data but was the best
probability density function describing the observed frequency distribution (Cramer–von
Mises W test, W2 = 0.263, p = 0.08). The parameters of the Gamma function are α = 1.612
(shape parameter), σ = 0.273 (scale parameter), and θ = 0.0 (threshold parameter).

The frequency distribution of the proportion of native bees between fields (n = 209)
is depicted in Figure 1D. The mean proportion was 0.33 ± 0.02. The range in proportion
was 0 to 1. The Gamma probability density function fit the observed data but was the best
probability density function describing the observed frequency distribution (Cramer–von
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Mises W test, W2 = 0.184, p > 0.25). The parameters of the Gamma function are α = 1.336
(shape parameter), σ = 0.245 (scale parameter), and θ = 0.0 (threshold parameter).

The frequency distribution of the percentage of fruit set between fields (n = 209) is
depicted in Figure 2A. The mean fruit set was 54.4 ± 1.2%. The range in the fruit set was
8% to 100%. The Normal or Gaussian probability density function fit the observed data
(Shapiro–Wilk W test, W = 0.998, p = 0.072). The parameters of the Normal function are
α = 54.446 (mean), σ = 17.925 (dispersion parameter).
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Figure 2. Observed frequency distributions (blue bars) and best fitting probability density functions
(green bars) to pollination measures in 209 lowbush blueberry fields for (A) fruit set and (B) yield in
Maine, USA.

The frequency distribution of yield between fields (n = 199) is depicted in Figure 2B.
The mean yield was 3495.4 kg/ha. The range in yield was 237.7 to 11,832 kg/ha. The
Gamma probability density function fit the observed yields (Cramer–von Mises W test,
W2 = 0.118, p > 0.25). The parameters of the Gamma function are α = 2.256 (shape parame-
ter), σ = 1549.293 (scale parameter), and θ = 0.0 (threshold parameter).

3.2. Statistical Models for Bee, Pollination and Crop Production Metrics

A mixed model provided evidence that honey bee density activity in a field did not
affect the density activity of native bees. There was no detrimental or antagonistic effect
of foraging honey bees on native bees (mixed model: F(1,159.9) = 0.049, p = 0.825). Honey
bee activity density was predicted by the number of hives/ha deployed in fields (mixed
model: F(1,190.9) = 170.357, p < 0.0001, r2 = 0.425). However, a quadratic relationship of
honey bee activity density improved the evenness of the spread of residuals around the
regression line. However, this quadratic relationship of honey bee activity density did not
improve the proportion of honey bee activity density residuals explained by hive density
(Figure 3A). A quadratic relationship suggests that a positive synergy exists between the
foraging population of honey bees in the field per hectare and the number of hives/ha in
the field, possibly due to inter-colony competition when deploying high hive densities.

The percentage of fruit set was well predicted with both native bee and honey bee
activity densities independently as fixed effects (Table 2). The slope for native bee activity
density was 8.6 times larger than that of the slope for honey bee activity density (Table 2).
The slope parameters suggest that native bees are much more efficient pollinators on
a per bee basis than honey bees. The fruit set was a good predictor of yield (Table 2,
Figure 3B). Thus, bee activity density was a significant predictor of fruit set and fruit set
was a significant predictor of yield. When fields with no detected honey bees (n = 15)
were modeled to assess the contribution of native bees to fruit set, a similar relationship
was found compared to the fruit set model with both honey bees and native bees present,
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except that the slope coefficient (efficiency) for native bees was higher (mixed model,
F(1,13) = 763.093, p < 0.0001, β = 17.624 ± 3.241, r2 = 0.214).
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Figure 3. The (A) relationship between honey bee hive stocking density and honey bee activity
density (honey bees/m2/min), and the (B) relationship between percentage of fruit set and yield
(kg/ha) in Maine, USA.

Table 2. Mixed model results for prediction of lowbush blueberry % fruit set and yield (kg/ha) in
Maine, USA.

Model a and r2 Effects DF b (Num, Den) F Ratio p-Values c Coefficients d

1. Fruit set (%) Study—random <0.0001
r2 = 0.42 Year (Study)—random <0.0001

Native bee density—fixed 1, 206 11.191 0.0002 10.078 ± 2.676
Honey bee density—fixed 1, 206 21.779 <0.0001 1.173 ± 0.185

2. Yield (kg/ha) Study—random 0.511
r2 = 0.52 Year (Study)—random 0.028

% Fruit set—fixed 1, 11,870 83.039 <0.0001 65.289 ± 7.164
a Coefficient of determination reported is the conditional r2. b Degrees of freedom are the numerator (effect) and
the denominator (Satterthwaite adjusted error) df. c Probabilities for fixed effects are from F test based on mean
square and error mean square. Probabilities for random effects are based on the Wald test. d Coefficients and
standard errors for fixed effects (slopes) are reported. Random effect coefficients are not reported.

The square root transformed cost of hives/ha determined the values of yield (berries/ha)
(F(1,197) = 107.020, p < 0.0001, β = 274.273 ± 26.512, r2 = 0.352, Figure 4A). The cost of hives
was square root transformed due to the better pattern of residuals relative to that of a linear
fit. This model indicates that although crop value increases with increasing honey bee
hive investment, it does so at a decreasing rate. When the hive density per field was used
to determine the cost/benefit of renting hives to the value of the resulting crop, a curve
of depreciating value with increasing investment of hives is observed (F(1,141) = 48.427,
p < 0.0001). This depreciating value is described by a power relationship using the following
equation (Figure 4B):

Ratio of crop value/pollination cost = 33.281 + hives/ha−0.440 (4)
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Figure 4B shows a steep decline in the benefit ratio of crop value compared to the
cost of pollination from 50 at a very low investment in hives. However, even at the
highest investment of 23 hives/hectare, the benefit is still almost 10 times in favor of the
value of the crop relative to the pollination cost of hives. There is justification for using a
depreciating non-linear curve (Figure 4B) to fit data, as shown in Figure 4A. Figure 4B has
little predictive value as the dependent variable is autocorrelated with the independent
variable. The residuals around the several fitted regression models suggest that a geometric
power curve was the best fit model to explain the variance in the ratio of crop value
to pollination cost as a function of stocking density (hives/hectare). Therefore, the best
working hypothesis for the relationship between crop value (value of berries/hectare)
and the hive rental cost that growers invest for pollination is a curvilinear relationship
with increasing crop value at a decreasing rate. To quantify our hypothesis, we used crop
value regressed against cost of hive rental/hectare, which was square root transformed
(Figure 4B).

Figure 5 depicts the native bee activity density over the years of sampling (1993–2021).
The densities were square root transformed to construct a time series where the variances
in each year were homogeneous over time. Figure 5A shows a linear fit to the data which
was significant (F(1,207) = 20.525, p < 0.0001) with a negative slope, −0.010 ± 0.002, and
a coefficient of determination of 0.09. This suggests that bee activity density has been
declining over time in a linear manner. However, the pattern of the residuals does not
support a linear trend. Figure 5B depicts a non-linear spline fit to the data. Visual inspection
of the residuals shows they are well balanced around the fitted curve. The coefficient of
determination is 0.373 with a sum of squares error of 10.438 and a lambda equal to 10
(tuning parameter [67]). If this relationship is a better description of the native bee activity
density between 1993 and 2021, then it can be concluded that native bee activity density
has remained the same over time, albeit oscillating significantly.

All of the models (both general linear mixed models and least square regression
models) show high variance in the dependent variables. The coefficient of determinations
varied from 0.21 to 0.53, suggesting low to moderate levels of variation explained in
the dependent variable by the independent variable(s). Therefore, the ability to predict
individual data points is not likely, but this was expected as the data represents sampled
fields representing many years, sites, management practices, and exposure to different
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weather conditions. However, significant F statistics suggested that average trends in the
dependent variables such as fruit set or yield could be reasonably predicted [76].
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3.3. Case Studies Demonstrating Use of Economic Pollinator Level Model
3.3.1. Case Study 1: Native Bee Economic Pollinator Level—A Tool for Economic and
Ecological Sustainability

Model parameter estimation (units are USD for monetary value, m2 for crop field area,
and kg for fruit yield):

C = Annual cost of a pollinator planting = USD 17,999/hectare (ha) (see Appendix A,
Table A1), therefore cost/m2 = USD 17,999/ha divided by 10,000 m2/ha = USD 1.80/m2.

V = Value of fruit/kg, USD 1.50/kg (2018–2021 average inflation adjusted price or real
price for frozen lowbush blueberries in Maine) versus an average real price of USD
3.10/kg for fresh lowbush blueberries over the same time period [72,74]. However,
conventional road side prices for fresh fruit can be USD 5–6/kg, and fresh organic
fruit is USD 10–14/kg [61].

P = Flowers set per native bee/m2 = 22.9 flowers/stem × 738.4 stems/m2 = 16,909.4
flowers/m2 [61] and 10% fruit set/native bee/m2 [61], therefore 0.1 × 16,909.4 =
1690.9 fruits assuming a dropped proportion of 0.364 (median) are dropped [71], then
1690.9 × (1 − 0.364) = 1075.4 flowers/m2 set by a bee that become marketable fruit.
However, lowbush blueberry plants and stems within plants do not initiate floral
opening of all the flowers at the start of the bloom period [71]. Flowers open in
an asymptotic sigmoidal pattern up until peak bloom [69], after which the number
of flowers decreases due to flower stigma viability and successful pollination [70].
Flowers are usually only viable for 5–7 days [71]. Therefore, the distributed bloom
over the bloom period and a floral viability of 6.5 days after opening over a typical
26-day bloom period means that bees do not have the total available number of
flowers per m2 at any one point in time. The number of flowers that can be set by a
single bee per day over the 26-day bloom period is a linear approximation derived
by the average number of flowers available for visitation by the bee per day. Based
upon these bloom dynamics, the number of flowers per m2 available for a bee to
transform into marketable fruit after fruit drop is accounted for (see above) and is the
number of flowers/m2 divided by 6.5. This is equivalent to the integral of a Gaussian
bloom distribution over time (days) resulting in the total flower × days divided by
the 6.5-day residence time of a viable flower. This results in a daily flower availability
to foraging bees. This factor determines the daily flowers available for visitation and
thus, pollination per day, given the distributed bloom and a viability duration of
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6.5 days once a flower is open. Therefore, in this case study, 1075.4 flowers/m2/6.5 =
165.5 flowers/m2.

B = Weight of one marketable berry is 0.0004 kg.

The equation becomes:

EPL =
C

(V × P × B)

EPL =
USD 1.80/m2

(USD 1.50/kg of fruit × 165.5 fruits/bee/m2 × 0.0004 kg of fruit)

EPL = 18.13 native bees/m2 (5)

This equation could be used to economically justify planting a pollinator planting from a
bee activity density perspective, as a before and after comparison.

3.3.2. Case Study 2: Honey Bee Economic Pollinator Level—A Tool for
Economic Sustainability

Model parameter estimation: (units are USD) for monetary value, m2 for crop field
area, and kg for fruit yield):

C = Annual cost of deploying 5 hives/hectare (ha) × USD 150/hive (inflation adjusted
2003 to 2022 average price) = USD 750/ha therefore cost/m2 = USD 750/ha divided
by 10,000 m2/ha = USD 0.075/m2.

V = Value of fruit/kg, identical to EPL calculation for native bees at inflation-adjusted real
price of USD 1.50/kg for frozen berries [72,74], while conventional road side prices for
fresh fruit can be higher at USD 5–6/kg, and fresh organic fruit is USD 10–14/kg [62].

P = Flowers set per native bee/m2 = as in case study 1, 22.9 flowers/stem × 738.4
stems/m2 = 16,909.4 flowers /m2. However, for honey bees, only a 1% fruit set/
bee/m2 is expected [62], therefore 0.01 × 16,909.4 = 169.1 fruits, assuming a propor-
tion of 0.364 (median) are dropped as in case study 1, thus 169.1 × (1 − 0.364) =
107.5 flowers/m2. This number of flowers/m2 is divided by 6.5. This factor deter-
mines the daily flowers available for visitation and thus, pollination per day, given
the distributed bloom and the viability duration of 5 days once a flower is open.
Therefore, in this case study, 107.5 flowers/m2/6.5 = 16.5 flowers/m2 that will end
up as marketable fruit at the end of the season. The observed frequency distributions
of flowers/stem (Figure A1A), stems/m2 (Figure A1B), and the derived estimate of
flowers/m2 (Figure A1C) are in Appendix A.

B = Weight of one marketable berry is 0.0004 kg.

The equation becomes:

EPL =
USD 0.075/m2

(USD 1.50/kg of fruit × 16.5 fruits/bee/m2 × 0.0004 kg of fruit)

EPL = 7.6 honey bees/m2 (6)

The use of this equation with honey bees could be used to analyze the benefit of
stocking honey bee colonies at 5 hives/ha. About 7.6 honey bees/m2/min would sug-
gest that the stocking rate pays for itself in marketable fruit harvested, while less than
this EPL suggests that the stocking rate is not paying for itself in returns from potential
harvestable yield.

3.4. Monte Carlo Economic Simulations

The Economic Pollinator Level (EPL) is most sensitive to changes in fruit set by both
honey bees and native bees regardless of frozen- or fresh-pack utilization for lowbush
blueberries (Figure 6). There is greater sensitivity for frozen lowbush blueberries with EPL
ranging from 2.785 to 84.173 for honey bees and ranging from 2.624 to 98.638 for native bees
given stochastic changes in fruit set for both types of bees (Figure 6A,B). The sensitivity of
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EPL to changes in measured fruit set is less for both honey bees (1.005 to 30.995) and native
bees (1.011 to 45.153) for fresh-pack lowbush blueberries (Figure 6C,D).
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Figure 6. Tornado diagram for Economic Pollinator Level (EPL) comparisons for Maine, USA,
lowbush blueberries for frozen market pollinated by (A) honey bees and (B) native bees and for
fresh-pack utilization pollinated by (C) honey bees and (D) native bees.

For honey bees pollinating lowbush blueberries, EPL is progressively less sensitive to
stocking density (hives/hectare), berry weight (kg), and cost of rented hives (USD/hive),
while lowbush blueberry prices impact EPL values more for fresh-pack versus frozen
(Figure 6A,C). Similarly for native bee pollination of lowbush blueberries, EPL is less
sensitive to berry weight (kg) and the cost of installing pollinator pasture (USD/hectare),
while fresh-pack prices have a greater impact on EPL compared to frozen lowbush blueberry
prices (Figure 6B,D).

4. Discussion
4.1. Interplay between Honey Bees and Native Bees in Lowbush Blueberry

Our research has shown that native bees (from genera Bombus, Andrenidae, Halic-
tidae, Megachilidae, and Colletidae) and honey bees (Apis mellifera (L.)) are integral to
the sweet lowbush blueberry (Vaccinium angustifolium Aiton) pollination system. Both
wild native bees and commercially managed bees provide pollination services to lowbush
blueberry, although different taxa of native wild bees have different spatial distributions
within blueberry fields and different occurrences throughout bloom [77]. Different native
bee species also vary in their explanatory power of fruit set in fields between years and
studies [59,77–79]. Cutler et al. [77] studied lowbush blueberry pollination in Nova Scotia,
Canada. They found more than 90% of the wild native bee community comprised indi-
viduals belonging to the genera Andrena and Lasioglossum. They also found that larger
native bees were found in the interiors of fields, whereas smaller species were found along
field edges.

Efficiency of pollination also varies by bee taxon. In our study, on a per bee basis,
native bees are estimated to be about 10 times greater at setting fruit in lowbush blueberry
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(see mixed model coefficients in Table 2). This is greater than that reported by Asare
et al. [26] who determined that wild native bees were 2.6 times more efficient lowbush
blueberry pollinators on a per bee basis. Bushmann and Drummond [59] determined that
wild native bees were about 5.5 times more efficient than honey bees as pollinators of
lowbush blueberry in terms of the percentage of fruit set on a per bee basis. These different
results for fruit set by bee taxon are supported by both field and laboratory experiments [71].

About 24% of growers in Maine rely extensively on native bees for their pollination
needs, while the rest rely upon both honey bees and wild native bees [26]. Cutler et al. [77]
found that, in Nova Scotia, most growers rely on honey bees for their pollination, similar
to Maine. Bushmann and Drummond [59] determined that 36% of all foraging bees in
lowbush blueberry fields are wild native bees. Those growers who rely only on wild native
bees often have honey bees from neighboring growers foraging in their fields [26]. Those
growers that rely upon wild native bees and who also supplement their foraging force
with rented honey bee colonies benefit from their capital expenditure because most of their
honey bees appear to forage within their fields. This is reflected by 42.5% of the variation in
honey bee foragers counted in a field being explained by the hive density within that field.
Asare et al. [26] showed a similar relationship with 55.5% of honey bee forager density
being explained by hive density.

Both wild native bees and managed bees such as the honey bee are components of
Maine lowbush blueberry pollination. The species co-occur and appear to complement
each other in regard to providing a total fruit set that is a function of both types of bees
together [26,59,61]. Previously, we found that honey bees do not appear to detrimentally
affect native bee activity densities. Asare et al. [26], using a smaller collection of Maine
bee community data for lowbush blueberry fields, found that the evidence of a negative
interaction between honey bees and wild native bees is weak (p = 0.089), while Eaton and
Nams [79] found evidence of a significant negative effect of honey bee populations on wild
native bee abundance. However, it is difficult to know whether this negative interaction
was because honey bees are often stocked in fields that have a historic low yield due to low
wild native bee abundance.

4.2. Long-Term Trends in Native Bee Communities

Our analysis provides evidence that when study project and year are accounted
for as random effects, fruit set explains 52% of the variation in yield. Therefore, bees
are potentially the most important input in lowbush blueberry production in Maine (see
Yarborough et al. [80] for a quantification of the factors that affect lowbush blueberry yield).
Bushmann and Drummond [59] found that a disruption of the supply of honey bees would
result in a 30% reduction in yield. Estimates of the sole effect of wild native bees on the
percentage of fruit set at the field level have been documented in several studies in both
Maine and Canada, and range from 28% to 56% [26,59,81,82]. Based upon the importance of
both honey bees and wild native bees in lowbush blueberry production, their conservation
and enhancement should be a priority to growers.

However, bees appear to be in decline globally [83]. Population levels of honey
bees are also in decline and without intensive management their survival rate is low [84].
Multiple causes of bee decline have been suggested, ranging from pesticide exposure, land-
use changes, habitat destruction and reduction in natural bee forage, decline in genetic
diversity, increase in disease and parasite virulence and incidence, and climate change [3,85].
Our study provides evidence that wild native bee abundance (Figure 5) may not be in
decline, but that annual fluctuations can be extreme, making this natural resource and
lowbush blueberry yields unpredictable from year to year. We do not have a long-term
data set suggesting that bee species richness is declining in Maine lowbush blueberry.
However, a five-year bumble bee survey throughout Maine suggests that some observed
bumble bee species in the state no longer exist or are at densities difficult to detect (Maine
Bumble Bee Atlas [86]) and that the decline of native pollinators is serious and should not
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be ignored, even if conclusive data do not exist for some areas, because they do exist for
others [83,85,86].

4.3. Conservation of Honey Bees and Native Bees

Because of the global decline of wild native bee species richness, the annual and
spatial variation in bee community abundances, and the decline in honey bee populations,
conservation practices in agricultural cropping systems dependent upon bees are being
formulated and implemented to sustain production [31,87–89]. The University of Maine
Cooperative Extension Service has provided lowbush blueberry growers with guidance
and technical bulletins on several approaches to conserving bee populations [90]. These
approaches involve providing nest materials for Osmia spp. leafcutting and mason bees,
reduction in pesticide risk to both wild native bees and honey bees by selecting the least
toxic pesticides for application and reducing exposure [91,92], as well as planting pollinator
pastures [31]. While these strategies have been shown to enhance bee abundance [31,93],
there are still factors not in the control of growers that can result in the reduction in bee
abundance or pollination in some years such as diseases and weather extremes [3,84,93].

4.4. Tools for Pollination Strategies

The University of Maine Cooperative Extension has also developed and provided
training and tools for managing pollination on lowbush blueberry farms [88,90]. These
involve recognition of wild native bee taxa, measuring bee foraging abundances in fields,
measuring fruit set as a means of categorizing specific fields yield potential, and utilizing
a spatial geographic mapping software tool which can identify bee habitats adjacent to
specific blueberry fields and the size of associated wild native bee community abundance
and predicted fruit set. These trainings and tools can not only be used to provide growers
with the information they need to successfully conserve native bees, but they also allow
them to determine levels of wild native bee abundances and then make decisions on
whether honey bee rental is prudent and the stocking densities that can be considered.
This knowledge of native bee and honey bee foraging abundances can also be used with
the Economic Pollinator Level (EPL) tool developed in this study. The use of the EPL, as
we have demonstrated, can allow lowbush blueberry growers to evaluate the economic
rationale behind their pollination management plan.

4.5. Using Predictive Pollination Tools to Guide Pollinator Public Policy

Fruit set for lowbush blueberry was the primary driver of EPL (Figure 6). Fruit set
in blueberry systems can be impacted by weather conditions during the May pollination
window by affecting the number of pollination days, or more directly stated, the number
of days that bees will be actively flying and visiting flowers [61,94]. While factors such as
weather are beyond the control of lowbush blueberry producers, the decision to integrate
pollinator pastures to provide floral resources for both managed and native bees is clearly
within the control of producers. Despite the high total cost of planting pollinator pastures
of ~USD 18,000/hectare (see Appendix A, Table A1) with the variable cost of planting
ranging from USD 2000/ha to USD 6000/ha (Figure 7), the cost per hectare to plant these
pastures has relatively low impact on variability of EPL values. The range of EPL values for
pollinator pasture cost is lower compared to the range of EPL values for the cost of rented
honey bee hives. This indicates greater efficiency of pollination investment for pollinator
pastures compared to rented hives (Figure 6A versus Figure 6B and Figure 6C versus
Figure 6D). This suggests that investing in native pollinator pastures can be a favorable
investment in terms of EPL compared to renting migratory honey bee hives.
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Although pollinator pastures may be an efficient EPL investment from a pollination
perspective [31], there are challenges for lowbush blueberry producers to transition from
renting honey bee hives to investing in pollinator pastures. Surveyed lowbush blueberry
producers’ that planted pollinator pastures (15%) were smaller scale and less profitable
than those that rent honey bee hives (77%) from migratory bee keepers [95]. Compared to
other crops that have greater initial responsiveness to pollination from managed honey bees
(e.g., cranberries), lowbush blueberries have more modest marginal returns to increasing
rented hive stocking density, so lowbush blueberry producers are less willing to invest in
on-farm wild bee habitats (USD 140/hectare) compared to USD 188/hectare for cranberry
growers in Massachusetts, USA [27]. Potential adopters of pollinator enhancements such
as those installing pollinator pasture in Maine’s lowbush blueberry industry, have been
characterized as those who are more educated, use bumblebees, monitor bees, value the
importance of native bees, rent fewer honey bee hives due to spillover pollination from
neighbors, and those with farm landscapes that are more favorable to pollinators [96].

The total cost of pollinator pastures is most influenced by the ratio of pollinator pasture
to lowbush blueberry crop area, as well as the stand life of the pollinator pasture, and is
not influenced by variable input costs or the values of equipment used to install pastures
(see Appendix A, Figure A2). Pollinator pastures become more costly if (1) more area has
to be planted relative to lowbush blueberry crop area; or (2) pastures have to be re-seeded
more often (e.g., pasture stand life of 2 to 3 years versus 10 years). Encouraging lowbush
blueberry producers to invest in pollinator pastures may require subsidies of USD 2000
to USD 6000/hectare (Figure 7). Assuming that planted pollinator pastures comprise 10%
of lowbush blueberry land area of 21,000 hectares [75] which equals 2100 hectares, the
variable costs of installing pollinator pastures at this scale would range from USD 1.7 to
5 million. The variable cost range (USD 2000 to USD 6000/hectare) of pollinator pastures
stochastically simulated in this study is consistent with recent increases in USDA-NRCS
cost-share (60% to 75%) that would cover USD 1945 to USD 4411/ha for installing pollinator
hedgerows on farms which increased participation in Maine, USA by 600% [27].

Our EPL results and stochastic simulations support arguments that pollination man-
agement should be based on direct measurement of pollinator activity [94]. While public
policies around the world have focused on conservation of native pollinator habitat sur-
rounding farms and/or pesticide regulation [97,98], such as in Brazil [42,99], Canada [100],
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and the United States of America [101], the focus in the European Union has shifted to
Common Agricultural Policies [49,102] to encourage provision of ecosystem services such
as pollination [103] by actively planting bee pastures [104]. Enhancing global pollination
security using public policies directed at improving on-farm bee forage and habitat [54]
is critical, not only in developed nations but also in developing nations [47]. Despite
the recent introduction of public policies to improve pollination security over the past
decade in the USA, these policies have been variable by state and region [105]. For ex-
ample, 31 of 50 states in the USA have pollinator plans, with only Connecticut’s being
legally binding [106]. Clearly there is room for improvement by better integrating data-
driven pollination management (e.g., using EPL) to better guide regional pollinator plans
and policies.

5. Conclusions

The lowbush blueberry production system in Maine and Canada is unique and re-
quires a sustainable pollination force so that it remains economically viable or sustainable.
Lowbush blueberry fields in Maine, USA, were surveyed for bees from 1993 to 2021 for
honey bee and native bee activity densities, fruit set, and crop yield. Managed honey
bee hive stocking density was also recorded if these pollinators were used. There were
209 lowbush blueberry fields in Maine sampled over these 29 years. As far as we know, this
data set is the most extensive pollinator, fruit set, and yield survey in fields representing a
single crop that exists globally. We statistically summarized these long-term data.

The proportion of fruit set in a field was predicted by both native bee and honey bee
activity density. This relationship being highly statistically significant with a relatively high
coefficient of determination shows how important foraging bee activity density is to fruit
set, considering all of the other factors that affect fruit set in lowbush blueberry such as
annual weather, regional climate differences, soil fertility, field-level blueberry genotype
composition, pests and diseases, and crop management [26]. Honey bee activity density
was well explained by hive stocking density. This is important because conduct of economic
analyses or implementation of pollination tactics involving honey bee activity density goals
must be performed using the unit of honey bee pollination, the hive [26,27,59,61]. The
proportion of fruit set adequately predicted yield. Similar to the relationship between bee
activity density and fruit set, there are many factors that affect yield in addition to fruit
set [26,69,80,107,108]. These factors include the following: drought, pests and diseases,
harvest method, intensity of pollination, soil fertility, fruit drop, method of harvest, and
crop management.

We proposed and developed a novel indicator, the Economic Pollinator Level (EPL), to
estimate bee densities that economically justify pollination investments such as rented hives
and planting bee pastures given recent global declines in pollinators. The EPL equation
determines adequate lowbush blueberry crop value (V), fruit set by pollinators (P), and the
individual berry weight (B) that is sufficient to cover the cost (C) of either rented honey bee
hives or establishing and maintaining pollinator pastures.

In order to determine the economic risk of pollination we used the EPL as a tool. Native
bee and honey bee activity densities, honey bee hive stocking density, and native bees as a
proportion of total bees in-field were all best fit to right-skewed distributions across sampled
fields. The fruit set proportion was distributed as a symmetric Gaussian distribution
across fields. Lowbush blueberry yield was best fit to a right-skewed Gamma probability
distribution. These frequency distributions were the basis of the Monte Carlo simulations
for assessing economic risk of pollination by way of the EPL. So, we stochastically varied V,
P, and B from field surveyed and observational data, the EPL was found to be most sensitive
to fruit set/m2/bee. Variation in berry weight, rented hive stocking density and price,
lowbush blueberry prices, and annual cost of planting/maintaining pollinator pastures
had less of an impact on EPL. The main contribution of this research demonstrates that
the EPL can be used to better economize investments in managed honey bees, pollinator
habitat, or any other pollinator tactic involving either or both wild native bees and managed
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bees. This can lead to agricultural systems, economic growth, employment opportunities,
and invertebrate conservation investments that are more sustainable and durable over
time. Future research could focus on using EPL for pollinator-dependent crops with
adequate field data sets to better guide decisions on economically prudent investments in
optimizing managed bee hive rentals, as well as planting bee pastures, selecting the least
toxic pesticides, and constructing and maintaining wild bee nesting bare-ground habitats
or twig-nesting bee habitats.
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Appendix A

Annual pollinator pasture budget (Table A1), data sources for cost line items in this
budget (Table A2), frequency distributions of flower and stem density (Figure A1), and
tornado diagram for pollinator pasture costs (Figure A2).
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Table A1. Native bee pasture budget for Maine, USA, lowbush blueberries with costs in USD.

Annual Pollination Pasture Budget Scale: 0.067 Hectares 5.953 Year Stand Life

Characteristic/Costs Total Per Hectare Per Square Meter

Number of Acres of Pasture 0.164 - -
Number of Hectares of Pasture 0.067 - -
Annual Operating Expenses (USD)

Lime 0 0 0
Seedlings 0 0 0
Seeds 77 1160.28 0.116
Seed Amendments 12 184.49 0.018
Labor

Establishment Year 1 50 745.30 0.075
Ensure Establishment Years 1 to 3 8 114.74 0.011
Annual 41 614.72 0.061

Diesel Fuel
Establishment Year 1 10 147.52 0.015
Ensure Establishment Years 1 to 3 0.40 6.06 0.001
Annual 0 0 0

Oil 3 38.10 0.004
Maintenance and Upkeep 111 1673.65 0.167
Utilities 0 0 0

Total Operating Expenses 312 4684.86 0.468
Annual Ownership Expenses (USD)

Depreciation and Interest
Buildings and Structures 116 1746.74 0.175
Bee Pasture Equipment 120 1803.84 0.180
Repair and Management 16 239.57 0.024
Tractors and Vehicles 422 6341.48 0.634
Land 17 252.03 0.025

Interest on Loans 0 0 0
Insurance 0 0 0
Taxes 195 2930.90 0.293

Total Ownership Expenses 886 13,314.57 1.331
Total Annual Cost (USD) 1197 17,999.43 1.800
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Table A2. Data sources for cost line items used for native bee pasture budget for Maine, USA.

Native Bee Pasture
Cost Line Items Data Source(s) Years

Producer Price Index Used to
Adjust
for Inflation [74]

Function Form
for Probability
Distribution Fit

Variable Costs

Seeds (wildflower mix) Neal 2019 [109]; OPN Seed
[110]; Wong 2017 [111] 2003–2022 Hay, hayseeds

and oilseeds Triangular

Vermiculite
U.S. Geological Survey,
National Minerals
Information Center [112]

2002–2022 Nonmetallic mineral
products Triangular

Labor U.S. Economic Research
Service [113] 2002–2022 Already adjusted

for inflation Pareto

Diesel Fuel
USDA, ARS [114];
Hoshide et al., 2006 [115];
Asare et al., 2017 [26]

2002–2023 No. 2 diesel fuel Triangular

Oil Asare et al., 2017 [26] 2002–2022 Finished lubricants Uniform

Maintenance and Upkeep Adjusted in proportion
to total capital used 2002–2022 Repair and maintenance

services (partial) Uniform

Fixed Costs
Depreciation

Equipment Storage Asare et al., 2017 [26] 2002–2022 Farm service buildings and
other prefab./portable Triangular

Tiller (for tractor) University of Minnesota
Extension [116] 2002–2022

Farm plows, harrows,
rollers, pulverizers, etc.,
and attachments

Uniform

Landscaping Rake Venturini et al., 2017 [31] 2002–2022 All other farm machinery Uniform
Paint bucket (seed) Venturini et al., 2017 [31] 2002–2022 All other farm machinery Uniform

Culti-Packer Venturini et al., 2017 [31] 2002–2022
Farm plows, harrows,
rollers, pulverizers, etc.,
and attachments

Uniform

Flail Mower (tractor) Asare et al., 2017 [26] 2002–2022
Farm dairy equipment,
sprayers and dusters, farm
blowers, and attachments

Triangular

Hand Clippers Venturini et al., 2017 [31] 2002–2022 All other farm machinery Uniform

Computer Asare et al., 2017 [26] 2002–2022 Personal computers and
workstations Uniform

Tractor University of Minnesota
Extension [116] 2002–2022 Total tractors Triangular

Land U.S. Economic Research
Service [117] 2002–2020 Already adjusted

for inflation Triangular

Property Tax Maine State Government
[118] 2012–2021 Not adjusted since no PPI

available Triangular
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